1
|
Plett JM, Wojtalewicz D, Plett KL, Collin S, Kohler A, Jacob C, Martin F. Sesquiterpenes of the ectomycorrhizal fungus Pisolithus microcarpus alter root growth and promote host colonization. MYCORRHIZA 2024; 34:69-84. [PMID: 38441669 PMCID: PMC10998793 DOI: 10.1007/s00572-024-01137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/01/2024] [Indexed: 04/07/2024]
Abstract
Trees form symbioses with ectomycorrhizal (ECM) fungi, maintained in part through mutual benefit to both organisms. Our understanding of the signaling events leading to the successful interaction between the two partners requires further study. This is especially true for understanding the role of volatile signals produced by ECM fungi. Terpenoids are a predominant class of volatiles produced by ECM fungi. While several ECM genomes are enriched in the enzymes responsible for the production of these volatiles (i.e., terpene synthases (TPSs)) when compared to other fungi, we have limited understanding of the biochemical products associated with each enzyme and the physiological impact of specific terpenes on plant growth. Using a combination of phylogenetic analyses, RNA sequencing, and functional characterization of five TPSs from two distantly related ECM fungi (Laccaria bicolor and Pisolithus microcarpus), we investigated the role of these secondary metabolites during the establishment of symbiosis. We found that despite phylogenetic divergence, these TPSs produced very similar terpene profiles. We focused on the role of P. microcarpus terpenes and found that the fungus expressed a diverse array of mono-, di-, and sesquiterpenes prior to contact with the host. However, these metabolites were repressed following physical contact with the host Eucalyptus grandis. Exposure of E. grandis to heterologously produced terpenes (enriched primarily in γ -cadinene) led to a reduction in the root growth rate and an increase in P. microcarpus-colonized root tips. These results support a very early putative role of fungal-produced terpenes in the establishment of symbiosis between mycorrhizal fungi and their hosts.
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.
| | - Dominika Wojtalewicz
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Krista L Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, 2568, Australia
| | - Sabrina Collin
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, 54280, Champenoux, France
| | | | - Francis Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, 54280, Champenoux, France
| |
Collapse
|
2
|
Földi C, Merényi Z, Balázs B, Csernetics Á, Miklovics N, Wu H, Hegedüs B, Virágh M, Hou Z, Liu XB, Galgóczy L, Nagy LG. Snowball: a novel gene family required for developmental patterning of fruiting bodies of mushroom-forming fungi (Agaricomycetes). mSystems 2024; 9:e0120823. [PMID: 38334416 PMCID: PMC10949477 DOI: 10.1128/msystems.01208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
The morphogenesis of sexual fruiting bodies of fungi is a complex process determined by a genetically encoded program. Fruiting bodies reached the highest complexity levels in the Agaricomycetes; yet, the underlying genetics is currently poorly known. In this work, we functionally characterized a highly conserved gene termed snb1, whose expression level increases rapidly during fruiting body initiation. According to phylogenetic analyses, orthologs of snb1 are present in almost all agaricomycetes and may represent a novel conserved gene family that plays a substantial role in fruiting body development. We disrupted snb1 using CRISPR/Cas9 in the agaricomycete model organism Coprinopsis cinerea. snb1 deletion mutants formed unique, snowball-shaped, rudimentary fruiting bodies that could not differentiate caps, stipes, and lamellae. We took advantage of this phenotype to study fruiting body differentiation using RNA-Seq analyses. This revealed differentially regulated genes and gene families that, based on wild-type RNA-Seq data, were upregulated early during development and showed tissue-specific expression, suggesting a potential role in differentiation. Taken together, the novel gene family of snb1 and the differentially expressed genes in the snb1 mutants provide valuable insights into the complex mechanisms underlying developmental patterning in the Agaricomycetes. IMPORTANCE Fruiting bodies of mushroom-forming fungi (Agaricomycetes) are complex multicellular structures, with a spatially and temporally integrated developmental program that is, however, currently poorly known. In this study, we present a novel, conserved gene family, Snowball (snb), termed after the unique, differentiation-less fruiting body morphology of snb1 knockout strains in the model mushroom Coprinopsis cinerea. snb is a gene of unknown function that is highly conserved among agaricomycetes and encodes a protein of unknown function. A comparative transcriptomic analysis of the early developmental stages of differentiated wild-type and non-differentiated mutant fruiting bodies revealed conserved differentially expressed genes which may be related to tissue differentiation and developmental patterning fruiting body development.
