1
|
Bebesi T, Pálmai M, Szigyártó IC, Gaál A, Wacha A, Bóta A, Varga Z, Mihály J. Surface-enhanced infrared spectroscopic study of extracellular vesicles using plasmonic gold nanoparticles. Colloids Surf B Biointerfaces 2025; 246:114366. [PMID: 39531836 DOI: 10.1016/j.colsurfb.2024.114366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Extracellular vesicles (EVs), sub-micrometer lipid-bound particles released by most cells, are considered a novel area in both biology and medicine. Among characterization methods, infrared (IR) spectroscopy, especially attenuated total reflection (ATR), is a rapidly emerging label-free tool for molecular characterization of EVs. The relatively low number of vesicles in biological fluids (∼1010 particle/mL), however, and the complex content of the EVs' milieu (protein aggregates, lipoproteins, buffer molecules) might result in poor signal-to-noise ratio in the IR analysis of EVs. Exploiting the increment of the electromagnetic field at the surface of plasmonic nanomaterials, surface-enhanced infrared spectroscopy (SEIRS) provides an amplification of characteristic IR signals of EV samples. Negatively charged citrate-capped and positively charged cysteamine-capped gold nanoparticles with around 10 nm diameter were synthesized and tested with blood-derived EVs. Both types of gold nanoparticles contributed to an enhancement of the EVs' IR spectroscopic signature. Joint evaluation of UV-Vis and IR spectroscopic results, supported by FF-TEM images, revealed that proper interaction of gold nanoparticles with EVs is crucial, and an aggregation or clustering of gold nanoparticles is necessary to obtain the SEIRS effect. Positively charged gold nanoparticles resulted in higher enhancement, probably due to electrostatic interaction with EVs, commonly negatively charged.
Collapse
Affiliation(s)
- Tímea Bebesi
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary; Hevesy György PhD School of Chemistry, Eötvös Lóránd University, Pázmány Péter sétány 1/A, Budapest 1117, Hungary
| | - Marcell Pálmai
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - Imola Csilla Szigyártó
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - Anikó Gaál
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - András Wacha
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - Attila Bóta
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary; Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary; Department of Chemistry, Eszterházy Károly Catholic University, Leányka u. 6, Eger 3300, Hungary.
| |
Collapse
|
2
|
Premachandran S, Shreshtha I, Venkatakrishnan K, Das S, Tan B. Detection of brain metastases from blood using Brain nanoMET sensor: Extracellular vesicles as a dynamic marker for metastatic brain tumors. Biosens Bioelectron 2025; 269:116968. [PMID: 39586755 DOI: 10.1016/j.bios.2024.116968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Brain metastases account for a significant number of cancer-related deaths with poor prognosis and limited treatment options. Current diagnostic methods have limitations in resolution, sensitivity, inability to differentiate between primary and metastatic brain tumors, and invasiveness. Liquid biopsy is a promising non-invasive alternative; however, current approaches have shown limited efficacy for diagnosing brain metastases due to biomarker instability and low levels of detectable tumor-specific biomarkers. This study introduces an innovative liquid biopsy technique using extracellular vesicles (EVs) as a biomarker for brain metastases, employing the Brain nanoMET sensor. The sensor was fabricated through an ultrashort femtosecond laser ablation process and provides excellent surface-enhanced Raman Scattering functionality. We developed an in vitro model of metastatic tumors to understand the tumor microenvironment and secretomes influencing brain metastases from breast and lung cancers. Molecular profiling of EVs derived from brain-seeking metastatic tumors revealed unique, brain-specific signatures, which were also validated in the peripheral circulation of brain metastasis patients. Compared to primary brain tumor EVs, we also observed an upregulation of PD-L1 marker in the metastatic EVs. A machine learning model trained on these EV molecular profiles achieved 97% sensitivity in differentiating metastatic brain cancer from primary brain cancer, with 94% accuracy in predicting the primary tissue of origin for breast metastasis and 100% accuracy for lung metastasis. The results from this pilot validation suggest that this technique holds significant potential for improving metastasis diagnosis and targeted treatment strategies for brain metastases, addressing a critical unmet need in neuro-oncology.
