1
|
Marsh KJ, Bearhop S, Harrison XA. Linking microbiome temporal dynamics to host ecology in the wild. Trends Microbiol 2024; 32:1060-1071. [PMID: 38797653 DOI: 10.1016/j.tim.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024]
Abstract
Ignoring the dynamic nature of microbial communities risks underestimating the power of microbes to impact the health of their hosts. Microbiomes are thought to be important for host fitness, yet the coarse temporal scale and population-level focus of many studies precludes the ability to investigate the importance of among-individual variation in stability and identify the ecological contexts in which this variation matters. Here we briefly summarise current knowledge of temporal dynamics in wild host-associated microbial communities. We then discuss the implications of among-individual variation in microbiota stability and suggest analytical approaches for understanding these patterns. One major requirement is for future studies to conduct individual-level longitudinal analyses, with some systems already well set up for answering these questions.
Collapse
Affiliation(s)
- Kirsty J Marsh
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, UK.
| | - Stuart Bearhop
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, UK
| | - Xavier A Harrison
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, UK.
| |
Collapse
|
2
|
Bittleston LS. Connecting microbial community assembly and function. Curr Opin Microbiol 2024; 80:102512. [PMID: 39018765 DOI: 10.1016/j.mib.2024.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Microbial ecology is moving away from purely descriptive analyses to experiments that can determine the underlying mechanisms driving changes in community assembly and function. More species-rich microbial communities generally have higher functional capabilities depending on if there is positive selection of certain species or complementarity among different species. When building synthetic communities or laboratory enrichment cultures, there are specific choices that can increase the number of species able to coexist. Higher resource complexity or the addition of physical niches are two of the many factors leading to greater biodiversity and associated increases in functional capabilities. We can use principles from community ecology and knowledge of microbial physiology to generate improved microbiomes for use in medicine, agriculture, or environmental management.
Collapse
|
3
|
Takahashi K, Oshiki M, Ruan C, Morinaga K, Toyofuku M, Nomura N, Johnson DR. Denitrification in low oxic environments increases the accumulation of nitrogen oxide intermediates and modulates the evolutionary potential of microbial populations. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13221. [PMID: 38037543 PMCID: PMC10866065 DOI: 10.1111/1758-2229.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Denitrification in oxic environments occurs when a microorganism uses nitrogen oxides as terminal electron acceptors even though oxygen is available. While this phenomenon is well-established, its consequences on ecological and evolutionary processes remain poorly understood. We hypothesize here that denitrification in oxic environments can modify the accumulation profiles of nitrogen oxide intermediates with cascading effects on the evolutionary potentials of denitrifying microorganisms. To test this, we performed laboratory experiments with Paracoccus denitrificans and complemented them with individual-based computational modelling. We found that denitrification in low oxic environments significantly increases the accumulation of nitrite and nitric oxide. We further found that the increased accumulation of these intermediates has a negative effect on growth at low pH. Finally, we found that the increased negative effect at low pH increases the number of individuals that contribute to surface-associated growth. This increases the amount of genetic diversity that is preserved from the initial population, thus increasing the number of genetic targets for natural selection to act upon and resulting in higher evolutionary potentials. Together, our data highlight that denitrification in low oxic environments can affect the ecological processes and evolutionary potentials of denitrifying microorganisms by modifying the accumulation of nitrogen oxide intermediates.
Collapse
Affiliation(s)
- Kohei Takahashi
- Graduate School of Sciences and TechnologiesUniversity of TsukubaTsukubaIbarakiJapan
- Department of Environmental MicrobiologySwiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Mamoru Oshiki
- Division of Environmental Engineering, Faculty of EngineeringHokkaido UniversitySapporoHokkaidoJapan
| | - Chujin Ruan
- Department of Environmental MicrobiologySwiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Kana Morinaga
- Graduate School of Sciences and TechnologiesUniversity of TsukubaTsukubaIbarakiJapan
| | - Masanori Toyofuku
- Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaIbarakiJapan
- Microbiology Research Center for SustainabilityUniversity of TsukubaTsukubaIbarakiJapan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaIbarakiJapan
- Microbiology Research Center for SustainabilityUniversity of TsukubaTsukubaIbarakiJapan
| | - David R. Johnson
- Department of Environmental MicrobiologySwiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
- Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| |
Collapse
|
4
|
Zhao C, Duan X, Liu C, Huang H, Wu M, Zhang X, Chen Y. Metabolite Cross-Feeding Promoting NADH Production and Electron Transfer during Efficient SMX Biodegradation by a Denitrifier and S. oneidensis MR-1 in the Presence of Nitrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18306-18316. [PMID: 37043541 DOI: 10.1021/acs.est.2c09341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Antibiotics often coexist with other pollutants (e.g., nitrate) in an aquatic environment, and their simultaneous biological removal has attracted widespread interest. We have found that sulfamethoxazole (SMX) and nitrate can be efficiently removed by the coculture of a model denitrifier (Paracoccus denitrificans, Pd) and Shewanella oneidensis MR-1 (So), and SMX degradation is affected by NADH production and electron transfer. In this paper, the mechanism of a coculture promoting NADH production and electron transfer was investigated by proteomic analysis and intermediate experiments. The results showed that glutamine and lactate produced by Pd were captured by So to synthesize thiamine and heme, and the released thiamine was taken up by Pd as a cofactor of pyruvate and ketoglutarate dehydrogenase, which were related to NADH generation. Additionally, Pd acquired heme, which facilitated electron transfer as heme, was the important composition of complex III and cytochrome c and the iron source of iron sulfur clusters, the key component of complex I in the electron transfer chain. Further investigation revealed that lactate and glutamine generated by Pd prompted So chemotactic moving toward Pd, which helped the two bacteria effectively obtain their required substances. Obviously, metabolite cross-feeding promoted NADH production and electron transfer, resulting in efficient SMX biodegradation by Pd and So in the presence of nitrate. Its feasibility was finally verified by the coculture of an activated sludge denitrifier and So.
