1
|
Liu Y, Chen D, Tian J, Xu W, Jiao Y. Universal Hyperuniform Organization in Looped Leaf Vein Networks. PHYSICAL REVIEW LETTERS 2024; 133:028401. [PMID: 39073952 DOI: 10.1103/physrevlett.133.028401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/06/2024] [Indexed: 07/31/2024]
Abstract
The leaf vein network is a hierarchical vascular system that transports water and nutrients to the leaf cells. The thick primary veins form a branched network, while the secondary veins can develop closed loops forming a well-defined cellular structure. Through extensive analysis of a variety of distinct leaf species, we discover that the apparently disordered cellular structures of the secondary vein networks exhibit a universal hyperuniform organization and possess a hidden order on large scales. Disorder hyperuniform systems lack conventional long-range order, yet they completely suppress normalized infinite-wavelength density fluctuations like crystals. Specifically, we find that the distributions of the geometric centers associated with the vein network loops possess a vanishing static structure factor in the limit that the wave number k goes to 0, i.e., S(k)∼k^{α}, where α≈0.64±0.021, providing an example of class III hyperuniformity in biology. This hyperuniform organization leads to superior efficiency of diffusive transport, as evidenced by the much faster convergence of the time-dependent spreadability S(t) to its longtime asymptotic limit, compared to that of other uncorrelated or correlated disordered but nonhyperuniform organizations. Our results also have implications for the discovery and design of novel disordered network materials with optimal transport properties.
Collapse
Affiliation(s)
| | | | | | - Wenxiang Xu
- Institute of Solid Mechanics, College of Mechanics and Engineering Science, Hohai University, Nanjing 211100, People's Republic of China
| | | |
Collapse
|
2
|
Zhuang H, Chen D, Liu L, Keeney D, Zhang G, Jiao Y. Vibrational properties of disordered stealthy hyperuniform 1D atomic chains. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:285703. [PMID: 38579735 DOI: 10.1088/1361-648x/ad3b5c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/05/2024] [Indexed: 04/07/2024]
Abstract
Disorder hyperuniformity is a recently discovered exotic state of many-body systems that possess a hidden order in between that of a perfect crystal and a completely disordered system. Recently, this novel disordered state has been observed in a number of quantum materials including amorphous 2D graphene and silica, which are endowed with unexpected electronic transport properties. Here, we numerically investigate 1D atomic chain models, including perfect crystalline, disordered stealthy hyperuniform (SHU) as well as randomly perturbed atom packing configurations to obtain a quantitative understanding of how the unique SHU disorder affects the vibrational properties of these low-dimensional materials. We find that the disordered SHU chains possess lower cohesive energies compared to the randomly perturbed chains, implying their potential reliability in experiments. Our inverse partition ratio (IPR) calculations indicate that the SHU chains can support fully delocalized states just like perfect crystalline chains over a wide range of frequencies, i.e.ω∈(0,100)cm-1, suggesting superior phonon transport behaviors within these frequencies, which was traditionally considered impossible in disordered systems. Interestingly, we observe the emergence of a group of highly localized states associated withω∼200cm-1, which is characterized by a significant peak in the IPR and a peak in phonon density of states at the corresponding frequency, and is potentially useful for decoupling electron and phonon degrees of freedom. These unique properties of disordered SHU chains have implications in the design and engineering of novel quantum materials for thermal and phononic applications.