Collapse
Affiliation(s)
- Srilakshmi Premachandran
- Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership Between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Ishita Shreshtha
- Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership Between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership Between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Sunit Das
- St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Institute of Medical Sciences, Neurosurgery, University of Toronto, Toronto, Ontario, M5T 1P5, Canada
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership Between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada; Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
| |
Collapse
|
3
|
Gristina V, Bazan V, Barraco N, Taverna S, Manno M, Raccosta S, Carreca AP, Bono M, Bazan Russo TD, Pepe F, Pisapia P, Incorvaia L, Badalamenti G, Troncone G, Malapelle U, Santini D, Russo A, Galvano A. On-treatment dynamics of circulating extracellular vesicles in the first-line setting of patients with advanced non-small cell lung cancer: the LEXOVE prospective study. Mol Oncol 2025. [PMID: 39780749 DOI: 10.1002/1878-0261.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 01/11/2025] Open
Abstract
Extracellular vesicle (EV) monitoring can complement clinical assessment of cancer response. In this study, patients with advanced non-small cell lung cancer (NSCLC) undergoing osimertinib, alectinib, pembrolizumab or platinum-based chemotherapy ± pembrolizumab were enrolled. EVs were characterized using Bradford assay to quantify the circulating cell-free EV protein content (cfEV), and dynamic light scattering to assess Rayleigh ratio excess at 90°, z-averaged hydrodynamic diameter and polydispersity index. A total of 135 plasma samples from 27 patients were collected at baseline (T0) and at the first radiological restaging (T1). A ∆cfEV < 20% was associated with improved median progression-free survival (mPFS) in responders versus non-responders. Specifically, cfEV responders on pembrolizumab had a significantly better mPFS (25.2 months) compared to those on chemotherapy plus pembrolizumab (6.1 months). EGFR-positive cfEV responders also experienced longer mPFS compared to cfEV non-responders (35.1 months, 95% CI: 14.9-35.5 vs. 20.8 months, 95% CI: 11.2-30.4). This study suggested that monitoring circulating EV could provide valuable insights into treatment efficacy in NSCLC, particularly for patients receiving pembrolizumab or osimertinib.
Collapse
Affiliation(s)
- Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Viviana Bazan
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Italy
| | - Nadia Barraco
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR) of Italy, Palermo, Italy
| | - Mauro Manno
- Institute of Biophysics (IBF), National Research Council (CNR) of Italy, Palermo, Italy
| | - Samuele Raccosta
- Institute of Biophysics (IBF), National Research Council (CNR) of Italy, Palermo, Italy
| | - Anna Paola Carreca
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
- Ri.MED Foundation, Palermo, Italy
| | - Marco Bono
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Italy
| | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | | | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Italy
| | - Daniele Santini
- Medical Oncology A, Policlinico Umberto 1, La Sapienza Università Di Roma, Italy
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| |
Collapse
|
4
|
Gurjar S, Bhat A R, Upadhya R, Shenoy RP. Extracellular vesicle-mediated approaches for the diagnosis and therapy of MASLD: current advances and future prospective. Lipids Health Dis 2025; 24:5. [PMID: 39773634 PMCID: PMC11705780 DOI: 10.1186/s12944-024-02396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an asymptomatic, multifaceted condition often associated with various risk factors, including fatigue, obesity, insulin resistance, metabolic syndrome, and sleep apnea. The increasing burden of MASLD underscores the critical need for early diagnosis and effective therapies. Owing to the lack of efficient therapies for MASLD, early diagnosis is crucial. Consequently, noninvasive biomarkers and imaging techniques are essential for analyzing disease risk and play a pivotal role in the global diagnostic process. The use of extracellular vesicles has emerged as promising for early diagnosis and therapy of various liver ailments. Herein, a comprehensive summary of the current diagnostic modalities for MASLD is presented, highlighting their advantages and limitations while exploring the potential of extracellular vesicles (EVs) as innovative diagnostic and therapeutic tools for MASLD. With this aim, this review emphasizes an in-depth understanding of the origin of EVs and the pathophysiological alterations of these ectosomes and exosomes in various liver diseases. This review also explores the therapeutic potential of EVs as key components in the future management of liver disease. The dual role of EVs as biomarkers and their therapeutic utility in MASLD essentially highlights their clinical integration to improve MASLD diagnosis and treatment. While EV-based therapies are still in their early stages of development and require substantial research to increase their therapeutic value before they can be used clinically, the diagnostic application of EVs has been extensively explored. Moving forward, developing diagnostic devices leveraging EVs will be crucial in advancing MASLD diagnosis. Thus, the literature summarized provides suitable grounds for clinicians and researchers to explore EVs for devising diagnostic and treatment strategies for MASLD.
