1
|
Khanashyam AC, Mundanat AS, Sajith Babu K, Thorakkattu P, Krishnan R, Abdullah S, Bekhit AEDA, McClements DJ, Santivarangkna C, Nirmal NP. Emerging alternative food protein sources: production process, quality parameters, and safety point of view. Crit Rev Biotechnol 2025; 45:1-22. [PMID: 39676293 DOI: 10.1080/07388551.2024.2341902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/25/2023] [Accepted: 01/17/2024] [Indexed: 12/17/2024]
Abstract
The rise in the global population has increased the demand for dietary food protein. Strategies to maximize agricultural and livestock outputs could strain land and freshwater supply and contribute to substantial negative environmental impacts. Consequently, there has been an emphasis on identifying alternative sources of edible proteins that are more sustainable, sustainable, ethical, and healthy. This review provides a critical report on future food protein sources including: plant, cultured meat, insect, and microbial, as alternative sources to traditional animal-based sources. The technical challenges associated with the production process of alternative protein sources are discussed. The most important quality parameters of alternative proteins, such as: protein composition and digestibility, allergenicity, functional and sensory attributes, and safety regulations have been documented. Lastly, future direction and conclusion have been made on future protein trends. However, further regulatory norms need to develop for safe consumption and distribution around the world.
Collapse
Affiliation(s)
| | - Anjaly Shanker Mundanat
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Karthik Sajith Babu
- Department of Animal Sciences and Industry/Food Science Institute, KS State University, Manhattan, KS, USA
| | - Priyamvada Thorakkattu
- Department of Animal Sciences and Industry/Food Science Institute, KS State University, Manhattan, KS, USA
| | - Reshma Krishnan
- Agro Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - Sajeeb Abdullah
- Department of Food Technology, Saintgits College of Engineering, Kottukulam Hills, Kerala, India
| | | | | | - Chalat Santivarangkna
- Department of Food Science, Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Nilesh Prakash Nirmal
- Department of Food Science, Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Liu Y, Gao A, Wang T, Zhang Y, Zhu G, Ling S, Wu Z, Jin Y, Chen H, Lai Y, Zhang R, Yang Y, Han J, Deng Y, Du Y. Growing meat on autoclaved vegetables with biomimetic stiffness and micro-patterns. Nat Commun 2025; 16:161. [PMID: 39746945 PMCID: PMC11695936 DOI: 10.1038/s41467-024-55048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Cultured meat needs edible bio-scaffolds that provide not only a growth milieu for muscle and adipose cells, but also biomimetic stiffness and tissue-sculpting topography. Current meat-engineering technologies struggle to achieve scalable cell production, efficient cell differentiation, and tissue maturation in one single culture system. Here we propose an autoclaving strategy to transform common vegetables into muscle- and adipose-engineering scaffolds, without undergoing conventional plant decellularization. We selected vegetables with natural anisotropic and isotropic topology mimicking muscle and adipose microstructures respectively. We further adjusted vegetable stiffness by autoclaving, to emulate the mechanical properties of animal tissues. Autoclaved vegetables preserve rich cell-affinitive moieties, yielding a good cell culture effect with simplified processing. Autoclaved Chinese chive and Shiitake mushroom with anisotropic micro-patterns support the scalable expansion of muscle cells, improved cell alignment and myogenesis. Autoclaved isotropic loofah encourages adipocyte proliferation and lipid accumulation. Our engineered muscle- and fat-on-vegetables can further construct meat stuffing or layered meat chips. Autoclaved vegetables possess tissue-mimicking stiffness and topology, and bring biochemical benefits, operational ease, cost reduction and bioreactor compatibility. Without needing decellularization, these natural biomaterials may see scale-up applications in meat analog bio-fabrication.
Collapse
Affiliation(s)
- Ye Liu
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China.
| | - Anqi Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Tiantian Wang
- School of Biomedical Engineering, Tsinghua Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yongqian Zhang
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Gaoxiang Zhu
- Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Sida Ling
- School of Biomedical Engineering, Tsinghua Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhaozhao Wu
- School of Biomedical Engineering, Tsinghua Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yuhong Jin
- School of Biomedical Engineering, Tsinghua Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Haoke Chen
- School of Biomedical Engineering, Tsinghua Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yuming Lai
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Rui Zhang
- School of Biomedical Engineering, Tsinghua Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yuchen Yang
- School of Biomedical Engineering, Tsinghua Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jianyong Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yulin Deng
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Yanan Du
- School of Biomedical Engineering, Tsinghua Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
- National Key Laboratory of Kidney Diseases, Beijing, China.
| |
Collapse
|
3
|
Li X, Sim D, Wang Y, Feng S, Longo B, Li G, Andreassen C, Hasturk O, Stout A, Yuen JSK, Cai Y, Sanders E, Sylvia R, Hatz S, Olsen T, Herget T, Chen Y, Kaplan DL. Fiber-based biomaterial scaffolds for cell support towards the production of cultivated meat. Acta Biomater 2025; 191:292-307. [PMID: 39522627 DOI: 10.1016/j.actbio.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The in vitro production of animal-derived foods via cellular agriculture is emerging as a key solution to global food security challenges. Here, the potential for fiber-based scaffolds, including silk and cotton, in the cultivation of muscle cells for tissue formation was pursued. Mechanical properties and cytocompatibility with the mouse myoblast cell line C2C12 and immortalized bovine muscle satellite cells (iBSCs) were assessed, as well as pre-digestion options for the materials due to their resilience within the human digestive track. The fibers supported cell adhesion, proliferation, and guided muscle cell orientation, facilitating myotube formation per differentiation. A progressive increase in biomass was also documented. Interestingly, iBSC proliferation was enhanced with coatings of recombinant proteins while C2C12 cells showed minimal response. Thus, both cotton and silk yarns were suitable as fiber-based scaffolds towards cell supportive goals, suggesting an alternative path toward structured protein-rich foods via this initial stage of textile engineering for food. Biomass prediction models were generated, enabling forecasts of cell growth and maturation across various scaffold conditions and cell types. This capability enhances the precision of the cultivation process towards an engineering approach, building on the inherent benefits of hierarchical muscle tissue structure, but here via textile engineering with these initial muscle-coated edible fibers. Further, the approach offers to reduce costs by optimizing cultivation time and media needs. These approaches are part of a foundation for future scalable and sustainable cultivated meat production. STATEMENT OF SIGNIFICANCE: This research investigates the use of one-dimensional fiber-based scaffolds for cultivated meat production, contributing to advancements in cellular agriculture. It introduces a method to measure changes in biomass and scaffold degradation throughout the cultivation process. Additionally, our development of biomass prediction models improves the precision and predictability of cultivated meat production. This research not only aids in scaling up cultivated meats but also enhances the use of textile engineering techniques in tissue engineering, paving the way for producing complex, three-dimensional meat structures more sustainably.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Davin Sim
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Shuo Feng
- Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brooke Longo
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Christel Andreassen
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Andrew Stout
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - John S K Yuen
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Yixin Cai
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Ella Sanders
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Ryan Sylvia
- MilliporeSigma, Inc., 400 Summit Drive, Burlington, Massachusetts 1803, USA
| | - Sonja Hatz
- Merck KGaA, Frankfurter Strasse 250, Darmstadt, 64293, Germany
| | - Timothy Olsen
- MilliporeSigma, Inc., 400 Summit Drive, Burlington, Massachusetts 1803, USA
| | - Thomas Herget
- Merck KGaA, Frankfurter Strasse 250, Darmstadt, 64293, Germany
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA.
| |
Collapse
|
4
|
Morikura T, Sakaguchi K, Tanaka RI, Yoshida A, Takahashi H, Iwasaki K, Shimizu T. Conditioned serum-free culture medium accomplishes adhesion and proliferation of bovine myogenic cells on uncoated dishes. NPJ Sci Food 2024; 8:108. [PMID: 39715787 DOI: 10.1038/s41538-024-00355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024] Open
Abstract
To establish a sustainable cultured meat technology, a low-cost culture medium must be developed without expensive biological materials such as serum and coating substances. However, even adhering bovine myogenic cells to uncoated culture dishes in the serum-free medium is challenging. We found that serum-free culture medium conditioned by HepG2 and NIH/3T3 cells not only accomplished the cell adhesion on uncoated culture dishes (the serum-containing medium : the serum-free medium : the conditioned medium = 6722 ± 1500 : 2210 ± 319 : 5985 ± 1558 cells/cm2), but also induced proliferation comparable to that observed in a serum-containing medium (the serum-containing medium : the serum-free medium : the conditioned medium = 10,050 ± 2814 : 2200 ± 707 : 8998 ± 3890 cells/cm2). Interestingly, although the nutrient composition of the developed medium differed significantly from that of the serum-containing medium, it tended to coordinate the expression of cell adhesion, proliferation, and myogenic differentiation markers as serum-containing medium. Component analysis and validation experiments suggested that pyridoxamine, asparagine, and glutamic acid contributed to the acquisition of the culture function of the developed medium. Our study paves the way to realize a low-cost and sustainable cultured meat technology.
Collapse
Affiliation(s)
- Takashi Morikura
- Graduate School of Science and Technology, Keio University, Yokohama, Japan
| | - Katsuhisa Sakaguchi
- Department of Medical Engineering, Faculty of Science and Engineering, Tokyo City University, Tokyo, Japan.
| | - Ryu-Ichiro Tanaka
- Institute of Advanced Biomedical Engineering and Sciences, TWIns, Tokyo Women's Medical University, Tokyo, Japan
| | - Azumi Yoshida
- Institute of Advanced Biomedical Engineering and Sciences, TWIns, Tokyo Women's Medical University, Tokyo, Japan
| | - Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Sciences, TWIns, Tokyo Women's Medical University, Tokyo, Japan
| | - Kiyotaka Iwasaki
- Department of Modern Mechanical Engineering, Waseda University, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Sciences, TWIns, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
5
|
Han JH, Jang SW, Kim YR, Na GR, Park JH, Choi HW. Comparative Analysis of Different Extracellular Matrices for the Maintenance of Bovine Satellite Cells. Animals (Basel) 2024; 14:3496. [PMID: 39682461 DOI: 10.3390/ani14233496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cultured meat produced using satellite cells has emerged to address issues such as overpopulation, the ethical conundrums associated with the breeding environment, and the methane gas emissions associated with factory farming. To date, however, the challenges of maintaining satellite cells in vitro and reducing the costs of the culture media are still substantial. Gelatin, collagen, and fibronectin are commonly used extracellular matrices (ECMs) that facilitate signal integration with the cells and promote cell adhesion. In this study, we compared the proliferation, cell cycle, immunocytochemistry, and expression levels of Pax7, Pax3, Myf5, MyoD1, and MyoG genes in bovine satellite cells (BSCs) cultured on gelatin-, collagen- and fibronectin-coated dishes as part of short- and long-term cultures. We observed that BSCs cultured on gelatin-coated dishes showed higher levels of Pax7 expression than BSCs cultured on collagen- and fibronectin-coated dishes in both short- and long-term cultures, indicating that BSCs cultured on gelatin effectively maintained the satellite cell population in both the short- and long-term cultures. Our study highlights that gelatin is an effective ECM for the maintenance of BSCs and the production of cultured meat.