Collapse
Affiliation(s)
- Houlong Zhuang
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, United States of America
| | - Duyu Chen
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, United States of America
| | - Lei Liu
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, United States of America
| | - David Keeney
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, United States of America
| | - Ge Zhang
- Department of Physics, City University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Yang Jiao
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, United States of America
- Department of Physics, Arizona State University, Tempe, AZ 85287, United States of America
| |
Collapse
|
3
|
Shi W, Keeney D, Chen D, Jiao Y, Torquato S. Computational design of anisotropic stealthy hyperuniform composites with engineered directional scattering properties. Phys Rev E 2023; 108:045306. [PMID: 37978628 DOI: 10.1103/physreve.108.045306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 11/19/2023]
Abstract
Disordered hyperuniform materials are an emerging class of exotic amorphous states of matter that endow them with singular physical properties, including large isotropic photonic band gaps, superior resistance to fracture, and nearly optimal electrical and thermal transport properties, to name but a few. Here we generalize the Fourier-space-based numerical construction procedure for designing and generating digital realizations of isotropic disordered hyperuniform two-phase heterogeneous materials (i.e., composites) developed by Chen and Torquato [Acta Mater. 142, 152 (2018)1359-645410.1016/j.actamat.2017.09.053] to anisotropic microstructures with targeted spectral densities. Our generalized construction procedure explicitly incorporates the vector-dependent spectral density function χ[over ̃]_{_{V}}(k) of arbitrary form that is realizable. We demonstrate the utility of the procedure by generating a wide spectrum of anisotropic stealthy hyperuniform microstructures with χ[over ̃]_{_{V}}(k)=0 for k∈Ω, i.e., complete suppression of scattering in an "exclusion" region Ω around the origin in Fourier space. We show how different exclusion-region shapes with various discrete symmetries, including circular-disk, elliptical-disk, square, rectangular, butterfly-shaped, and lemniscate-shaped regions of varying size, affect the resulting statistically anisotropic microstructures as a function of the phase volume fraction. The latter two cases of Ω lead to directionally hyperuniform composites, which are stealthy hyperuniform only along certain directions and are nonhyperuniform along others. We find that while the circular-disk exclusion regions give rise to isotropic hyperuniform composite microstructures, the directional hyperuniform behaviors imposed by the shape asymmetry (or anisotropy) of certain exclusion regions give rise to distinct anisotropic structures and degree of uniformity in the distribution of the phases on intermediate and large length scales along different directions. Moreover, while the anisotropic exclusion regions impose strong constraints on the global symmetry of the resulting media, they can still possess structures at a local level that are nearly isotropic. Both the isotropic and anisotropic hyperuniform microstructures associated with the elliptical-disk, square, and rectangular Ω possess phase-inversion symmetry over certain range of volume fractions and a percolation threshold ϕ_{c}≈0.5. On the other hand, the directionally hyperuniform microstructures associated with the butterfly-shaped and lemniscate-shaped Ω do not possess phase-inversion symmetry and percolate along certain directions at much lower volume fractions. We also apply our general procedure to construct stealthy nonhyperuniform systems. Our construction algorithm enables one to control the statistical anisotropy of composite microstructures via the shape, size, and symmetries of Ω, which is crucial to engineering directional optical, transport, and mechanical properties of two-phase composite media.
Collapse
Affiliation(s)
- Wenlong Shi
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - David Keeney
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Duyu Chen
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
- Princeton Institute of Materials, Princeton University, Princeton, New Jersey 08544, USA
- Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
4
|
Granchi N, Intonti F, Florescu M, García PD, Gurioli M, Arregui G. Q-Factor Optimization of Modes in Ordered and Disordered Photonic Systems Using Non-Hermitian Perturbation Theory. ACS PHOTONICS 2023; 10:2808-2815. [PMID: 37602292 PMCID: PMC10436348 DOI: 10.1021/acsphotonics.3c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 08/22/2023]
Abstract
The quality factor, Q, of photonic resonators permeates most figures of merit in applications that rely on cavity-enhanced light-matter interaction such as all-optical information processing, high-resolution sensing, or ultralow-threshold lasing. As a consequence, large-scale efforts have been devoted to understanding and efficiently computing and optimizing the Q of optical resonators in the design stage. This has generated large know-how on the relation between physical quantities of the cavity, e.g., Q, and controllable parameters, e.g., hole positions, for engineered cavities in gaped photonic crystals. However, such a correspondence is much less intuitive in the case of modes in disordered photonic media, e.g., Anderson-localized modes. Here, we demonstrate that the theoretical framework of quasinormal modes (QNMs), a non-Hermitian perturbation theory for shifting material boundaries, and a finite-element complex eigensolver provide an ideal toolbox for the automated shape optimization of Q of a single photonic mode in both ordered and disordered environments. We benchmark the non-Hermitian perturbation formula and employ it to optimize the Q-factor of a photonic mode relative to the position of vertically etched holes in a dielectric slab for two different settings: first, for the fundamental mode of L3 cavities with various footprints, demonstrating that the approach simultaneously takes in-plane and out-of-plane losses into account and leads to minor modal structure modifications; and second, for an Anderson-localized mode with an initial Q of 200, which evolves into a completely different mode, displaying a threefold reduction in the mode volume, a different overall spatial location, and, notably, a 3 order of magnitude increase in Q.
