1
|
Gan B, Wang K, Zhang B, Jia C, Lin X, Zhao J, Ding S. Dynamic microbiome diversity shaping the adaptation of sponge holobionts in coastal waters. Microbiol Spectr 2024; 12:e0144824. [PMID: 39400157 PMCID: PMC11537060 DOI: 10.1128/spectrum.01448-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/12/2024] [Indexed: 10/15/2024] Open
Abstract
The microbial communities associated with sponges contribute to the adaptation of hosts to environments, which are essential for the trophic transformation of benthic-marine coupling. However, little is known about the symbiotic microbial community interactions and adaptative strategies of high- and low-microbial abundance (HMA and LMA) sponges, which represent two typical ecological phenotypes. Here, we compared the 1-year dynamic patterns of microbiomes with the HMA sponge Spongia officinalis and two LMA sponge species Tedania sp. and Haliclona simulans widespread on the coast of China. Symbiotic bacterial communities with the characteristic HMA-LMA dichotomy presented higher diversity and stability in S. officinalis than in Tedania sp. and H. simulans, while archaeal communities showed consistent diversity across all sponges throughout the year. Dissolved oxygen, dissolved inorganic phosphorus, dissolved organic phosphorus, and especially temperature were the major factors affecting the seasonal changes in sponge microbial communities. S. officinalis-associated microbiome had higher diversity, stronger stability, and closer interaction, which adopted a relatively isolated strategy to cope with environmental changes, while Tedania sp. and H. simulans were more susceptible and shared more bacterial Amplicon Sequence Variants (ASVs) with surrounding waters, with an open way facing the uncertainty of the environment. Meta-analysis of the microbiome in composition, diversity, and ecological function from 13 marine sponges further supported that bacterial communities associated with HMA and LMA sponges have evolved two distinct environmental adaptation strategies. We propose that the different adaptive ways of sponges responding to the environment may be responsible for their successful evolution and their competence in global ocean change. IMPORTANCE During long-term evolution, sponge holobionts, among the oldest symbiotic relationships between microbes and metazoans, developed two distinct phenotypes with high- and low-microbial abundance (HMA and LMA). Despite sporadic studies indicating that the characteristic microbial assemblages present in HMA and LMA sponges, the adaptation strategies of symbionts responding to environments are still unclear. This deficiency limits our understanding of the selection of symbionts and the ecological functions during the evolutionary history and the adaptative assessment of HMA and LMA sponges in variable environments. Here, we explored symbiotic communities with two distinct phenotypes in a 1-year dynamic environment and combined with the meta-analysis of 13 sponges. The different strategies of symbionts in adapting to the environment were basically drawn: microbes with LMA were more acclimated to environmental changes, forming relatively loose-connected communities, while HMA developed relatively tight-connected and more similar communities beyond the divergence of species and geographical location.
Collapse
Affiliation(s)
- Bifu Gan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Kai Wang
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen, China
| | - Beibei Zhang
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen, China
| | - Chenzheng Jia
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen, China
| | - Jing Zhao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen, China
| | - Shaoxiong Ding
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Chen J, Jia Y, Sun Y, Liu K, Zhou C, Liu C, Li D, Liu G, Zhang C, Yang T, Huang L, Zhuang Y, Wang D, Xu D, Zhong Q, Guo Y, Li A, Seim I, Jiang L, Wang L, Lee SMY, Liu Y, Wang D, Zhang G, Liu S, Wei X, Yue Z, Zheng S, Shen X, Wang S, Qi C, Chen J, Ye C, Zhao F, Wang J, Fan J, Li B, Sun J, Jia X, Xia Z, Zhang H, Liu J, Zheng Y, Liu X, Wang J, Yang H, Kristiansen K, Xu X, Mock T, Li S, Zhang W, Fan G. Global marine microbial diversity and its potential in bioprospecting. Nature 2024; 633:371-379. [PMID: 39232160 PMCID: PMC11390488 DOI: 10.1038/s41586-024-07891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
The past two decades has witnessed a remarkable increase in the number of microbial genomes retrieved from marine systems1,2. However, it has remained challenging to translate this marine genomic diversity into biotechnological and biomedical applications3,4. Here we recovered 43,191 bacterial and archaeal genomes from publicly available marine metagenomes, encompassing a wide range of diversity with 138 distinct phyla, redefining the upper limit of marine bacterial genome size and revealing complex trade-offs between the occurrence of CRISPR-Cas systems and antibiotic resistance genes. In silico bioprospecting of these marine genomes led to the discovery of a novel CRISPR-Cas9 system, ten antimicrobial peptides, and three enzymes that degrade polyethylene terephthalate. In vitro experiments confirmed their effectiveness and efficacy. This work provides evidence that global-scale sequencing initiatives advance our understanding of how microbial diversity has evolved in the oceans and is maintained, and demonstrates how such initiatives can be sustainably exploited to advance biotechnology and biomedicine.