Collapse
Affiliation(s)
- Chunxia Zhao
- State Key Laboratory of Pollution Control and ReSource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and ReSource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and ReSource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and ReSource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Meirou Wu
- State Key Laboratory of Pollution Control and ReSource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and ReSource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and ReSource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
5
|
Ji X, Zhang L, Yu X, Chen F, Guo F, Wu Q, Xu Y. Selection of initial microbial community for the alcoholic fermentation of sesame flavor-type baijiu. Food Res Int 2023; 172:113141. [PMID: 37689904 DOI: 10.1016/j.foodres.2023.113141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/02/2023] [Accepted: 06/13/2023] [Indexed: 09/11/2023]
Abstract
The initial microbial community is critical for the production of volatile metabolites during traditional food fermentations. Selection of the initial community plays an important role in improving the quality of fermented foods. Here, we used high-throughput amplicon sequencing combined with multivariate statistical methods to explore the microbial succession in stacking and alcoholic fermentation stages in sesame flavor-type baijiu making. We proposed a selection strategy for the initial microbial community in the alcoholic fermentation stage, which determined the quality of baijiu. Results suggested that the microbial composition statistically differed between stacking and alcoholic fermentation stages (ANOSIM, Bacteria: R = 0.60, P = 0.001; Fungi: R = 0.53, P = 0.001). Microbial succession drove metabolic succession (Bacteria: r = 0.87, P < 0.05; Fungi: r = 0.56, P < 0.05) in alcoholic fermentation. The fermentation time of stacking fermentation determined the initial community for alcoholic fermentation, and it can be used as a criterion for selection of the initial microbial community for alcoholic fermentation. The succession distance of the microbial community was varied and reached the highest (Bacteria: 0.048, Fungi: 0.064) at 30 h in stacking fermentation. When we selected 30 h as stacking fermentation time, the concentration (4.58 mg/kg) and diversity (0.61) of volatile metabolites were highest at the end of alcoholic fermentation. This work developed a succession distance-guided approach to select the initial microbial community for the alcoholic fermentation of sesame flavor-type baijiu. This approach can be used to improve the quality of baijiu.
Collapse
Affiliation(s)
- Xueao Ji
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Longyun Zhang
- Suqian Yanghe Distillery Co. Ltd, Jiangsu 223800, China
| | - Xiaowei Yu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fujiang Chen
- Suqian Yanghe Distillery Co. Ltd, Jiangsu 223800, China
| | - Fengxue Guo
- Suqian Yanghe Distillery Co. Ltd, Jiangsu 223800, China
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Wu Y, Fu C, Peacock CL, Sørensen SJ, Redmile-Gordon MA, Xiao KQ, Gao C, Liu J, Huang Q, Li Z, Song P, Zhu Y, Zhou J, Cai P. Cooperative microbial interactions drive spatial segregation in porous environments. Nat Commun 2023; 14:4226. [PMID: 37454222 PMCID: PMC10349867 DOI: 10.1038/s41467-023-39991-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
The role of microbial interactions and the underlying mechanisms that shape complex biofilm communities are poorly understood. Here we employ a microfluidic chip to represent porous subsurface environments and show that cooperative microbial interactions between free-living and biofilm-forming bacteria trigger active spatial segregation to promote their respective dominance in segregated microhabitats. During initial colonization, free-living and biofilm-forming microbes are segregated from the mixed planktonic inoculum to occupy the ambient fluid and grain surface. Contrary to spatial exclusion through competition, the active spatial segregation is induced by cooperative interactions which improves the fitness of both biofilm and planktonic populations. We further show that free-living Arthrobacter induces the surface colonization by scavenging the biofilm inhibitor, D-amino acids and receives benefits from the public goods secreted by the biofilm-forming strains. Collectively, our results reveal how cooperative microbial interactions may contribute to microbial coexistence in segregated microhabitats and drive subsurface biofilm community succession.
Collapse
Affiliation(s)
- Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Chengxia Fu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Caroline L Peacock
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Marc A Redmile-Gordon
- Department of Environmental Horticulture, Royal Horticultural Society, Wisley, Surrey, GU23 6QB, UK
| | - Ke-Qing Xiao
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Chunhui Gao
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Jun Liu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Zixue Li
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyi Song
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Yongguan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, USA
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|