Collapse
Affiliation(s)
- Jae Ho Han
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Si Won Jang
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ye Rim Kim
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ga Rim Na
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ji Hoon Park
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyun Woo Choi
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
6
|
Wang Y, Zhuang D, Munawar N, Zan L, Zhu J. A rich-nutritious cultured meat via bovine myocytes and adipocytes co-culture: Novel Prospect for cultured meat production techniques. Food Chem 2024; 460:140696. [PMID: 39111042 DOI: 10.1016/j.foodchem.2024.140696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 09/06/2024]
Abstract
Cultured meat, an emerging meat production technology, has reduced environmental burden as well as provide healthier and more sustainable method of meat culture. Fat in cultured meat is essential for enhancing texture, taste, and tenderness. However, current cultured meat production method is limited to single-cell type. To meet the consumer demands for cultured meat products, it is crucial to develop new methods for producing cultured meat products that contain both muscle and fat. In this study, cell viability and differentiation were promoted by controlling the ratio and cultivation conditions of myocytes and adipocytes. The total digestibility of cultured meat exceeded 37%, higher than that of beef (34.7%). Additionally, the texture, appearance, and taste of the co-cultured meat were improved. Collectively, this research has great promise for preparing rich-nutritious and digestion cultured meat.
Collapse
Affiliation(s)
- Yafang Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China,; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Zhuang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Noshaba Munawar
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linsen Zan
- Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China,; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China..
| |
Collapse
|
7
|
Fernandes AM, Teixeira ODS, Matos GBDC, Revillion JP, Souza ÂRLD. Sociotechnical transitions in the system for providing beef to human food: Scenarios for cultured meat. FUTURES 2024; 164:103488. [DOI: 10.1016/j.futures.2024.103488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Chandrababu A, Puthumana J. CRISPR-edited, cell-based future-proof meat and seafood to enhance global food security and nutrition. Cytotechnology 2024; 76:619-652. [PMID: 39435422 PMCID: PMC11490478 DOI: 10.1007/s10616-024-00645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/15/2024] [Indexed: 10/23/2024] Open
Abstract
Food security is a major concern due to the growing population and climate change. A method for increasing food production is the use of modern biotechnology, such as cell culture, marker-assisted selection, and genetic engineering. Cellular agriculture has enabled the production of cell-cultivated meat in bioreactors that mimic the properties of conventional meat. Furthermore, 3D food printing technology has improved food production by adding new nutritional and organoleptic properties. Marker-assisted selection and genetic engineering could play an important role in producing animals and crops with desirable traits. Therefore, integrating cellular agriculture with genetic engineering technology could be a potential strategy for the production of cell-based meat and seafood with high health benefits in the future. This review highlights the production of cell-cultivated meat derived from a variety of species, including livestock, birds, fish, and marine crustaceans. It also investigates the application of genetic engineering methods, such as CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein), in the context of cellular agriculture. Moreover, it examines aspects such as food safety, regulatory considerations, and consumer acceptance of genetically engineered cell-cultivated meat and seafood.
Collapse
Affiliation(s)
- Aswathy Chandrababu
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, Kerala 16 India
| | - Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, Kerala 16 India
| |
Collapse
|
9
|
Pfeifer LM, Sensbach J, Pipp F, Werkmann D, Hewitt P. Increasing sustainability and reproducibility of in vitro toxicology applications: serum-free cultivation of HepG2 cells. FRONTIERS IN TOXICOLOGY 2024; 6:1439031. [PMID: 39650261 PMCID: PMC11621109 DOI: 10.3389/ftox.2024.1439031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024] Open
Abstract
Fetal Bovine Serum (FBS) is an important ingredient in cell culture media and the current standard for most cells in vitro. However, the use of FBS is controversial for several reasons, including ethical concerns, political, and societal pressure, as well as scientific problems due to the undefined and variable nature of FBS. Nevertheless, scientists hesitate to change the paradigm without solid data de-risking the switch of their assays to alternatives. In this study, HepG2 cells, a human hepatoblastoma cell line commonly used to study drug hepatotoxicity, were adapted to serum-free conditions by using different commercially available media and FBS replacements. After transition to these new culture conditions, the success of adaptation was determined based on cell morphology and growth characteristics. Long-term culturing capacity for each medium was defined as the number of passages HepG2 cells could be cultured without any alterations in morphology or growth behavior. Two media (Advanced DMEM/F12 from ThermoFisher and TCM® Serum Replacement from MP Biomedicals) showed a long-term cultivation capacity comparable to media containing FBS and were selected for further analysis. Both media can be characterized as serum-free, however still contain animal-derived components: bovine serum albumin (both media) and bovine transferrin (only TCM® serum replacement). To assess the functionality of the cells cultivated in either of the two media, HepG2 cells were treated with reference compounds, specifically selected for their known hepatotoxicity characteristics in man. Different toxicological assays focusing on viability, mitochondrial toxicity, oxidative stress, and intracellular drug response were performed. Throughout the different assays, response to reference compounds was comparable, with a slightly higher sensitivity of serum-free cultivated HepG2 cells when assessing viability/cell death and a lower sensitivity towards oxidative stress. Taken together, the two selected media were shown to support growth, morphology, and function of serum-free cultivated HepG2 cells in the early preclinical safety space. Therefore, these results can serve as a starting point to further optimize culture conditions with the goal to remove any remaining animal-derived components.
Collapse
Affiliation(s)
| | - Janike Sensbach
- Early Investigative Toxicology, Merck Healthcare KGaA, Darmstadt, Germany
| | - Frederic Pipp
- Corporate Animal Affairs, Merck KGaA, Darmstadt, Germany
| | - Daniela Werkmann
- Cell Design Lab, Molecular Biology, Merck KGaA, Darmstadt, Germany
| | - Philip Hewitt
- Early Investigative Toxicology, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
10
|
Sibinčić N, Krstić Ristivojević M, Gligorijević N, Veličković L, Ćulafić K, Jovanović Z, Ivanov A, Tubić L, Vialleix C, Michel T, Srdić Rajić T, Nikolić M, Stojadinović M, Minić S. Screening Algal and Cyanobacterial Extracts to Identify Potential Substitutes for Fetal Bovine Serum in Cellular Meat Cultivation. Foods 2024; 13:3741. [PMID: 39682813 DOI: 10.3390/foods13233741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Cultured meat technology is a form of cellular agriculture where meat is produced from animal cells grown in a lab, instead of raising and slaughtering animals. This technology relies heavily on fetal bovine serum (FBS) in cell media; hence, production is costly and contributes significantly to ammonia and greenhouse gas emissions. Achieving the successful commercialization of cell-cultured food requires the critical resolution of manufacturing cost and safety concerns. Hence, our research efforts are focused on identifying commercially viable and ecologically sustainable alternatives to FBS. In this study, we evaluated the potential of twenty-six water-based algal and cyanobacterial extracts to stimulate cell growth for meat cultivation under 90% reduced serum conditions. The extracts were compared in viability, proliferation, and Trypan blue exclusion assays. In the first screening phase, the extracts were evaluated in a ZEM2S (zebrafish) cell culture in a 1% FBS regimen. Based on their ability to exhibit protein tolerance or promote cell proliferation, ten extracts were selected and further assayed in a QM7 cell culture. The QM7 cell line (myoblasts from Japanese quail) is highly relevant for meat cultivation because of its ability to differentiate into muscle fibers. Extracts derived from two microalgae species, Arthrospira platensis (Spirulina) and Dunaliella tertiolecta, demonstrated the highest tolerance in cell culture, above 10 μg/mL (expressed as total protein concentration). Tolerance at a 100 μg/mL concentration was demonstrated exclusively using an extract of blue spirulina (commercially purified Spirulina), which supported cell growth through multiple passages.
Collapse
Affiliation(s)
- Nikolina Sibinčić
- Innovative Centre, University of Belgrade-Faculty of Chemistry, 11000 Belgrade, Serbia
| | - Maja Krstić Ristivojević
- Department of Biochemistry & Center of Excellence for Molecular Food Sciences, University of Belgrade-Faculty of Chemistry, 11000 Belgrade, Serbia
| | - Nikola Gligorijević
- Department of Chemistry, Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Luka Veličković
- Department of Biochemistry & Center of Excellence for Molecular Food Sciences, University of Belgrade-Faculty of Chemistry, 11000 Belgrade, Serbia
| | - Katarina Ćulafić
- Department of Biochemistry & Center of Excellence for Molecular Food Sciences, University of Belgrade-Faculty of Chemistry, 11000 Belgrade, Serbia
| | - Zorana Jovanović
- Department of Biochemistry & Center of Excellence for Molecular Food Sciences, University of Belgrade-Faculty of Chemistry, 11000 Belgrade, Serbia
| | - Aleksandar Ivanov
- Department of Biochemistry & Center of Excellence for Molecular Food Sciences, University of Belgrade-Faculty of Chemistry, 11000 Belgrade, Serbia
| | - Lora Tubić
- Department of Biochemistry & Center of Excellence for Molecular Food Sciences, University of Belgrade-Faculty of Chemistry, 11000 Belgrade, Serbia
| | | | | | | | - Milan Nikolić
- Department of Biochemistry & Center of Excellence for Molecular Food Sciences, University of Belgrade-Faculty of Chemistry, 11000 Belgrade, Serbia
| | - Marija Stojadinović
- Department of Biochemistry & Center of Excellence for Molecular Food Sciences, University of Belgrade-Faculty of Chemistry, 11000 Belgrade, Serbia
| | - Simeon Minić
- Department of Biochemistry & Center of Excellence for Molecular Food Sciences, University of Belgrade-Faculty of Chemistry, 11000 Belgrade, Serbia
| |
Collapse
|
11
|
Melzener L, Schaeken L, Fros M, Messmer T, Raina D, Kiessling A, van Haaften T, Spaans S, Doǧan A, Post MJ, Flack JE. Optimisation of cell fate determination for cultivated muscle differentiation. Commun Biol 2024; 7:1493. [PMID: 39532984 PMCID: PMC11557827 DOI: 10.1038/s42003-024-07201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Production of cultivated meat requires defined medium formulations for the robust differentiation of myogenic cells into mature skeletal muscle fibres in vitro. Although these formulations can drive myogenic differentiation levels comparable to serum-starvation-based protocols, the resulting cultures are often heterogeneous, with a significant proportion of cells not participating in myofusion, limiting maturation of the muscle. To address this problem, we employed RNA sequencing to analyse heterogeneity in differentiating bovine satellite cells at single-nucleus resolution, identifying distinct cellular subpopulations including proliferative cells that fail to exit the cell cycle and quiescent 'reserve cells' that do not commit to myogenic differentiation. Our findings indicate that the MEK/ERK, NOTCH, and RXR pathways are active during the initial stages of myogenic cell fate determination, and by targeting these pathways, we can promote cell cycle exit while reducing reserve cell formation. This optimised medium formulation consistently yields fusion indices close to 100% in 2D culture. Furthermore, we demonstrate that these conditions enhance myotube formation and actomyosin accumulation in 3D bovine skeletal muscle constructs, providing proof of principle for the generation of highly differentiated cultivated muscle with excellent mimicry to traditional muscle.
Collapse
Affiliation(s)
- Lea Melzener
- Mosa Meat B.V., Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | | | - Tobias Messmer
- Mosa Meat B.V., Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | - Arin Doǧan
- Mosa Meat B.V., Maastricht, The Netherlands
| | - Mark J Post
- Mosa Meat B.V., Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Joshua E Flack
- Mosa Meat B.V., Maastricht, The Netherlands.