Collapse
Affiliation(s)
- Jianwei Chen
- BGI Research, Qingdao, China
- BGI Research, Shenzhen, China
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Ying Sun
- BGI Research, Qingdao, China.
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China.
| | - Kun Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | | | - Chuan Liu
- BGI Research, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Chengsong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Genomics Data Center, BGI Research, Shenzhen, China
| | | | - Yunyun Zhuang
- Key Laboratory of Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | | | | | - Yang Guo
- BGI Research, Qingdao, China
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | - Inge Seim
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Simon Ming Yuen Lee
- Department of Food Science and Nutrition, and PolyU-BGI Joint Research Centre for Genomics and Synthetic Biology in Global Deep Ocean Resource, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yujing Liu
- BGI Research, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
| | | | - Guoqiang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | | | - Xiaofeng Wei
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Genomics Data Center, BGI Research, Shenzhen, China
| | | | - Shanmin Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | | | - Sen Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chen Qi
- BGI Research, Shenzhen, China
| | - Jing Chen
- Guangdong Genomics Data Center, BGI Research, Shenzhen, China
| | - Chen Ye
- BGI Research, Shenzhen, China
| | | | | | - Jie Fan
- BGI Research, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
| | | | | | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Zhangyong Xia
- Department of Neurology, The Second People's Hospital of Liaocheng, Liaocheng, China
| | - He Zhang
- BGI Research, Qingdao, China
- BGI Research, Shenzhen, China
| | | | | | - Xin Liu
- BGI Research, Qingdao, China
- BGI Research, Shenzhen, China
| | | | | | - Karsten Kristiansen
- BGI Research, Shenzhen, China
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xun Xu
- BGI Research, Qingdao, China
- BGI Research, Shenzhen, China
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Wenwei Zhang
- BGI Research, Shenzhen, China.
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China.
| | - Guangyi Fan
- BGI Research, Qingdao, China.
- BGI Research, Shenzhen, China.
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China.
- Department of Food Science and Nutrition, and PolyU-BGI Joint Research Centre for Genomics and Synthetic Biology in Global Deep Ocean Resource, The Hong Kong Polytechnic University, Hong Kong, China.
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China.
| |
Collapse
|
3
|
Gastaldi M, Pankey MS, Svendsen G, Medina A, Firstater F, Narvarte M, Lozada M, Lesser M. Holobiont dysbiosis or acclimatation? Shift in the microbial taxonomic diversity and functional composition of a cosmopolitan sponge subjected to chronic pollution in a Patagonian bay. PeerJ 2024; 12:e17707. [PMID: 39184395 PMCID: PMC11344537 DOI: 10.7717/peerj.17707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/18/2024] [Indexed: 08/27/2024] Open
Abstract
Dysbiosis and acclimatization are two starkly opposing outcomes of altered holobiont associations in response to environmental pollution. This study assesses whether shifts in microbial taxonomic composition and functional profiles of the cosmopolitan sponge Hymeniacidon perlevis indicate dysbiotic or acclimatized responses to water pollution. To do so, sponge and water samples were collected in a semi-enclosed environment (San Antonio Bay, Patagonia, Argentina) from variably polluted sites (i.e., eutrophication, heavy metal contamination). We found significant differences in the microbiome of H. perlevis with respect to the pollution history of the sites. Several indicators suggested that acclimatization, rather than dysbiosis, explained the microbiome response to higher pollution: 1) the distinction of the sponge microbiome from the water microbiome; 2) low similarity between the sponge and water microbiomes at the most polluted site; 3) the change in microbiome composition between sponges from the different sites; 4) a high similarity in the microbiome among sponge individuals within sites; 5) a similar ratio of common sponge microbes to opportunistic microbes between sponges at the most and least polluted sites; and 6) a distinctive functional profile of the sponge microbiome at the most polluted site. This profile indicated a more expansive metabolic repertoire, including the degradation of pollutants and the biosynthesis of secondary metabolites, suggesting a relevant role of these microbial communities in the adaptation of the holobiont to organic pollution. Our results shed light on the rearrangement of the H. perlevis microbiome that could allow it to successfully colonize sites with high anthropogenic impact while resisting dysbiosis.