Collapse
Affiliation(s)
- Csenge Földi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Bálint Balázs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Árpád Csernetics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Nikolett Miklovics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Hongli Wu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Zhihao Hou
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Xiao-Bin Liu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - László Galgóczy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László G. Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| |
Collapse
|
3
|
Sahu N, Indic B, Wong-Bajracharya J, Merényi Z, Ke HM, Ahrendt S, Monk TL, Kocsubé S, Drula E, Lipzen A, Bálint B, Henrissat B, Andreopoulos B, Martin FM, Bugge Harder C, Rigling D, Ford KL, Foster GD, Pangilinan J, Papanicolaou A, Barry K, LaButti K, Virágh M, Koriabine M, Yan M, Riley R, Champramary S, Plett KL, Grigoriev IV, Tsai IJ, Slot J, Sipos G, Plett J, Nagy LG. Vertical and horizontal gene transfer shaped plant colonization and biomass degradation in the fungal genus Armillaria. Nat Microbiol 2023; 8:1668-1681. [PMID: 37550506 PMCID: PMC7615209 DOI: 10.1038/s41564-023-01448-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
The fungal genus Armillaria contains necrotrophic pathogens and some of the largest terrestrial organisms that cause tremendous losses in diverse ecosystems, yet how they evolved pathogenicity in a clade of dominantly non-pathogenic wood degraders remains elusive. Here we show that Armillaria species, in addition to gene duplications and de novo gene origins, acquired at least 1,025 genes via 124 horizontal gene transfer events, primarily from Ascomycota. Horizontal gene transfer might have affected plant biomass degrading and virulence abilities of Armillaria, and provides an explanation for their unusual, soft rot-like wood decay strategy. Combined multi-species expression data revealed extensive regulation of horizontally acquired and wood-decay related genes, putative virulence factors and two novel conserved pathogenicity-induced small secreted proteins, which induced necrosis in planta. Overall, this study details how evolution knitted together horizontally and vertically inherited genes in complex adaptive traits of plant biomass degradation and pathogenicity in important fungal pathogens.
Collapse
Affiliation(s)
- Neha Sahu
- Biological Research Center, Synthetic and Systems Biology Unit, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Boris Indic
- Functional Genomics and Bioinformatics Group, Faculty of Forestry, Institute of Forest and Natural Resource Management, University of Sopron, Sopron, Hungary
| | - Johanna Wong-Bajracharya
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, New South Wales, Australia
| | - Zsolt Merényi
- Biological Research Center, Synthetic and Systems Biology Unit, Szeged, Hungary
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Steven Ahrendt
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tori-Lee Monk
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- ELKH-SZTE Fungal Pathogenicity Mechanisms Research Group, University of Szeged, Szeged, Hungary
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, Marseille, France
- INRAE, UMR 1163, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Balázs Bálint
- Biological Research Center, Synthetic and Systems Biology Unit, Szeged, Hungary
| | - Bernard Henrissat
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bill Andreopoulos
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Francis M Martin
- Université de Lorraine, INRAE, UMR 1136 'Interactions Arbres/Microorganismes', Centre INRAE Grand Est - Nancy, Champenoux, France
| | - Christoffer Bugge Harder
- Department of Biology, Section of Terrestrial Ecology, University of Copenhagen, København Ø, Denmark
- Department of Biosciences, University of Oslo, Blindern, Oslo, Norway
| | - Daniel Rigling
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Kathryn L Ford
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | - Gary D Foster
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Máté Virágh
- Biological Research Center, Synthetic and Systems Biology Unit, Szeged, Hungary
| | - Maxim Koriabine
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mi Yan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Simang Champramary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Functional Genomics and Bioinformatics Group, Faculty of Forestry, Institute of Forest and Natural Resource Management, University of Sopron, Sopron, Hungary
| | - Krista L Plett
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, New South Wales, Australia
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | | | - Jason Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - György Sipos
- Functional Genomics and Bioinformatics Group, Faculty of Forestry, Institute of Forest and Natural Resource Management, University of Sopron, Sopron, Hungary
| | - Jonathan Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - László G Nagy
- Biological Research Center, Synthetic and Systems Biology Unit, Szeged, Hungary.
| |
Collapse
|