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
12
|
Bodiou V, Kumar AA, Massarelli E, van Haaften T, Post MJ, Moutsatsou P. Attachment promoting compounds significantly enhance cell proliferation and purity of bovine satellite cells grown on microcarriers in the absence of serum. Front Bioeng Biotechnol 2024; 12:1443914. [PMID: 39553395 PMCID: PMC11563957 DOI: 10.3389/fbioe.2024.1443914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction To bring cultivated beef to the market, a scalable system that can support growth of bovine satellite cells (bSCs) in a serum-free and preferably also animal-free medium is of utmost importance. The use of microcarriers (MCs) is, at the moment, one of the most promising technologies for scaling up. MCs offer a large surface to volume ratio, they can be used in scalable stirred tank bioreactors, where the culture conditions can be tightly controlled to meet the cells' requirements (temperature, pH, dissolved oxygen). The inherent capacity of the cells to migrate from one MC to another, also known as bead-to-bead transfer, facilitates a scale-up strategy involving MCs. Previous studies have shown growth of bSCs on three commercially available MCs in serum containing media. Unfortunately there is currently no information available regarding their growth on MCs in serum-free conditions. Methods In this study, we aimed to find suitable serum-free media, MCs and attachment promoting compounds (APCs) supporting the growth of bSCs. Initially, six commercial MCs and three serum-free media were evaluated. The effects of three APCs were compared (vitronectin, laminin and fibronectin). Subsequently, the effects of different concentrations and modes of addition of the best performing APC were investigated. Results and Discussion Our results showed that Cytodex 1, Synthemax II and CellBIND supported bSCs' growth in all serum-free media. Overall, better growth was observed with Cytodex 1 in serum-free proliferation media. We showed that the use of laminin or vitronectin with Cytodex 1 can significantly improve cell growth and purity. Laminin also allowed attachment and growth of bSCs on Plastic MCs which had been previously unsuccessful without APCs. Finally, we optimized the use of vitronectin from a sustainability and process perspective, and showed that it can be used solely as a coating for Cytodex 1 (16-100 ng/cm2) MCs, instead of as a medium supplement, enhancing cell attachment and proliferation.
Collapse
Affiliation(s)
- Vincent Bodiou
- Mosa Meat BV, Maastricht, Netherlands
- CARIM (The Cardiovascular Research Institute Maastricht), Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | | | | | | | - Mark J. Post
- Mosa Meat BV, Maastricht, Netherlands
- CARIM (The Cardiovascular Research Institute Maastricht), Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | | |
Collapse
|
13
|
Kim YA, Oh S, Park G, Park S, Park Y, Choi H, Kim M, Choi J. Characteristics of bovine muscle satellite cell from different breeds for efficient production of cultured meat. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:1257-1272. [PMID: 39691610 PMCID: PMC11647411 DOI: 10.5187/jast.2023.e115] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 12/19/2024]
Abstract
The purpose of this study was comparing in vitro performances of three breeds of donor satellite cells for cultured meat and selecting the optimal donor and providing insight into the selection of donors for cultured meat production. Cattle muscle satellite cells were isolated from the muscle tissue of Hanwoo, Holstein, and Jeju black cattle, and then sorted by fluorescence activated cell sorting (FACS). Regarding proliferation of satellite cells, all three breeds showed similar trends. The myogenic potential, based on PAX7 and MYOD mRNA expression levels, was similar or significantly higher for Holstein than other breeds. When the area, width, and fusion index of the myotube were calculated through immunofluorescence staining of myosin, it was expressed upward for Holstein in all experiments except myotube area at passage 8. In addition, it was confirmed that Holstein's muscle satellite cells showed an upward expression in the amount of gene and protein expression related to myogenic. In the case of gene expression of MYOG, DES, and MYH4 known to play a key role in differentiation into muscles, it was confirmed that Holstein's muscle satellite cells expressed higher levels. CAV3, IGF1 and TNNT1, which contribute to hypertrophy and differentiation of muscle cells, showed high expression in Holstein. Our results suggest using cells from Holstein cattle can increase the efficiency of cultured meat production, compared to Hanwoo and Jeju breeds, because the cells exhibit superior differentiation behavior which would lead to greater yields during the maturation phase of bioprocessing.
Collapse
Affiliation(s)
- Yun-a Kim
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Sehyuk Oh
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Gyutae Park
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Sanghun Park
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Yunhwan Park
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Hyunsoo Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Minjung Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Korea
| | - Jungseok Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
14
|
Riquelme-Guzmán C, Stout AJ, Kaplan DL, Flack JE. Unlocking the potential of cultivated meat through cell line engineering. iScience 2024; 27:110877. [PMID: 39351194 PMCID: PMC11440241 DOI: 10.1016/j.isci.2024.110877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Cultivated meat has the potential to revolutionize food production, but its progress is hindered by fundamental shortcomings of mammalian cells with respect to industrial-scale bioprocesses. Here, we discuss the essential role of cell line engineering in overcoming these limitations, highlighting the balance between the benefits of enhanced cellular traits and the associated regulatory and consumer acceptance challenges. We believe that careful selection of cell engineering strategies, including both genetic and non-genetic modifications, can address this trade-off and is essential to advancing the field.
Collapse
Affiliation(s)
- Camilo Riquelme-Guzmán
- Biomedical Engineering Department, Tufts University Center for Cellular Agriculture, Tufts University, Medford, MA, USA
| | - Andrew J Stout
- Biomedical Engineering Department, Tufts University Center for Cellular Agriculture, Tufts University, Medford, MA, USA
- Deco Labs, Inc., Boston, MA, USA
| | - David L Kaplan
- Biomedical Engineering Department, Tufts University Center for Cellular Agriculture, Tufts University, Medford, MA, USA
| | - Joshua E Flack
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
15
|
Lombardi SJ, Pannella G, Coppola F, Vergalito F, Maiuro L, Succi M, Sorrentino E, Tremonte P, Coppola R. Plant-Based Ingredients Utilized as Fat Replacers and Natural Antimicrobial Agents in Beef Burgers. Foods 2024; 13:3229. [PMID: 39456291 PMCID: PMC11507565 DOI: 10.3390/foods13203229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The present study aimed to find solutions based on the use of plant-based ingredients that would improve the nutritional quality of meat products as well as ensure sensory and microbiological quality. Two fat replacers, lemon albedo (Citrus lemon) and carob seed gum (Ceratonia siliqua), were investigated by chemical analysis and panel testing to evaluate their effect on the nutritional and sensory quality of beef burgers. The antimicrobial activity of two plant extracts, from nettle (Urtica dioica) leaves and medlar (Eriobotrya japonica) seeds, was studied, evaluating the intensity of inhibitory action and the minimum inhibitory concentration against Pseudomonas spp. and Listeria innocua strains by plate test. In addition, the antioxidant activity of both extracts was evaluated. Based on the results, lemon albedo and medlar seed extracts were validated in a food model (beef burger) by a storage test and a challenge test. The storage test results highlight that medlar seed extract prevents the formation of thiobarbituric acid reactive substances (TBARSs) and ensures microbiological quality, inhibiting Enterobacteriaceae and Pseudomonas spp. Anti-Listeria efficacy was confirmed in situ by challenge test results. In conclusion, although fat replacers ensure nutritional and sensory quality, they do not satisfy microbiological quality. This study clearly demonstrates that the safety of low-fat burgers can only be achieved through the combination of appropriate fat replacers with well-selected natural antimicrobial extracts.
Collapse
Affiliation(s)
- Silvia Jane Lombardi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| | - Gianfranco Pannella
- Department of Science and Technology for Sustainable Development and One Health, Università Campus-Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Francesca Coppola
- Institute of Food Science, National Research Council, Via Roma, 60, 83100 Avellino, Italy
| | - Franca Vergalito
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| | - Lucia Maiuro
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| | - Mariantonietta Succi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| | - Elena Sorrentino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| | - Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| |
Collapse
|
16
|
Haque MA, Nath ND, Johnston TV, Haruna S, Ahn J, Ovissipour R, Ku S. Harnessing biotechnology for penicillin production: Opportunities and environmental considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174236. [PMID: 38942308 DOI: 10.1016/j.scitotenv.2024.174236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Since the discovery of antibiotics, penicillin has remained the top choice in clinical medicine. With continuous advancements in biotechnology, penicillin production has become cost-effective and efficient. Genetic engineering techniques have been employed to enhance biosynthetic pathways, leading to the production of new penicillin derivatives with improved properties and increased efficacy against antibiotic-resistant pathogens. Advances in bioreactor design, media formulation, and process optimization have contributed to higher yields, reduced production costs, and increased penicillin accessibility. While biotechnological advances have clearly benefited the global production of this life-saving drug, they have also created challenges in terms of waste management. Production fermentation broths from industries contain residual antibiotics, by-products, and other contaminants that pose direct environmental threats, while increased global consumption intensifies the risk of antimicrobial resistance in both the environment and living organisms. The current geographical and spatial distribution of antibiotic and penicillin consumption dramatically reveals a worldwide threat. These challenges are being addressed through the development of novel waste management techniques. Efforts are aimed at both upstream and downstream processing of antibiotic and penicillin production to minimize costs and improve yield efficiency while lowering the overall environmental impact. Yield optimization using artificial intelligence (AI), along with biological and chemical treatment of waste, is also being explored to reduce adverse impacts. The implementation of strict regulatory frameworks and guidelines is also essential to ensure proper management and disposal of penicillin production waste. This review is novel because it explores the key remaining challenges in antibiotic development, the scope of machine learning tools such as Quantitative Structure-Activity Relationship (QSAR) in modern biotechnology-driven production, improved waste management for antibiotics, discovering alternative path to reducing antibiotic use in agriculture through alternative meat production, addressing current practices, and offering effective recommendations.
Collapse
Affiliation(s)
- Md Ariful Haque
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| | - Nirmalendu Deb Nath
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, USA.
| | - Tony Vaughn Johnston
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, USA.
| | - Samuel Haruna
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, USA.
| | - Jaehyun Ahn
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| | - Reza Ovissipour
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| | - Seockmo Ku
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| |
Collapse
|
17
|
Gurel M, Rathod N, Cabrera LY, Voyton S, Yeo M, Ozogul F, Ozbolat IT. A narrative review: 3D bioprinting of cultured muscle meat and seafood products and its potential for the food industry. Trends Food Sci Technol 2024; 152:104670. [PMID: 39309029 PMCID: PMC11412102 DOI: 10.1016/j.tifs.2024.104670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The demand for meat and seafood products has been globally increasing for decades. To address the environmental, social, and economic impacts of this trend, there has been a surge in the development of three-dimensional (3D) food bioprinting technologies for lab-grown muscle food products and their analogues. This innovative approach is a sustainable solution to mitigate the environmental risks associated with climate change caused by the negative impacts of indiscriminative livestock production and industrial aquaculture. This review article explores the adoption of 3D bioprinting modalities to manufacture lab-grown muscle food products and their associated technologies, cells, and bioink formulations. Additionally, various processing techniques, governing the characteristics of bioprinted food products, nutritional compositions, and safety aspects as well as its relevant ethical and social considerations, were discussed. Although promising, further research and development is needed to meet standards and translate into several industrial areas, such as the food and renewable energy industries. In specific, optimization of animal cell culture conditions, development of serum-free media, and bioreactor design are essential to eliminate the risk factors but achieve the unique nutritional requirements and consumer acceptance. In short, the advancement of 3D bioprinting technologies holds great potential for transforming the food industry, but achieving widespread adoption will require continued innovation, rigorous research, and adherence to ethical standards to ensure safety, nutritional quality, and consumer acceptance.