Collapse
Affiliation(s)
- Marianela Gastaldi
- Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, San Antonio Oeste, Río Negro, Argentina
- Laboratorio de Biodiversidad y Servicios Ecosistémicos, CIMAS-CONICET, San Antonio Oeste, Río Negro, Argentina
| | - M. Sabrina Pankey
- Department of Molecular, Cellular and Biomedical Sciences and School of Marine Science and Ocean Engineering, University of New Hampshire, Durham, New England, United States
| | - Guillermo Svendsen
- Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, San Antonio Oeste, Río Negro, Argentina
- Laboratorio de Modelado Ecológico y Pesquero, CIMAS-CONICET, San Antonio Oeste, Río Negro, Argentina
| | - Alonso Medina
- Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, San Antonio Oeste, Río Negro, Argentina
| | - Fausto Firstater
- Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, San Antonio Oeste, Río Negro, Argentina
- Laboratorio de Biodiversidad y Servicios Ecosistémicos, CIMAS-CONICET, San Antonio Oeste, Río Negro, Argentina
| | - Maite Narvarte
- Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, San Antonio Oeste, Río Negro, Argentina
- Laboratorio de Biodiversidad y Servicios Ecosistémicos, CIMAS-CONICET, San Antonio Oeste, Río Negro, Argentina
| | - Mariana Lozada
- Laboratorio de Microbiología Ambiental, IBIOMAR-CONICET, Puerto Madryn, Chubut, Argentina
| | - Michael Lesser
- Department of Molecular, Cellular and Biomedical Sciences and School of Marine Science and Ocean Engineering, University of New Hampshire, Durham, New England, United States
| |
Collapse
|
4
|
Xu C, Jiang H, Feng LJ, Jiang MZ, Wang YL, Liu SJ. Christensenella minuta interacts with multiple gut bacteria. Front Microbiol 2024; 15:1301073. [PMID: 38440147 PMCID: PMC10910051 DOI: 10.3389/fmicb.2024.1301073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Gut microbes form complex networks that significantly influence host health and disease treatment. Interventions with the probiotic bacteria on the gut microbiota have been demonstrated to improve host well-being. As a representative of next-generation probiotics, Christensenella minuta (C. minuta) plays a critical role in regulating energy balance and metabolic homeostasis in human bodies, showing potential in treating metabolic disorders and reducing inflammation. However, interactions of C. minuta with the members of the networked gut microbiota have rarely been explored. Methods In this study, we investigated the impact of C. minuta on fecal microbiota via metagenomic sequencing, focusing on retrieving bacterial strains and coculture assays of C. minuta with associated microbial partners. Results Our results showed that C. minuta intervention significantly reduced the diversity of fecal microorganisms, but specifically enhanced some groups of bacteria, such as Lactobacillaceae. C. minuta selectively enriched bacterial pathways that compensated for its metabolic defects on vitamin B1, B12, serine, and glutamate synthesis. Meanwhile, C. minuta cross-feeds Faecalibacterium prausnitzii and other bacteria via the production of arginine, branched-chain amino acids, fumaric acids and short-chain fatty acids (SCFAs), such as acetic. Both metagenomic data analysis and culture experiments revealed that C. minuta negatively correlated with Klebsiella pneumoniae and 14 other bacterial taxa, while positively correlated with F. prausnitzii. Our results advance our comprehension of C. minuta's in modulating the gut microbial network. Conclusions C. minuta disrupts the composition of the fecal microbiota. This disturbance is manifested through cross-feeding, nutritional competition, and supplementation of its own metabolic deficiencies, resulting in the specific enrichment or inhibition of the growth of certain bacteria. This study will shed light on the application of C. minuta as a probiotic for effective interventions on gut microbiomes and improvement of host health.
