1
|
Zhu Y, Li R, Yan S, Li Y, Xie S. Copper contamination determined the impact of phages on microbially-driven nitrogen cycling in coastal wetland sediments. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137870. [PMID: 40056518 DOI: 10.1016/j.jhazmat.2025.137870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/10/2025]
Abstract
Phages have garnered increasing attention due to their potential roles in biogeochemical cycling. However, their impacts on nitrogen cycling have primarily been inferred from the presence of putative auxiliary metabolic genes (AMGs) and the virus-host linkage, despite of very limited direct experimental evidence. In this study, a series of microcosms were established with the inoculation of either native or non-native phages to simulate coastal wetlands with different phage sources and different levels of copper (Cu) contamination. Metagenomics and metatranscriptomics were combined to reveal phages' regulation on microbially-driven nitrogen cycling and to explore how the effects were mediated by Cu stress. Phages significantly impacted denitrification-related genes, with their effects depending on Cu level. Phages inhibited nirK-type denitrification under Cu stress but led to up-regulation of nirS gene in the treatments without Cu addition. Non-native phages also promoted the transcription of genes related to nitrogen assimilation and organic nitrogen transformation. Detection of viral AMGs involved in glutamate synthesis suggested that horizontal gene transfer may be a crucial pathway for phages to facilitate microbial nitrogen uptake. Overall, these findings enhance the understanding of phages' impact on biogeochemical metabolism in coastal wetland, offering novel insights into the links of phages' regulation on microbial nitrogen cycling with Cu stress.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ruili Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Guangdong Mangrove Engineering Technology Research Center, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yangyang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Zhu Y, Yan S, Chen X, Li Y, Xie S. Thallium spill shifts the structural and functional characteristics of viral communities with different lifestyles in river sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174531. [PMID: 38971241 DOI: 10.1016/j.scitotenv.2024.174531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Thallium (Tl), a highly toxic heavy metal, can affect microbial community, while little is known about its effect on viral community. The present study investigated the variation of viral communities, as well as their interactions with microbial hosts under Tl stress. Tl in sediments significantly altered the composition and diversity of the viral communities, but showed no significant links with the prokaryotic communities, which may reveal a potential discrepancy in the sensitivity of the viral and prokaryotic communities to heavy metal stress. Auxiliary metabolic genes (AMGs) involved in denitrification, methane oxidation and organic sulfur transformation were enriched at T1-contaminated sites, while the abundance of AMGs related to methanogenesis and sulfate reduction were higher at pristine sites. Specially, the enrichment of AMGs involved in assimilatory sulfate reduction in Tl-contaminated sites could possibly reduce Tl bioavailability by enhancing the microbially-driven sulfur cycling to generate sulfides that could be complexed with Tl. Moreover, there was a significantly positive correlation between virus-carrying metal resistant genes and the sedimentary Tl concentration, implying that Tl contamination might enhance the metal resistant potential of the viruses. Serving as the functional gene reservoir, the response of viral AMGs to Tl stress could represent a potential pathway for microorganisms to be adapted to the metal-polluted environments. Our study provided novel insights into the impact of Tl spill on viral communities, shedding light on functional characteristics and the links of virus-host interaction with Tl level.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yangyang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Zhu Y, Li R, Yan S, Chen X, Cen S, Xie S. Habitat- and lifestyle-dependent structural and functional characteristics of viruses in mangrove wetlands of different functional zonings. ENVIRONMENTAL RESEARCH 2024; 252:119070. [PMID: 38710431 DOI: 10.1016/j.envres.2024.119070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Mangrove wetlands, as one of the natural ecosystems with the most ecological services, have garnered widespread attention about their microbial driven biogeochemical cycling. Urbanization have led to different spatial patterns of environmental conditions and microbial communities in mangroves. However, viruses, as the pivotal drivers of biogeochemical cycling in mangroves, remain inadequately explored in terms of how their ecological potential and complex interactions with host respond to functional zonings. To address this knowledge gap, we conducted a comprehensive investigation on the structural and functional properties of temperate and lytic viruses in mangrove wetlands from different functional zonings by jointly using high-throughput sequencing, prokaryotic and viral metagenomics. Multiple environmental factors were found to significantly influence the taxonomic and functional composition, as well as lysogen-lysis decision-making of mangrove viruses. Furthermore, enriched auxiliary metabolic genes (AMGs) involved in methane, nitrogen and sulfur metabolism, and heavy metal resistance were unveiled in mangrove viruses, whose community composition was closely related to lifestyle and host. The virus-host pairs with different lifestyles were also discovered to react to environmental changes in different ways, which provided an empirical evidence for how virus and bacteria dynamics were specific to viral lifestyles in nature. This study expands our comprehension of the intricate interactions among virus, prokaryotic host and the environment in mangrove wetlands from multiple perspectives, including viral lifestyles, virus-host interactions, and habitat dependence. Importantly, it provides a new ecological perspective on how mangrove viruses are adapted to the stress posed by urbanization.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Ruili Li
- School of Environment and Energy, Peking University, Shenzhen, 518055, China; Guangdong Mangrove Engineering Technology Research Center, Peking University, Shenzhen, 518055, China.
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shipeng Cen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Wang Y, Gao Y, Wang X, Lin Y, Xu G, Yang F, Ni K. Insights into the phage community structure and potential function in silage fermentation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120837. [PMID: 38593737 DOI: 10.1016/j.jenvman.2024.120837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
The virus that infects bacteria known as phage, plays a crucial role in the biogeochemical cycling of nutrients. However, the community structure and potential functions of phages in silage fermentation remain largely unexplored. In this study, we utilized viral metagenomics (viromics) to investigate the types, lifestyles, functions, and nutrient utilization patterns of phages in silage. Our findings indicated a high prevalence of annotated phages belonging to Caudovirales and Geplafuvirales, as well as unclassified phages in silage. The predominant host types for these phages were Campylobacterales and Enterobacterales. Virulent phages dominated the silage environment due to their broader range of hosts and enhanced survival capabilities. All identified phages present in silage were found to be non-pathogenic. Although temperate and virulent phages carried distinct genes associated with nutrient cycling processes, the shared genes (prsA) involved in carbon metabolism underscore the potential significance of phages in regulating carbon metabolism in silage. Overall, our findings provide a valuable foundation for further exploring the complex interactions between phages and microorganisms in regulating silage fermentation quality.
Collapse
Affiliation(s)
- Yuan Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yu Gao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Xin Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Gang Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China; College of Animal Science, Guizhou University, Guiyang, 550025, PR China.
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|