Collapse
Affiliation(s)
- Mediha Gurel
- Biotechnology Research and Application Center, Cukurova University, 01330, Adana, Turkey
- Electronic and Automation Department, Bitlis Eren University, Bitlis, 13000, Turkey
| | - Nikheel Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post-graduate Institute of Post-harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Raigad, 402116, India
| | - Laura Y. Cabrera
- Rock Ethics Institute, Penn State University, University Park, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
| | - Stephen Voyton
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
| | - Miji Yeo
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Fatih Ozogul
- Biotechnology Research and Application Center, Cukurova University, 01330, Adana, Turkey
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
- Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, 17033, USA
- Penn State Cancer Institute, Penn State University, Hershey, PA, 17033, USA
- Department of Medical Oncology, Cukurova University, Adana, 01130, Turkey
| |
Collapse
|
18
|
Goswami AB, Rybchyn MS, Walsh W, le Coutre J. Obtaining source material for cellular agriculture. Heliyon 2024; 10:e38006. [PMID: 39364244 PMCID: PMC11447359 DOI: 10.1016/j.heliyon.2024.e38006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024] Open
Abstract
Cellular Agriculture (CellAg) is an attractive concept for innovative technology with the intent to provide food and nutrition complementary to existing supply streams. The past decade has seen considerable progress in the field with advancement of cellular technology that delivers the initial building blocks for meaningful implementation. The availability of natural cell-based material that can serve as nutrient-filled source for human consumption at low cost is a critical challenge for the emerging cellular agriculture industry. Therefore, here the isolation of bovine myofibroblasts of the Black Angus breed has been pursued and accomplished together with its characterisation by using RNA sequencing and proteomics through western blotting. To transition CellAg from a concept to a game changing technology for the industry, multiple challenges need to be overcome. The field requires powerful initial material, i.e., dedicated cells that can proliferate and differentiate robustly at scale. The methodology described allows for the production of healthy cells, which have been unequivocally characterized as clonal representatives of a stable myofibroblast cell line using transcriptomics and proteomics validation. Stringent and rigorous live cell monitoring of a nascent cell line derived from healthy muscle tissue allowed for stable cell growth. In this research article, a simple and precise methodology is presented for creating a bovine myofibroblast cell line (Bov.mia). Our work puts forward a low-tech use of materials and expertise that is devoid of transgenic approaches, thus creating a reliable approach for lab-scale research.
Collapse
Affiliation(s)
- Apeksha Bharatgiri Goswami
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Sydney, Australia
| | - Mark S. Rybchyn
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Sydney, Australia
| | - W.R. Walsh
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Johannes le Coutre
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Sydney, Australia
- Australian Human Rights Institute, University of New South Wales, Sydney, New South Wales, Sydney, Australia
| |
Collapse
|
19
|
Todhunter ME, Jubair S, Verma R, Saqe R, Shen K, Duffy B. Artificial intelligence and machine learning applications for cultured meat. Front Artif Intell 2024; 7:1424012. [PMID: 39381621 PMCID: PMC11460582 DOI: 10.3389/frai.2024.1424012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/21/2024] [Indexed: 10/10/2024] Open
Abstract
Cultured meat has the potential to provide a complementary meat industry with reduced environmental, ethical, and health impacts. However, major technological challenges remain which require time-and resource-intensive research and development efforts. Machine learning has the potential to accelerate cultured meat technology by streamlining experiments, predicting optimal results, and reducing experimentation time and resources. However, the use of machine learning in cultured meat is in its infancy. This review covers the work available to date on the use of machine learning in cultured meat and explores future possibilities. We address four major areas of cultured meat research and development: establishing cell lines, cell culture media design, microscopy and image analysis, and bioprocessing and food processing optimization. In addition, we have included a survey of datasets relevant to CM research. This review aims to provide the foundation necessary for both cultured meat and machine learning scientists to identify research opportunities at the intersection between cultured meat and machine learning.
Collapse
Affiliation(s)
| | - Sheikh Jubair
- Alberta Machine Intelligence Institute, Edmonton, AB, Canada
| | - Ruchika Verma
- Alberta Machine Intelligence Institute, Edmonton, AB, Canada
| | - Rikard Saqe
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Kevin Shen
- Department of Mathematics, University of Waterloo, Waterloo, ON, Canada
| | | |
Collapse
|
20
|
Tang Y, Shi C, Zhu Y, Yang M, Sheng K, Zhang X. Cellulose as a sustainable scaffold material in cultivated meat production. Curr Res Food Sci 2024; 9:100846. [PMID: 39328389 PMCID: PMC11426059 DOI: 10.1016/j.crfs.2024.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
The rapid progress in cultivated meat research has engendered considerable attention towards the edible scaffolding biomaterials employed in the production. Cellulose has the advantages in availability, edibility, animal-free origin, etc., which show its potential in wide fields. This review begins by presenting the fundamental physical and chemical properties of cellulose from different sources, including plant and bacterial cellulose. Subsequently, we summarize the application of cellulose especially in cultivated meat and tissue engineering. Furthermore, we explore various methods for preparing cellulose-based scaffolds for cultivated meat, encompassing five specific structural variations. In the end, associated with utilizing cellulose in cultivated meat production, we address several primary challenges surrounding to cell adhesion, scaling up, processibility and mechanical properties, and provide potential innovations. This review underscores the potential of cellulose as a versatile biomaterial in the cultivated meat industry and provides insight into addressing critical challenges for its integration.
Collapse
Affiliation(s)
- Yunan Tang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, China
| | - Chenchen Shi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yuyan Zhu
- Department of Food Science and Nutrition, Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Future Food, Hong Kong Polytechnic University, Hong Kong, China
| | - Ming Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Kuichuan Sheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, China
| | - Ximing Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
- National Key Laboratory of Biobased Transportation Fuel Technology, your department, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
21
|
Caron E, Van de Walle D, Dewettinck K, Marchesini FH. State of the art, challenges, and future prospects for the multi-material 3D printing of plant-based meat. Food Res Int 2024; 192:114712. [PMID: 39147544 DOI: 10.1016/j.foodres.2024.114712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 08/17/2024]
Abstract
The emergence of innovative plant-based meat analogs, replicating the flavor, texture, and appearance of animal meat cuts, is deemed crucial for sustainably feeding a growing population while mitigating the environmental impact associated with livestock farming. Multi-material 3D food printing (MM3DFP) has been proposed as a potentially disruptive technology for manufacturing the next generation of plant-based meat analogs. This article provides a comprehensive review of the state of the art, addressing various aspects of 3D printing in the realm of plant-based meat. The disruptive potential of printed meat analogs is discussed with particular emphasis on protein-rich, lipid-rich, and blood-mimicking food inks. The printing parameters, printing requirements, and rheological properties at the different printing stages are addressed in detail. As food rheology plays a key role in the printing process, an appraisal of this subject is performed. Post-printing treatments are assessed based on the extent of improvement in the quality of 3D-printed plant-based meat analogs. The meat-mimicking potential is revealed through sensory attributes, such as texture and flavor. Furthermore, there has been limited research into food safety and nutrition. Economically, the 3D printing of plant-based meat analogs demonstrates significant market potential, contingent upon innovative decision-making strategies and supportive policies to enhance consumer acceptance. This review examines the current limitations of this technology and highlights opportunities for future developments.
Collapse
Affiliation(s)
- Elise Caron
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9052 Zwijnaarde, Belgium; Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium.
| | - Davy Van de Walle
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium
| | - Koen Dewettinck
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium
| | - Flávio H Marchesini
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9052 Zwijnaarde, Belgium
| |
Collapse
|
22
|
Lee YY, Lee S, Ham SH, Lee MG, Hahn J, Kim Y, Choi YJ. Relationship between sensory attributes and instrumental texture properties in meat analog patty system substituted with sweet potato stem. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7002-7012. [PMID: 38619447 DOI: 10.1002/jsfa.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Understanding the relationship between perceived sensory attributes and measurable instrumental properties is crucial for replicating the distinct textures of meat in plant-based meat analogs. In this study, plant-based patties composed of textured vegetable protein (TVP) and 10%, 20% and 30% TVPs were substituted with fibers from sweet potato stem (SPS), and their instrumental texture and sensory properties were evaluated. RESULTS Samples with 20% SPS showed hardness, cohesiveness and chewiness, which are the mechanical indicators most similar to those of meat. A descriptive sensory analysis by ten trained participants indicated that the SPS-supplemented meat analog patties exhibited characteristics similar to pork patties in terms of firmness, toughness, cohesiveness and smoothness compared to the TVP-only sample. A strong positive correlation between instrumental hardness and sensory firmness was observed (P < 0.01); however, cohesiveness, springiness and chewiness did not show any correlation between instrumental and sensory analyses. Warner-Bratzler shear force (WBSF) values showed positive correlations with sensory cohesiveness, chewiness, toughness, fibrousness, moistness, firmness and springiness (P < 0.05). CONCLUSION The results demonstrated the feasibility of physically treated fibers from SPS as a partial substitute for TVP in developing meat analogs. Additionally, this study suggested that instrumental hardness and WBSF measurements can be sound parameters for representing sensory texture characteristics while further developing plant-based meat analogs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- You Young Lee
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Republic of Korea
| | - Suyoon Lee
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Republic of Korea
| | - Seung Hwan Ham
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Republic of Korea
| | - Min Gyu Lee
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Republic of Korea
| | - Jungwoo Hahn
- Department of Food and Nutrition, Duksung Women's University, Dobong-gu, Republic of Korea
| | - Yang Kim
- Center for Food and Bioconvergence, Seoul National University, Gwanak-gu, Republic of Korea
| | - Young Jin Choi
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Gwanak-gu, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Republic of Korea
| |
Collapse
|
23
|
Çakmakçı S, Polatoğlu B, Çakmakçı R. Foods of the Future: Challenges, Opportunities, Trends, and Expectations. Foods 2024; 13:2663. [PMID: 39272427 PMCID: PMC11393958 DOI: 10.3390/foods13172663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Creating propositions for the near and distant future requires a design to catch the tide of the times and move with or against trends. In addition, appropriate, adaptable, flexible, and transformational projects are needed in light of changes in science, technology, social, economic, political, and demographic fields over time. Humanity is facing a period in which science and developing technologies will be even more important in solving food safety, health, and environmental problems. Adapting to and mitigating climate change; reducing pollution, waste, and biodiversity loss; and feeding a growing global population with safe food are key challenges facing the agri-food industry and the food supply chain, requiring systemic transformation in agricultural systems and sustainable future agri-food. The aim of this review is to compile scientific evidence and data, define, and create strategies for the future in terms of food security, safety, and sufficiency; future sustainable foods and alternative protein sources; factors affecting food and nutrition security and agriculture; and promising food systems such as functional foods, novel foods, synthetic biology, and 3D food printing. In this review, the safety, conservation, nutritional, sensory, welfare, and potential challenges and limitations of food systems and the opportunities to overcome them on the basis of new approaches, innovative interpretations, future possibilities, and technologies are discussed. Additionally, this review also offers suggestions for future research and food trends in light of future perspectives. This article focuses on future sustainable foods, alternative protein sources, and novel efficient food systems, highlights scientific and technological advances and new research directions, and provides a significant perspective on sustainability.