Collapse
Affiliation(s)
- Swasthika Gurjar
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Ramanarayana Bhat A
- Manipal Centre for Biotherapeutics Research, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Raghavendra Upadhya
- Manipal Centre for Biotherapeutics Research, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| | - Revathi P Shenoy
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| |
Collapse
|
5
|
Ma Y, Dong S, Grippin AJ, Teng L, Lee AS, Kim BYS, Jiang W. Engineering therapeutical extracellular vesicles for clinical translation. Trends Biotechnol 2025; 43:61-82. [PMID: 39227240 PMCID: PMC11717644 DOI: 10.1016/j.tibtech.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Cell-based therapies are revolutionizing medicine by replacing or modifying dysfunctional cells with healthy cells or engineered derivatives, offering disease reversal and cure. One promising approach is using cell-derived extracellular vesicles (EVs), which offer therapeutic benefits similar to cell transplants without the biosafety risks. Although EV applications face challenges like limited production, inadequate therapeutic loading, and poor targeting efficiency, recent advances in bioengineering have enhanced their effectiveness. Herein, we summarize technological breakthroughs in EV bioengineering over the past 5 years, highlighting their improved therapeutic functionalities and potential clinical prospects. We also discuss biomanufacturing processes, regulation, and safety considerations for bioengineered EV therapies, emphasizing the significance of establishing robust frameworks to ensure translation capability, safety, and therapeutic effectiveness for successful clinical adoption.
Collapse
Affiliation(s)
- Yifan Ma
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adam J Grippin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, China
| | - Andrew S Lee
- Peking University Shenzhen Graduate School, Shenzhen, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Kang SK, Gulati R, Moise N, Hur C, Elkin EB. Multi-Cancer Early Detection Tests: State of the Art and Implications for Radiologists. Radiology 2025; 314:e233448. [PMID: 39807974 DOI: 10.1148/radiol.233448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Multi-cancer early detection (MCED) tests are already being marketed as noninvasive, convenient opportunities to test for multiple cancer types with a single blood sample. The technology varies-involving detection of circulating tumor DNA, fragments of DNA, RNA, or proteins unique to each targeted cancer. The priorities and tradeoffs of reaching diagnostic resolution in the setting of possible false positives and negatives remain under active study. Given the well-established role of imaging in lesion detection and characterization for most cancers, radiologists have an essential role to play in selecting diagnostic pathways, determining the validity of test results, resolving false-positive MCED test results, and evaluating tradeoffs for clinical policy. Appropriate access to and use of imaging tests will also factor into clinical guidelines. Thus, all clinicians potentially involved with MCED tests for cancer screening will need to weigh the benefits and harms of MCED testing, including consideration of how the tests will be used alongside or in place of other screening options, how diagnostic confirmation tests should be selected, and what the implications are for policy and reimbursement decisions. Further, patients will need regular support to make informed decisions about screening using MCED tests in the context of their personal cancer risks, health-related values, and access to care.
Collapse
Affiliation(s)
- Stella K Kang
- From the Departments of Radiology and Population Health, New York University Langone Medical Center, New York, NY (S.K.K.); Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Wash (R.G.); Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (N.M., C.H.); Herbert Irving Comprehensive Cancer Center, New York, NY (C.H., E.B.E.); and Department of Health Policy and Management, Mailman School of Public Health, Columbia University, New York, NY (E.B.E.)
| | - Roman Gulati
- From the Departments of Radiology and Population Health, New York University Langone Medical Center, New York, NY (S.K.K.); Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Wash (R.G.); Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (N.M., C.H.); Herbert Irving Comprehensive Cancer Center, New York, NY (C.H., E.B.E.); and Department of Health Policy and Management, Mailman School of Public Health, Columbia University, New York, NY (E.B.E.)
| | - Nathalie Moise
- From the Departments of Radiology and Population Health, New York University Langone Medical Center, New York, NY (S.K.K.); Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Wash (R.G.); Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (N.M., C.H.); Herbert Irving Comprehensive Cancer Center, New York, NY (C.H., E.B.E.); and Department of Health Policy and Management, Mailman School of Public Health, Columbia University, New York, NY (E.B.E.)
| | - Chin Hur
- From the Departments of Radiology and Population Health, New York University Langone Medical Center, New York, NY (S.K.K.); Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Wash (R.G.); Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (N.M., C.H.); Herbert Irving Comprehensive Cancer Center, New York, NY (C.H., E.B.E.); and Department of Health Policy and Management, Mailman School of Public Health, Columbia University, New York, NY (E.B.E.)
| | - Elena B Elkin
- From the Departments of Radiology and Population Health, New York University Langone Medical Center, New York, NY (S.K.K.); Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Wash (R.G.); Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (N.M., C.H.); Herbert Irving Comprehensive Cancer Center, New York, NY (C.H., E.B.E.); and Department of Health Policy and Management, Mailman School of Public Health, Columbia University, New York, NY (E.B.E.)