Collapse
Affiliation(s)
- Chang Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - He Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Li-Juan Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Min-Zhi Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yu-Lin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Chai G, Li J, Li Z. The interactive effects of ocean acidification and warming on bioeroding sponge Spheciospongia vesparium microbiome indicated by metatranscriptomics. Microbiol Res 2024; 278:127542. [PMID: 37979302 DOI: 10.1016/j.micres.2023.127542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
Global climate change will cause coral reefs decline and is expected to increase the reef erosion potential of bioeroding sponges. Microbial symbionts are essential for the overall fitness and survival of sponge holobionts in changing ocean environments. However, we rarely know about the impacts of ocean warming and acidification on bioeroding sponge microbiome. Here, the structural and functional changes of the bioeroding sponge Spheciospongia vesparium microbiome, as well as its recovery potential, were investigated at the RNA level in a laboratory system simulating 32 °C and pH 7.7. Based on metatranscriptome analysis, acidification showed no significant impact, while warming or simultaneous warming and acidification disrupted the sponge microbiome. Warming caused microbial dysbiosis and recruited potentially opportunistic and pathogenic members of Nesiotobacter, Oceanospirillaceae, Deltaproteobacteria, Epsilonproteobacteria, Bacteroidetes and Firmicutes. Moreover, warming disrupted nutrient exchange and molecular interactions in the sponge holobiont, accompanied by stimulation of virulence activity and anaerobic metabolism including denitrification and dissimilatory reduction of nitrate and sulfate to promote sponge necrosis. Particularly, the interaction between acidification and warming alleviated the negative effects of warming and enhanced the Rhodobacteraceae-driven ethylmalonyl-CoA pathway and sulfur-oxidizing multienzyme system. The microbiome could not recover during the experiment period after warming or combined stress was removed. This study suggests that warming or combined warming and acidification will irreversibly destabilize the S. vesparium microbial community structure and function, and provides insight into the molecular mechanisms of the interactive effects of acidification and warming on the sponge microbiome.
Collapse
Affiliation(s)
- Guangjun Chai
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinlong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Dinçtürk E, Öndes F, Leria L, Maldonado M. Mass mortality of the keratose sponge Sarcotragus foetidus in the Aegean Sea (Eastern Mediterranean) correlates with proliferation of Vibrio bacteria in the tissues. Front Microbiol 2023; 14:1272733. [PMID: 38107859 PMCID: PMC10722426 DOI: 10.3389/fmicb.2023.1272733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/12/2023] [Indexed: 12/19/2023] Open
Abstract
In the last two decades, episodes of mass mortality in benthic communities have often been associated with climatic anomalies, but the ultimate mechanisms through which they lead to death have rarely been identified. This study reports a mass mortality of wild sponges in the Aegean Sea (Turkey, Eastern Mediterranean), which affected the keratose demosponge Sarcotragus foetidus in September 2021. We examined the occurrence of thermo-dependent bacteria of the genus Vibrio in the sponges, identified through 16S rRNA of colonies isolated from sponge tissue in specific culturing media. Six Vibrio sequences were identified from the sponges, three of them being putatively pathogenic (V. fortis, V. owensii, V. gigantis). Importantly, those Vibrios were isolated from only tissues of diseased sponges. In contrast, healthy individuals sampled in both summer and winter led to no Vibrio growth in laboratory cultures. A 50 years record of sea surface temperature (SST) data for the study area reveals a progressive increase in temperature from 1970 to 2021, with values above 24°C from May to September 2021, reaching an absolute historical maximum of 28.9°C in August 2021. We hypothesize that such elevated SST values maintained for several months in 2021 promoted proliferation of pathogenic Vibrio species (thermo-dependent bacteria) in S. foetidus, triggering or aggravating the course of sponge disease. Thus, vibrioisis emerges as one of the putative mechanisms through which global water warming in the Mediterranean Sea translates into sponge mortality. The historical time course of temperature data for the studied area in the Aegean Sea predicts that recurrent waves of elevated SST are likely to occur in the coming summers. If so, recurrent disease may eventually eliminate this abundant sponge from the sublittoral in the midterm, altering the original bathymetric distribution of the species and compromising its ecological role.
Collapse
Affiliation(s)
- Ezgi Dinçtürk
- Fish Disease and Biotechnology Laboratory, Department of Aquaculture, Faculty of Fisheries, Izmir Katip Celebi University, Izmir, Türkiye
| | - Fikret Öndes
- Fisheries Laboratory, Department of Fisheries and Seafood Processing Technology, Faculty of Fisheries, Izmir Katip Celebi University, Izmir, Türkiye
- Department of Marine Sciences and Applied Biology, Faculty of Science, University of Alicante, Alicante, Spain
| | - Laia Leria
- Department of Aquatic Ecology, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Girona, Spain
| | - Manuel Maldonado
- Department of Aquatic Ecology, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Girona, Spain
| |
Collapse
|