Collapse
Affiliation(s)
- Songül Çakmakçı
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, 25240 Erzurum, Türkiye
| | - Bilgehan Polatoğlu
- Department of Food Technology, Technical Sciences Vocational School, Atatürk University, 25240 Erzurum, Türkiye
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, 25240 Erzurum, Türkiye
| | - Ramazan Çakmakçı
- Department of Field Crops, Faculty of Agriculture, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Türkiye
| |
Collapse
|
24
|
Martínez A, Velázquez L, Díaz R, Huaiquipán R, Pérez I, Muñoz A, Valdés M, Sepúlveda N, Paz E, Quiñones J. Impact of Novel Foods on the Human Gut Microbiome: Current Status. Microorganisms 2024; 12:1750. [PMID: 39338424 PMCID: PMC11433882 DOI: 10.3390/microorganisms12091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The microbiome is a complex ecosystem of microorganisms that inhabit a specific environment. It plays a significant role in human health, from food digestion to immune system strengthening. The "Novel Foods" refer to foods or ingredients that have not been consumed by humans in the European Union before 1997. Currently, there is growing interest in understanding how "Novel Foods" affect the microbiome and human health. The aim of this review was to assess the effects of "Novel Foods" on the human gut microbiome. Research was conducted using scientific databases, focusing on the literature published since 2000, with an emphasis on the past decade. In general, the benefits derived from this type of diet are due to the interaction between polyphenols, oligosaccharides, prebiotics, probiotics, fibre content, and the gut microbiome, which selectively promotes specific microbial species and increases microbial diversity. More research is being conducted on the consumption of novel foods to demonstrate how they affect the microbiome and, thus, human health. Consumption of novel foods with health-promoting properties should be further explored to maintain the diversity and functionality of the gut microbiome as a potential tool to prevent the onset and progression of chronic diseases.
Collapse
Affiliation(s)
- Ailín Martínez
- Doctoral Program in Science Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4800000, Chile;
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
| | - Lidiana Velázquez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rommy Díaz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rodrigo Huaiquipán
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Isabela Pérez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Alex Muñoz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Marcos Valdés
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Erwin Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - John Quiñones
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| |
Collapse
|
25
|
Tusé D, McNulty M, McDonald KA, Buchman LW. A review and outlook on expression of animal proteins in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1426239. [PMID: 39239203 PMCID: PMC11374769 DOI: 10.3389/fpls.2024.1426239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/25/2024] [Indexed: 09/07/2024]
Abstract
This review delves into the multifaceted technologies, benefits and considerations surrounding the expression of animal proteins in plants, emphasizing its potential role in advancing global nutrition, enhancing sustainability, while being mindful of the safety considerations. As the world's population continues to grow and is projected to reach 9 billion people by 2050, there is a growing need for alternative protein sources that can meet nutritional demands while minimizing environmental impact. Plant expression of animal proteins is a cutting-edge biotechnology approach that allows crops to produce proteins traditionally derived from animals, offering a sustainable and resource-efficient manner of producing these proteins that diversifies protein production and increases food security. In the United States, it will be important for there to be clear guidance in order for these technologies to reach consumers. As consumer demand for sustainable and alternative food sources rise, biotechnologies can offer economic opportunities, making this emerging technology a key player in the market landscape.
Collapse
Affiliation(s)
- Daniel Tusé
- DT/Consulting Group, Sacramento, CA, United States
| | - Matthew McNulty
- Center for Cellular Agriculture, Tufts University, Medford, MA, United States
| | - Karen A McDonald
- Department of Chemical Engineering and Global Healthshare Initiative, University of California, Davis, Davis, CA, United States
| | - Leah W Buchman
- Biotechniology Innovation Organization, Agriculture and Environment, Washington, DC, United States
| |
Collapse
|
26
|
Ianovici I, Zagury Y, Afik N, Hendel M, Lavon N, Levenberg S. Embedded three-dimensional printing of thick pea-protein-enriched constructs for large, customized structured cell-based meat production. Biofabrication 2024; 16:045023. [PMID: 38996408 DOI: 10.1088/1758-5090/ad628f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Recent 3D-printing research showed the potential of using plant-protein-enriched inks to fabricate cultivated meat (CM) via agar-based support baths. However, for fabricating large, customized, structured, thick cellular constructs and further cultivation, improved 3D-printing capabilities and diffusion limit circumvention are warranted. The presented study harnesses advanced printing and thick tissue engineering concepts for such purpose. By improving bath composition and altering printing design and execution, large-scale, marbled, 0.5-cm-thick rib-eye shaped constructs were obtained. The constructs featured stable fibrous architectures comparable to those of structured-meat products. Customized multi-cellular constructs with distinct regions were produced as well. Furthermore, sustainable 1-cm-thick cellular constructs were carefully designed and produced, which successfully maintained cell viability and activity for 3 weeks, through the combined effects of void-incorporation and dynamic culturing. As large, geometrically complex construct fabrication suitable for long-term cellular cultivation was demonstrated, these findings hold great promise for advancing structured CM research.
Collapse
Affiliation(s)
- Iris Ianovici
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yedidya Zagury
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Noa Afik
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Neta Lavon
- Aleph-Farms Ltd, Rehovot 7670609, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Aleph-Farms Ltd, Rehovot 7670609, Israel
| |
Collapse
|
27
|
Goswami M, Ovissipour R, Bomkamp C, Nitin N, Lakra W, Post M, Kaplan DL. Cell-cultivated aquatic food products: emerging production systems for seafood. J Biol Eng 2024; 18:43. [PMID: 39113103 PMCID: PMC11304657 DOI: 10.1186/s13036-024-00436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024] Open
Abstract
The demand for fish protein continues to increase and currently accounts for 17% of total animal protein consumption by humans. About 90% of marine fish stocks are fished at or above maximum sustainable levels, with aquaculture propagating as one of the fastest growing food sectors to address some of this demand. Cell-cultivated seafood production is an alternative approach to produce nutritionally-complete seafood products to meet the growing demand. This cellular aquaculture approach offers a sustainable, climate resilient and ethical biotechnological approach as an alternative to conventional fishing and fish farming. Additional benefits include reduced antibiotic use and the absence of mercury. Cell-cultivated seafood also provides options for the fortification of fish meat with healthier compositions, such as omega-3 fatty acids and other beneficial nutrients through scaffold, media or cell approaches. This review addresses the biomaterials, production processes, tissue engineering approaches, processing, quality, safety, regulatory, and social aspects of cell-cultivated seafood, encompassing where we are today, as well as the road ahead. The goal is to provide a roadmap for the science and technology required to bring cellular aquaculture forward as a mainstream food source.
Collapse
Affiliation(s)
- Mukunda Goswami
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, PanchMarg, Of Yari Road, Versova, Andheri West, Mumbai, 400061, India.
| | - Reza Ovissipour
- Department of Food Science and Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Claire Bomkamp
- The Good Food Institute, PO Box 96503 PMB 42019, Washington, DC, 20090-6503, USA
| | - Nitin Nitin
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA
| | - Wazir Lakra
- National Academy of Agricultural Sciences, NASC, 110 012, New Delhi, India
| | - Mark Post
- Mosa Meat B.V, Maastricht, Limburg, 6229 PM, the Netherlands
- Department of Physiology, Maastricht University, Maastricht, Limburg, 6229 ER, the Netherlands
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02215, USA.
| |
Collapse
|
28
|
Jang J, Lee DW. Advancements in plant based meat analogs enhancing sensory and nutritional attributes. NPJ Sci Food 2024; 8:50. [PMID: 39112506 PMCID: PMC11306346 DOI: 10.1038/s41538-024-00292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The burgeoning demand for plant-based meat analogs (PBMAs) stems from environmental, health, and ethical concerns, yet replicating the sensory attributes of animal meat remains challenging. This comprehensive review explores recent innovations in PBMA ingredients and methodologies, emphasizing advancements in texture, flavor, and nutritional profiles. It chronicles the transition from soy-based first-generation products to more diversified second- and third-generation PBMAs, showcasing the utilization of various plant proteins and advanced processing techniques to enrich sensory experiences. The review underscores the crucial role of proteins, polysaccharides, and fats in mimicking meat's texture and flavor and emphasizes research on new plant-based sources to improve product quality. Addressing challenges like production costs, taste, texture, and nutritional adequacy is vital for enhancing consumer acceptance and fostering a more sustainable food system.
Collapse
Affiliation(s)
- Jiwon Jang
- Graduate Program in Bio-industrial Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Dong-Woo Lee
- Graduate Program in Bio-industrial Engineering, Yonsei University, Seoul, 03722, South Korea.
- Department of Biotechnology, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
29
|
Musgrove L, Bhojwani A, Hyde C, Glendinning S, Nocillado J, Russell FD, Ventura T. Transcriptomic Analysis across Crayfish ( Cherax quadricarinatus) Claw Regeneration Reveals Potential Stem Cell Sources for Cultivated Crustacean Meat. Int J Mol Sci 2024; 25:8623. [PMID: 39201309 PMCID: PMC11354258 DOI: 10.3390/ijms25168623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
In the face of rising global demand and unsustainable production methods, cultivated crustacean meat (CCM) is proposed as an alternative means to produce delicious lobster, shrimp, and crab products. Cultivated meat requires starting stem cells that may vary in terms of potency and the propensity to proliferate or differentiate into myogenic (muscle-related) tissues. Recognizing that regenerating limbs are a non-lethal source of tissue and may harbor relevant stem cells, we selected those of the crayfish Cherax quadricarinatus as our model. To investigate stem cell activity, we conducted RNA-Seq analysis across six stages of claw regeneration (four pre-molt and two post-molt stages), along with histology and real-time quantitative PCR (qPCR). Our results showed that while genes related to energy production, muscle hypertrophy, and exoskeletal cuticle synthesis dominated the post-molt stages, growth factor receptors (FGFR, EGFR, TGFR, and BMPR) and those related to stem cell proliferation and potency (Cyclins, CDKs, Wnts, C-Myc, Klf4, Sox2, PCNA, and p53) were upregulated before the molt. Pre-molt upregulation in several genes occurred in two growth peaks; Stages 2 and 4. We therefore propose that pre-molt limb regeneration tissues, particularly those in the larger Stage 4, present a prolific and non-lethal source of stem cells for CCM development.
Collapse
Affiliation(s)
- Lisa Musgrove
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia; (L.M.)
- School of Science, Technology and Engineering, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia
| | - Avani Bhojwani
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia; (L.M.)
- School of Science, Technology and Engineering, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia
| | - Cameron Hyde
- Queensland Cyber Infrastructure Foundation (QCIF) Ltd., The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Susan Glendinning
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia; (L.M.)
- School of Science, Technology and Engineering, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia
| | - Josephine Nocillado
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia; (L.M.)
- School of Science, Technology and Engineering, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia
| | - Fraser D. Russell
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia; (L.M.)
- School of Health, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia; (L.M.)