Collapse
Affiliation(s)
- Nicoletta Granchi
- Department
of Physics, University of Florence, via Sansone 1, I-50019 Sesto Fiorentino, FI, Italy
- European
Laboratory for Nonlinear Spectroscopy, via Nello Carrara 1, I-50019 Sesto Fiorentino, FI, Italy
| | - Francesca Intonti
- Department
of Physics, University of Florence, via Sansone 1, I-50019 Sesto Fiorentino, FI, Italy
- European
Laboratory for Nonlinear Spectroscopy, via Nello Carrara 1, I-50019 Sesto Fiorentino, FI, Italy
| | - Marian Florescu
- Advanced
Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, U.K.
| | - Pedro David García
- Instituto
de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la
Cruz 3, 28049 Madrid, Spain
| | - Massimo Gurioli
- Department
of Physics, University of Florence, via Sansone 1, I-50019 Sesto Fiorentino, FI, Italy
- European
Laboratory for Nonlinear Spectroscopy, via Nello Carrara 1, I-50019 Sesto Fiorentino, FI, Italy
| | - Guillermo Arregui
- Department
of Electrical and Photonics Engineering, DTU Electro, Technical University of Denmark, Building 343, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Yu S, Park N. Heavy tails and pruning in programmable photonic circuits for universal unitaries. Nat Commun 2023; 14:1853. [PMID: 37012281 PMCID: PMC10070444 DOI: 10.1038/s41467-023-37611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Developing hardware for high-dimensional unitary operators plays a vital role in implementing quantum computations and deep learning accelerations. Programmable photonic circuits are singularly promising candidates for universal unitaries owing to intrinsic unitarity, ultrafast tunability and energy efficiency of photonic platforms. Nonetheless, when the scale of a photonic circuit increases, the effects of noise on the fidelity of quantum operators and deep learning weight matrices become more severe. Here we demonstrate a nontrivial stochastic nature of large-scale programmable photonic circuits-heavy-tailed distributions of rotation operators-that enables the development of high-fidelity universal unitaries through designed pruning of superfluous rotations. The power law and the Pareto principle for the conventional architecture of programmable photonic circuits are revealed with the presence of hub phase shifters, allowing for the application of network pruning to the design of photonic hardware. For the Clements design of programmable photonic circuits, we extract a universal architecture for pruning random unitary matrices and prove that "the bad is sometimes better to be removed" to achieve high fidelity and energy efficiency. This result lowers the hurdle for high fidelity in large-scale quantum computing and photonic deep learning accelerators.
Collapse
Affiliation(s)
- Sunkyu Yu
- Intelligent Wave Systems Laboratory, Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Namkyoo Park
- Photonic Systems Laboratory, Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
6
|
Jiao Y. Evolving wave networks for materials design. NATURE COMPUTATIONAL SCIENCE 2023; 3:122-123. [PMID: 38177627 DOI: 10.1038/s43588-023-00401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Affiliation(s)
- Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|