- School of Science, Technology and Engineering, University of the Sunshine Coast (UniSC), 4 Locked Bag, Maroochydore, QLD 4558, Australia
| |
Collapse
|
30
|
Ng WL, Goh GL, Goh GD, Ten JSJ, Yeong WY. Progress and Opportunities for Machine Learning in Materials and Processes of Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310006. [PMID: 38456831 DOI: 10.1002/adma.202310006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/01/2024] [Indexed: 03/09/2024]
Abstract
In recent years, there has been widespread adoption of machine learning (ML) technologies to unravel intricate relationships among diverse parameters in various additive manufacturing (AM) techniques. These ML models excel at recognizing complex patterns from extensive, well-curated datasets, thereby unveiling latent knowledge crucial for informed decision-making during the AM process. The collaborative synergy between ML and AM holds the potential to revolutionize the design and production of AM-printed parts. This review delves into the challenges and opportunities emerging at the intersection of these two dynamic fields. It provides a comprehensive analysis of the publication landscape for ML-related research in the field of AM, explores common ML applications in AM research (such as quality control, process optimization, design optimization, microstructure analysis, and material formulation), and concludes by presenting an outlook that underscores the utilization of advanced ML models, the development of emerging sensors, and ML applications in emerging AM-related fields. Notably, ML has garnered increased attention in AM due to its superior performance across various AM-related applications. It is envisioned that the integration of ML into AM processes will significantly enhance 3D printing capabilities across diverse AM-related research areas.
Collapse
Affiliation(s)
- Wei Long Ng
- Singapore Centre for 3D Printing, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Guo Liang Goh
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
| | - Guo Dong Goh
- Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), 5 CleanTech Loop #01-01, Singapore, 636732, Singapore
| | - Jyi Sheuan Jason Ten
- Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), 5 CleanTech Loop #01-01, Singapore, 636732, Singapore
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
| |
Collapse
|
31
|
Smith K, Watson AW, Lonnie M, Peeters WM, Oonincx D, Tsoutsoura N, Simon-Miquel G, Szepe K, Cochetel N, Pearson AG, Witard OC, Salter AM, Bennett M, Corfe BM. Meeting the global protein supply requirements of a growing and ageing population. Eur J Nutr 2024; 63:1425-1433. [PMID: 38430450 PMCID: PMC11329409 DOI: 10.1007/s00394-024-03358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
Human dietary patterns are a major cause of environmental transformation, with agriculture occupying ~ 50% of global land space, while food production itself is responsible for ~ 30% of all greenhouse gas emissions and 70% of freshwater use. Furthermore, the global population is also growing, such that by 2050, it is estimated to exceed ~ 9 billion. While most of this expansion in population is expected to occur in developing countries, in high-income countries there are also predicted changes in demographics, with major increases in the number of older people. There is a growing consensus that older people have a greater requirement for protein. With a larger and older population, global needs for protein are set to increase. This paper summarises the conclusions from a Rank Prize funded colloquium evaluating novel strategies to meet this increasing global protein need.
Collapse
Affiliation(s)
- Kieran Smith
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, UK.
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK.
- Faculty of Medical Sciences, Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Anthony W Watson
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK
- Faculty of Medical Sciences, Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Marta Lonnie
- The Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- Department of Human Nutrition, University of Warmia and Mazury in Olsztyn, Sloneczna 45F, Olsztyn, 10-718, Poland
| | - Wouter M Peeters
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Dennis Oonincx
- Animal Nutrition Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Niki Tsoutsoura
- Division of Food, Nutrition & Dietetics and Future Food Beacon, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Genis Simon-Miquel
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Kamil Szepe
- Division of Food, Nutrition & Dietetics and Future Food Beacon, School of Biosciences, University of Nottingham, Nottingham, UK
- School of Life Sciences and Food Systems Institute, University of Nottingham, Nottingham, Nottingham, UK
| | - Noriane Cochetel
- Division of Food, Nutrition & Dietetics and Future Food Beacon, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Alice G Pearson
- Department of Sport and Exercise Sciences, Durham University, Durham, UK
| | - Oliver C Witard
- Centre for Human & Applied Physiological Sciences, King's College London, London, UK
| | - Andrew M Salter
- Division of Food, Nutrition & Dietetics and Future Food Beacon, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Malcom Bennett
- Division of Food, Nutrition & Dietetics and Future Food Beacon, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Bernard M Corfe
- Faculty of Medical Sciences, Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
32
|
Manning L. Responsible innovation: Mitigating the food safety aspects of cultured meat production. J Food Sci 2024; 89:4638-4659. [PMID: 38980973 DOI: 10.1111/1750-3841.17228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
There is much interest in cultured (cultivated) meat as a potential solution to concerns over the ecological and environmental footprint of food production, especially from animal-derived food products. The aim of this critical review is to undertake a structured analysis of existing literature to (i) identify the range of materials that could be used within the cultured meat process; (ii) explore the potential biological and chemical food safety issues that arise; (iii) identify the known and also novel aspects of the food safety hazard portfolio that will inform hazard analysis and risk assessment approaches, and (iv) position a responsible innovation framework that can be utilized to mitigate food safety concerns with specific emphasis on cultured meat. Although a number of potential food safety hazards are identified that need to be considered within a food safety plan, further research is required to validate and verify that these food safety hazards have been suitably controlled and, where possible, eliminated. The responsible innovation framework developed herein, which extends beyond hazard analysis and traditional risk assessment approaches, can be applied in multiple contexts, including this use case of cultured meat production.
Collapse
Affiliation(s)
- Louise Manning
- Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln, UK
| |
Collapse
|
33
|
Gerogiorgis DI. Towards a competitive cost for industrial-scale cultivated chicken production. NATURE FOOD 2024; 5:650-651. [PMID: 39179870 DOI: 10.1038/s43016-024-01033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
34
|
Nurul Alam AMM, Kim CJ, Kim SH, Kumari S, Lee EY, Hwang YH, Joo ST. Scaffolding fundamentals and recent advances in sustainable scaffolding techniques for cultured meat development. Food Res Int 2024; 189:114549. [PMID: 38876607 DOI: 10.1016/j.foodres.2024.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/26/2024] [Accepted: 05/25/2024] [Indexed: 06/16/2024]
Abstract
In cultured meat (CM) production, Scaffolding plays an important role by aiding cell adhesion, growth, differentiation, and alignment. The existence of fibrous microstructure in connective and muscle tissues has attracted considerable interest in the realm of tissue engineering and triggered the interest of researchers to implement scaffolding techniques. A wide array of research efforts is ongoing in scaffolding technologies for achieving the real meat structure on the principality of biomedical research and to replace serum free CM production. Scaffolds made of animal-derived biomaterials are found efficient in replicating the extracellular matrix (ECM), thus focus should be paid to utilize animal byproducts for this purpose. Proper identification and utilization of plant-derived scaffolding biomaterial could be helpful to add diversified options in addition to animal derived sources and reduce in cost of CM production through scaffolds. Furthermore, techniques like electrospinning, modified electrospinning and 3D bioprinting should be focused on to create 3D porous scaffolds to mimic the ECM of the muscle tissue and form real meat-like structures. This review discusses recent advances in cutting edge scaffolding techniques and edible biomaterials related to structured CM production.
Collapse
Affiliation(s)
- A M M Nurul Alam
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea.
| | - Chan-Jin Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea.
| | - So-Hee Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea
| | - Swati Kumari
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52852, Republic of Korea.
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea; Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52852, Republic of Korea.
| |
Collapse
|
35
|
Joyce CM, Gordon EB, McGivney A, Li X, Lim T, Cohen MA, Kaplan DL. Methods to Screen the Adhesion of Fish Cells on Plant-, Algal- and Fungal-Derived Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39969-39980. [PMID: 39024341 DOI: 10.1021/acsami.4c06543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cellular agriculture, an alternative and innovative approach to sustainable food production, has gained momentum in recent years. However, there is limited research into the production of cultivated seafood. Here, we investigated the ability of fish mackerel cells (Scomber scombrus) to adhere to plant, algal and fungal-based biomaterial scaffolds, aiming to optimize the cultivation of fish cells for use in cellular agriculture. A mackerel cell line was utilized, and metabolic assays and confocal imaging were utilized to track cell adhesion, growth, and differentiation on the different biomaterials. The mackerel cells adhered and grew on gelatin (positive control), zein, and soy proteins, as well as on alginate, chitosan, and cellulose polysaccharides. The highest adhesion and growth were on the zein and chitosan substrates, apart from the gelatin control. These findings provide a blueprint to enhance scaffold selection and design, contributing to the broader field of cellular agriculture through the development of scalable and eco-conscious solutions for meeting the growing global demand for seafood.
Collapse
Affiliation(s)
- Connor M Joyce
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Edward B Gordon
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Aelish McGivney
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Xinxin Li
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Taehwan Lim
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Malkiel A Cohen
- Wanda Fish Technologies LTD, 7 Pinhas Sapir St., Ness Ziona 7403630, Israel
| | - David L Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
36
|
Kumar R, Guleria A, Padwad YS, Srivatsan V, Yadav SK. Smart proteins as a new paradigm for meeting dietary protein sufficiency of India: a critical review on the safety and sustainability of different protein sources. Crit Rev Food Sci Nutr 2024:1-50. [PMID: 39011754 DOI: 10.1080/10408398.2024.2367564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
India, a global leader in agriculture, faces sustainability challenges in feeding its population. Although primarily a vegetarian population, the consumption of animal derived proteins has tremendously increased in recent years. Excessive dependency on animal proteins is not environmentally sustainable, necessitating the identification of alternative smart proteins. Smart proteins are environmentally benign and mimic the properties of animal proteins (dairy, egg and meat) and are derived from plant proteins, microbial fermentation, insects and cell culture meat (CCM) processes. This review critically evaluates the technological, safety, and sustainability challenges involved in production of smart proteins and their consumer acceptance from Indian context. Under current circumstances, plant-based proteins are most favorable; however, limited land availability and impending climate change makes them unsustainable in the long run. CCM is unaffordable with high input costs limiting its commercialization in near future. Microbial-derived proteins could be the most sustainable option for future owing to higher productivity and ability to grow on low-cost substrates. A circular economy approach integrating agri-horti waste valorization and C1 substrate synthesis with microbial biomass production offer economic viability. Considering the use of novel additives and processing techniques, evaluation of safety, allergenicity, and bioavailability of smart protein products is necessary before large-scale adoption.
Collapse
Affiliation(s)
- Raman Kumar
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| | - Aditi Guleria
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Yogendra S Padwad
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- Protein Processing Centre, Dietetics, and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| | - Sudesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
37
|
Li J, Xie L, Dou Z, Zhou Y, Mo J, Chen W. Genipin Activates Autophagy and Promotes Myoblast Differentiation by Activating AMPK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15190-15197. [PMID: 38807430 DOI: 10.1021/acs.jafc.3c06638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Cultured meat technology is expected to solve problems such as resource shortages and environmental pollution, but the muscle fiber differentiation efficiency of cultured meat is low. Genipin is the active compound derived from Gardenia jasminoides Ellis, which has a variety of activities. Additionally, genipin serves as a noncytotoxic agent for cross-linking, which is suitable as a foundational scaffold for in vitro tissue regeneration. However, the impact of genipin on myoblast differentiation remains to be studied. The research revealed that genipin was found to improve the differentiation efficiency of myoblasts. Genipin improved mitochondrial membrane potential by activating the AMPK signaling pathway of myoblasts, promoting mitochondrial biogenesis, and mitochondrial network remodeling. Genipin activated autophagy in myoblasts and maintained cellular homeostasis. Autophagy inhibitors blocked the pro-differentiation effect of genipin. These results showed that genipin improved the differentiation efficiency of myoblasts, which provided a theoretical basis for the development of cultured meat technology.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zishan Dou
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yiyang Zhou
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianling Mo
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
38
|
Olenic M, Deelkens C, Heyman E, De Vlieghere E, Zheng X, van Hengel J, De Schauwer C, Devriendt B, De Smet S, Thorrez L. Review: Livestock cell types with myogenic differentiation potential: Considerations for the development of cultured meat. Animal 2024:101242. [PMID: 39097434 DOI: 10.1016/j.animal.2024.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 08/05/2024] Open
Abstract
With the current environmental impact of large-scale animal production and societal concerns about the welfare of farm animals, researchers are questioning whether we can cultivate animal cells for the purpose of food production. This review focuses on a pivotal aspect of the cellular agriculture domain: cells. We summarised information on the various cell types from farm animals currently used for the development of cultured meat, including mesenchymal stromal cells, myoblasts, and pluripotent stem cells. The review delves into the advantages and limitations of each cell type and considers factors like the selection of the appropriate cell source, as well as cell culture conditions that influence cell performance. As current research in cultured meat seeks to create muscle fibers to mimic the texture and nutritional profile of meat, we focused on the myogenic differentiation capacity of the cells. The most commonly used cell type for this purpose are myoblasts or satellite cells, but given their limited proliferation capacity, efforts are underway to formulate myogenic differentiation protocols for mesenchymal stromal cells and pluripotent stem cells. The multipotent character of the latter cell types might enable the creation of other tissues found in meat, such as adipose and connective tissues. This review can help guiding the selection of a cell type or culture conditions in the context of cultured meat development.
Collapse
Affiliation(s)
- M Olenic
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium; Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - C Deelkens
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium; Medical Cell Biology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - E Heyman
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - E De Vlieghere
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium; Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Belgium
| | - X Zheng
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - J van Hengel
- Medical Cell Biology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - C De Schauwer
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - B Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - S De Smet
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - L Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium.
| |
Collapse
|
39
|
Song H, Chen P, Sun Y, Sheng J, Zhou L. Knowledge Maps and Emerging Trends in Cell-Cultured Meat since the 21st Century Research: Based on Different National Perspectives of Spatial-Temporal Analysis. Foods 2024; 13:2070. [PMID: 38998576 PMCID: PMC11241203 DOI: 10.3390/foods13132070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Cell-cultured meat holds significant environmental value as an alternative protein source. Throughout the 21st century, cell-cultured meat has progressively penetrated commercial markets. However, a systematic review encompassing the entire field needs improvement. Employing Citespace, Vosviewer, and R-Bibliometrix software, a bibliometric analysis was used to present the research progress and general development trends of 484 articles on cell-cultured meat from 2000 to 2022 based on countries, authors, institutions, and keywords. This analysis provides ideas for the future development of cell-cultured meat in different countries or regions worldwide. Research on cell-cultured meat from 2000 to 2022 has undergone two phases: fluctuating growth (2000-2013) and rapid growth (2013-2022). Noteworthy contributions to cell-cultured meat studies emerge from author groups in the United States of America, the United Kingdom, and China, with influential institutions like the University of Bath significantly impacting pertinent research. Furthermore, over the past two decades, research has leaned towards exploring topics such as "biomaterials", "cultured", "land use", "public opinion", "animal welfare", and "food safety". Furthermore, this study reveals differences in nomenclature between regions and institutions. "Cultured meat" is more popular in some countries than in other forms. Institutions in Asia use "cultured meat" more frequently; however, institutions in the Americas adopt "cultivated meat" and rarely adopt "in vitro meat", and institutions in the European region have no particularly prominent tendency towards a specific nomenclature. Future research should emphasize aligning the labeling of cell-cultured meat with effective management strategies and referencing regulatory policies across various countries. For the first time, we use three different bibliometric methods to analyze temporal and spatial variation in research on cellular meat. The results of this study have a multiplier effect. We provide a theoretical basis and a practical reference for the identification of alternatives in the dual context of "food crisis and food security" and "climate crisis". At the same time, we also provide a reference for the sustainable development of the food system.
Collapse
Affiliation(s)
- Huiqi Song
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, China;
| | - Pengwei Chen
- Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China;
| | - Yiwen Sun
- Institute of Food and Nutrition Development, Ministry of Agriculture & Rural Affairs, Beijing 100081, China;
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, China;
| | - Lin Zhou
- Institute of Food and Nutrition Development, Ministry of Agriculture & Rural Affairs, Beijing 100081, China;
| |
Collapse
|
40
|
Godfray HCJ, Poore J, Ritchie H. Opportunities to produce food from substantially less land. BMC Biol 2024; 22:138. [PMID: 38914996 PMCID: PMC11197333 DOI: 10.1186/s12915-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
The vast majority of the food we eat comes from land-based agriculture, but recent technological advances in agriculture and food technology offer the prospect of producing food using substantially less or even virtually no land. For example, indoor vertical farming can achieve very high yields of certain crops with a very small area footprint, and some foods can be synthesized from inorganic precursors in industrial facilities. Animal-based foods require substantial land per unit of protein or per calorie and switching to alternatives could reduce demand for some types of agricultural land. Plant-based meat substitutes and those produced through fermentation are widely available and becoming more sophisticated while in the future cellular agricultural may become technically and economical viable at scale. We review the state of play of these potentially disruptive technologies and explore how they may interact with other factors, both endogenous and exogenous to the food system, to affect future demand for land.
Collapse
Affiliation(s)
- H Charles J Godfray
- Oxford Martin School, Oxford University, 34 Broad St, Oxford, OX1 3BD, UK.
- Department of Biology, Oxford University, 11a Mansfield Rd, Oxford, OX1 3SZ, UK.
| | - Joseph Poore
- Department of Biology, Oxford University, 11a Mansfield Rd, Oxford, OX1 3SZ, UK
| | - Hannah Ritchie
- Our World in Data, Oxford University, 34 Broad St, Oxford, OX1 3BD, UK
| |
Collapse
|
41
|
Neira JA, Conrad JV, Rusteika M, Chu LF. The progress of induced pluripotent stem cells derived from pigs: a mini review of recent advances. Front Cell Dev Biol 2024; 12:1371240. [PMID: 38979033 PMCID: PMC11228285 DOI: 10.3389/fcell.2024.1371240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/10/2024] [Indexed: 07/10/2024] Open
Abstract
Pigs (Sus scrofa) are widely acknowledged as an important large mammalian animal model due to their similarity to human physiology, genetics, and immunology. Leveraging the full potential of this model presents significant opportunities for major advancements in the fields of comparative biology, disease modeling, and regenerative medicine. Thus, the derivation of pluripotent stem cells from this species can offer new tools for disease modeling and serve as a stepping stone to test future autologous or allogeneic cell-based therapies. Over the past few decades, great progress has been made in establishing porcine pluripotent stem cells (pPSCs), including embryonic stem cells (pESCs) derived from pre- and peri-implantation embryos, and porcine induced pluripotent stem cells (piPSCs) using a variety of cellular reprogramming strategies. However, the stabilization of pPSCs was not as straightforward as directly applying the culture conditions developed and optimized for murine or primate PSCs. Therefore, it has historically been challenging to establish stable pPSC lines that could pass stringent pluripotency tests. Here, we review recent advances in the establishment of stable porcine PSCs. We focus on the evolving derivation methods that eventually led to the establishment of pESCs and transgene-free piPSCs, as well as current challenges and opportunities in this rapidly advancing field.
Collapse
Affiliation(s)
- Jaime A Neira
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - J Vanessa Conrad
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Margaret Rusteika
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Li-Fang Chu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| |
Collapse
|
42
|
Wang Z, Gong W, Yao Z, Jin K, Niu Y, Li B, Zuo Q. Mechanisms of Embryonic Stem Cell Pluripotency Maintenance and Their Application in Livestock and Poultry Breeding. Animals (Basel) 2024; 14:1742. [PMID: 38929361 PMCID: PMC11201147 DOI: 10.3390/ani14121742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Embryonic stem cells (ESCs) are remarkably undifferentiated cells that originate from the inner cell mass of the blastocyst. They possess the ability to self-renew and differentiate into multiple cell types, making them invaluable in diverse applications such as disease modeling and the creation of transgenic animals. In recent years, as agricultural practices have evolved from traditional to biological breeding, it has become clear that pluripotent stem cells (PSCs), either ESCs or induced pluripotent stem cells (iPSCs), are optimal for continually screening suitable cellular materials. However, the technologies for long-term in vitro culture or establishment of cell lines for PSCs in livestock are still immature, and research progress is uneven, which poses challenges for the application of PSCs in various fields. The establishment of a robust in vitro system for these cells is critically dependent on understanding their pluripotency maintenance mechanisms. It is believed that the combined effects of pluripotent transcription factors, pivotal signaling pathways, and epigenetic regulation contribute to maintaining their pluripotent state, forming a comprehensive regulatory network. This article will delve into the primary mechanisms underlying the maintenance of pluripotency in PSCs and elaborate on the applications of PSCs in the field of livestock.
Collapse
Affiliation(s)
- Ziyu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wei Gong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zeling Yao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
43
|
Kwon HC, Jung HS, Kothuri V, Han SG. Current status and challenges for cell-cultured milk technology: a systematic review. J Anim Sci Biotechnol 2024; 15:81. [PMID: 38849927 PMCID: PMC11161985 DOI: 10.1186/s40104-024-01039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/22/2024] [Indexed: 06/09/2024] Open
Abstract
Cellular agriculture is an innovative technology for manufacturing sustainable agricultural products as an alternative to traditional agriculture. While most cellular agriculture is predominantly centered on the production of cultured meat, there is a growing demand for an understanding of the production techniques involved in dairy products within cellular agriculture. This review focuses on the current status of cellular agriculture in the dairy sector and technical challenges for cell-cultured milk production. Cellular agriculture technology in the dairy sector has been classified into fermentation-based and animal cell culture-based cellular agriculture. Currently, various companies synthesize milk components through precision fermentation technology. Nevertheless, several startup companies are pursuing animal cell-based technology, driven by public concerns regarding genetically modified organisms in precision fermentation technology. Hence, this review offers an up-to-date exploration of animal cell-based cellular agriculture to produce milk components, specifically emphasizing the structural, functional, and productive aspects of mammary epithelial cells, providing new information for industry and academia.
Collapse
Affiliation(s)
- Hyuk Cheol Kwon
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Hyun Su Jung
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Vahinika Kothuri
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
44
|
Nielsen MB, Meyer AS, Arnau J. The Next Food Revolution Is Here: Recombinant Microbial Production of Milk and Egg Proteins by Precision Fermentation. Annu Rev Food Sci Technol 2024; 15:173-187. [PMID: 38134386 DOI: 10.1146/annurev-food-072023-034256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Animal-based agriculture and the production of protein-rich foods from animals, particularly from ruminants, are not sustainable and have serious climate effects. A new type of alternative proteins is now on the menu, namely animal proteins produced recombinantly by microbial fermentation. This new technology, precision fermentation, is projected to completely disrupt traditional animal-based agriculture. Certain milk and egg proteins along with specific meat substitute analog components produced by precision fermentation are already entering the market. This first wave of precision fermentation products targets the use of these proteins as protein additives, and several commercial players are already active in the field. The cost-efficiency requirements involve production titers above 50 g/L which are several orders of magnitude higher than those for pharmaceutical protein manufacture, making strain engineering, process optimization, and scale-up critical success factors. This new development within alternative proteins defines a new research direction integrating biotechnology, process engineering, and sustainable food protein production.
Collapse
Affiliation(s)
- M B Nielsen
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- 21st.BIO, Søborg, Denmark;
| | - A S Meyer
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
45
|
Lee DY, Park J, Han D, Choi Y, Kim JS, Mariano E, Lee J, Yun SH, Lee SY, Park S, Bhang SH, Hur SJ. Analysis of current technology status for the industrialization of cultured meat. Crit Rev Food Sci Nutr 2024:1-32. [PMID: 38764334 DOI: 10.1080/10408398.2024.2345817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Cultured meat is expected to become an important material for future food production; however, contrary to initial expectations, the full-scale industrialization of cultured meat is slow and the actual level and opened technology amount is very limited. This study reviews the publicly available technologies of cultured meat and suggests future developmental directions and research agenda. As a result of analyzing papers, patents, and press releases published over the past 10 years, it was found that cultured meat production technology is still at the prototype production level. This is because most papers published are about culture medium and scaffold development, culture conditions, and there is almost no research on finished cultured meat products. Worldwide, most of the filed patents are for producing cultured meat principles; most of them do not use food-grade materials and are not economically feasible for industrialization. Therefore, future research on the industrialization of cultured meat should focus on effective acquisition technologies for satellite cells; cell lineage and undifferentiated state maintenance technologies; the development of serum-free media and culture devices; the prevention of genetic modification, safety verification, and mass production. Furthermore, basic research on mechanisms and influencing factors related to cultured meat production is warranted.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Jinmo Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Dahee Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Yeongwoo Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Jin Soo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Ermie Mariano
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Juhyun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Seung Hyeon Yun
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Seung Yun Lee
- Division of Animal Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| |
Collapse
|
46
|
Musgrove L, Russell FD, Ventura T. Considerations for cultivated crustacean meat: potential cell sources, potential differentiation and immortalization strategies, and lessons from crustacean and other animal models. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 38733287 DOI: 10.1080/10408398.2024.2342480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Cultivated crustacean meat (CCM) is a means to create highly valued shrimp, lobster, and crab products directly from stem cells, thus removing the need to farm or fish live animals. Conventional crustacean enterprises face increasing pressures in managing overfishing, pollution, and the warming climate, so CCM may provide a way to ensure sufficient supply as global demand for these products grows. To support the development of CCM, this review briefly details crustacean cell culture work to date, before addressing what is presently known about crustacean muscle development, particularly the molecular mechanisms involved, and how this might relate to recent work on cultivated meat production in vertebrate species. Recognizing the current lack of cell lines available to establish CCM cultures, we also consider primary stem cell sources that can be obtained non-lethally including tissues from limbs which are readily released and regrown, and putative stem cells in circulating hemolymph. Molecular approaches to inducing myogenic differentiation and immortalization of putative stem cells are also reviewed. Finally, we assess the current status of tools available to CCM researchers, particularly antibodies, and propose avenues to address existing shortfalls in order to see the field progress.
Collapse
Affiliation(s)
- Lisa Musgrove
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
| | - Fraser D Russell
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
- School of Health, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
| |
Collapse
|
47
|
Murugan P, Yap WS, Ezhilarasu H, Suntornnond R, Le QB, Singh S, Seah JSH, Tan PL, Zhou W, Tan LP, Choudhury D. Decellularised plant scaffolds facilitate porcine skeletal muscle tissue engineering for cultivated meat biomanufacturing. NPJ Sci Food 2024; 8:25. [PMID: 38702314 PMCID: PMC11068908 DOI: 10.1038/s41538-024-00262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/19/2024] [Indexed: 05/06/2024] Open
Abstract
Cultivated meat (CM) offers a sustainable and ethical alternative to conventional animal agriculture, involving cell maturation in a controlled environment. To emulate the structural complexity of traditional meat, the development of animal-free and edible scaffolds is crucial, providing vital physical and biological support during tissue development. The aligned vascular bundles of the decellularised asparagus scaffold were selected to facilitate the attachment and alignment of murine myoblasts (C2C12) and porcine adipose-derived mesenchymal stem cells (pADMSCs). Muscle differentiation was assessed through immunofluorescence staining with muscle markers, including Myosin heavy chain (MHC), Myogenin (MYOG), and Desmin. The metabolic activity of Creatine Kinase in C2C12 differentiated cells significantly increased compared to proliferated cells. Quantitative PCR analysis revealed a significant increase in Myosin Heavy Polypeptide 1 (MYH1) and MYOG expression compared to Day 0. These results highlight the application of decellularised plant scaffold (DPS) as a promising, edible material conducive to cell attachment, proliferation, and differentiation into muscle tissue. To create a CM prototype with biological mimicry, pADMSC-derived muscle and fat cells were also co-cultured on the same scaffold. The co-culture was confirmed through immunofluorescence staining of muscle markers and LipidTOX staining, revealing distinct muscle fibres and adipocytes containing lipid droplets respectively. Texture profile analysis conducted on uncooked CM prototypes and pork loin showed no significant differences in textural values. However, the pan-fried CM prototype differed significantly in hardness and chewiness compared to pork loin. Understanding the scaffolds' textural profile enhances our insight into the potential sensory attributes of CM products. DPS shows potential for advancing CM biomanufacturing.
Collapse
Affiliation(s)
- Priyatharshini Murugan
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, 138668, Singapore, Singapore
| | - Wee Swan Yap
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, 138668, Singapore, Singapore
| | - Hariharan Ezhilarasu
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, 138668, Singapore, Singapore
| | - Ratima Suntornnond
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, 138668, Singapore, Singapore
| | - Quang Bach Le
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, 138668, Singapore, Singapore
| | - Satnam Singh
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, 138668, Singapore, Singapore
| | - Jasmine Si Han Seah
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Pei Leng Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Lay Poh Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Deepak Choudhury
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, 138668, Singapore, Singapore.
| |
Collapse
|
48
|
Kang KM, Lee DB, Kim HY. Industrial Research and Development on the Production Process and Quality of Cultured Meat Hold Significant Value: A Review. Food Sci Anim Resour 2024; 44:499-514. [PMID: 38765282 PMCID: PMC11097020 DOI: 10.5851/kosfa.2024.e20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 05/21/2024] Open
Abstract
Cultured meat has been gaining popularity as a solution to the increasing problem of food insecurity. Although research on cultured meat started later compared to other alternative meats, the industry is growing rapidly every year, with developed products evaluated as being most similar to conventional meat. Studies on cultured meat production techniques, such as culturing new animal cells and developing medium sera and scaffolds, are being conducted intensively and diversely. However, active in-depth research on the quality characteristics of cultured meat, including studies on the sensory and storage properties that directly influence consumer preferences, is still lacking. Additionally, studies on the combination or ratio of fat cells to muscle cells and on the improvement of microbiota, protein degradation, and fatty acid degradation remain to be conducted. By actively investigating these research topics, we aim to verify the quality and safety of cultured meats, ultimately improving the consumer preference for cultured meat products.
Collapse
Affiliation(s)
- Kyu-Min Kang
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Dong Bae Lee
- School of Languages and Cultures, The University of Queensland, Brisbane 4072, Australia
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
- Resource Science Research Institute, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
49
|
Albrecht FB, Ahlfeld T, Klatt A, Heine S, Gelinsky M, Kluger PJ. Biofabrication's Contribution to the Evolution of Cultured Meat. Adv Healthc Mater 2024; 13:e2304058. [PMID: 38339837 PMCID: PMC11468272 DOI: 10.1002/adhm.202304058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Cultured Meat (CM) is a growing field in cellular agriculture, driven by the environmental impact of conventional meat production, which contributes to climate change and occupies ≈70% of arable land. As demand for meat alternatives rises, research in this area expands. CM production relies on tissue engineering techniques, where a limited number of animal cells are cultured in vitro and processed to create meat-like tissue comprising muscle and adipose components. Currently, CM is primarily produced on a small scale in pilot facilities. Producing a large cell mass based on suitable cell sources and bioreactors remains challenging. Advanced manufacturing methods and innovative materials are required to subsequently process this cell mass into CM products on a large scale. Consequently, CM is closely linked with biofabrication, a suite of technologies for precisely arranging cellular aggregates and cell-material composites to construct specific structures, often using robotics. This review provides insights into contemporary biomedical biofabrication technologies, focusing on significant advancements in muscle and adipose tissue biofabrication for CM production. Novel materials for biofabricating CM are also discussed, emphasizing their edibility and incorporation of healthful components. Finally, initial studies on biofabricated CM are examined, addressing current limitations and future challenges for large-scale production.
Collapse
Affiliation(s)
| | - Tilman Ahlfeld
- Technische Universität DresdenCentre for Translational BoneJoint and Soft Tissue Research01307DresdenGermany
| | - Annemarie Klatt
- Reutlingen UniversityReutlingen Research Institute72762ReutlingenGermany
| | - Simon Heine
- Reutlingen UniversityReutlingen Research Institute72762ReutlingenGermany
| | - Michael Gelinsky
- Technische Universität DresdenCentre for Translational BoneJoint and Soft Tissue Research01307DresdenGermany
| | | |
Collapse
|
50
|
Yeon Jung D, Jung Lee H, Kim M, Min Na K, Yup Lee D, Jo C. Metabolomic changes in culture media with varying passage numbers of pig muscle stem cell culture for cultured meat production. Food Res Int 2024; 182:114138. [PMID: 38519170 DOI: 10.1016/j.foodres.2024.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Selecting the primary cells in an optimal state for cultured meat production is a crucial challenge in commercializing cultured meat. We investigated the metabolomic changes in culture media according to passage numbers for indirectly assessing the state of primary cells. Pig skeletal muscle stem cells (PSCs) harvested from the biceps femoris muscles of 7-d-old crossbred pigs (Landrace × Yorkshire × Duroc, LYD) were used for cell characterization. Fresh media (FM) and spent media (SM) of PSCs during passages 1 to 3 in vitro culture were prepared for metabolomics analysis. SM was collected on the third day of proliferation for each passage of PSCs. Cell characterization analysis revealed that the proliferation rate was highest at passage 2; however, a significant loss of expression of myogenic marker genes was observed at passage 3. Based on metabolomic profiles of culture media, FM and SM groups (SM1, SM2, and SM3) were clearly separated by partial least squares-discriminant analysis. A total of seven differentially abundant metabolites (DAMs) were identified from FM and SM for each passage, based on the following criteria: P < 0.05, fold change > 1.5 or < 0.66, and a variable importance in projection score > 1.5. All seven DAMs and their interconnected metabolites might be primarily used as substrates for energy production and most of them were relatively abundant in SM3. Among the seven DAMs, the three potential biomarkers (γ-glutamyl-L-leucine, cytosine, and ketoleucine), which showed significant changes exclusively in SM3, each had an area under the curve value of 1. Therefore, monitoring the levels of these key metabolites in culture media could serve as a quality control measure for cultured meat production by enabling the indirect detection of suboptimal PSCs based on their proliferation ability.
Collapse
Affiliation(s)
- Doo Yeon Jung
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Jung Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Minsu Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyeong Min Na
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Department of Animal Product Technology, Faculty of Animal Husbandry, Universitas Padjadjaran, West Java 45363, Indonesia.
| |
Collapse
|