| |
Collapse
|
7
|
Hamilton S, Evans-Dutson S, Mira JLM, Heller MJ, Ibsen SD. A Single Microfluidic Device Approach to Direct Isolation, Purification, and Amplification of cfDNA from Undiluted Plasma. SENSORS AND ACTUATORS. B, CHEMICAL 2025; 422:136374. [PMID: 39525360 PMCID: PMC11542744 DOI: 10.1016/j.snb.2024.136374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Circulating cell free DNA (cfDNA) is a valuable source of biomarkers for a range of medical applications including detection and monitoring of diseases. Currently, cfDNA sequence analysis must take place in a laboratory setting, due to the multiple steps required for processing including collection, purification, amplification, and analysis. Developing a point-of-care test system that combines these steps would simplify DNA processing thereby increasing diagnostic screening accessibility and enabling real-time monitoring for individual patients. Here, we have developed a system that combines multiple cfDNA processing steps into a single microfluidic-based device. This includes cfDNA collection directly from undiluted human plasma followed by purification and on chip amplification. A microelectrode array embedded within the microfluidic chip collected cfDNA through the creation of dielectrophoretic (DEP) forces. DEP utilizes differences in dielectric properties between cfDNA and plasma to preferentially induce a force on cfDNA. We then achieved on-chip amplification of collected DNA by designing a thermal cycling system to enable polymerase chain reaction (PCR) on the chip. This successfully consolidated the most labor-intensive steps of collection, purification, and amplification into a single device. Compared to elution of cfDNA for off-chip amplification, our on-chip PCR method improved the lower limit of detection by 3-fold and improved the total DNA yield by 5-fold. Furthermore, we demonstrate its clinical diagnostic potential by detecting KRAS mutations from a pancreatic ductal adenocarcinoma patient using only 60 μL of plasma. This paves the way for future development of a fully self-contained system facilitating the rapid detection of mutations in cfDNA.
Collapse
Affiliation(s)
- Sean Hamilton
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, United States
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, United States
| | - Sara Evans-Dutson
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, United States
| | - Jose Luis Montoya Mira
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, United States
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, United States
| | - Michael J. Heller
- Department of NanoEngineering, University of California San Diego, San Diego, CA 92093, United States
| | - Stuart D. Ibsen
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, United States
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, United States
| |
Collapse
|
8
|
Sharma H, Yadav V, Burchett A, Shi T, Senapati S, Datta M, Chang HC. A Mem-dELISA platform for dual color and ultrasensitive digital detection of colocalized proteins on extracellular vesicles. Biosens Bioelectron 2025; 267:116848. [PMID: 39413723 PMCID: PMC11543507 DOI: 10.1016/j.bios.2024.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/29/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Accurate, multiplex, and ultrasensitive measurement of different colocalized protein markers on individual tumor-derived extracellular vesicles (EVs) and dimerized proteins with multiple epitopes could provide insights into cancer heterogeneity, therapy management and early diagnostics that cannot be extracted from bulk methods. However, current digital protein assays lack certain features to enable robust colocalization, including multi-color detection capability, large dynamic range, and selectivity against background proteins. Here, we report a lithography-free, inexpensive (< $0.1) and ultrasensitive dual-color Membrane Digital ELISA (Mem-dELISA) platform by using track-etched polycarbonate (PCTE) membranes to overcome these shortcomings. Their through-pores remove air bubbles through wicking before they are sealed on one side by adhesion to form microwells. Immunomagnetic bead-analyte complexes and substrate solution are then loaded into the microwells from the opposite side, with >80% loading efficiency, before sealing with oil. This enables duplex digital protein colorimetric assay with beta galactosidase and alkaline phosphatase enzymes. The platform achieves 5 logs of dynamic range with a limit of detection of 10 aM for both Biotinylated β-galactosidase (B-βG) and Biotin Alkaline Phosphatase Conjugated (B-ALP) proteins. We demonstrate its potential by showing that a higher dosage of paclitaxel suppresses EpCAM-positive EVs but not GPC-1 positive EVs from breast cancer cells, a decline in chemo-resistance that cannot be detected with Western blot analysis of cell lysate. The Mem-dELISA is poised to empower researchers to conduct ultrasensitive, high throughput protein colocalization studies for disease diagnostics, treatment monitoring and biomarker discovery.
Collapse
Affiliation(s)
- Himani Sharma
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Vivek Yadav
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Alice Burchett
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tiger Shi
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
9
|
Kaiglová A, Hockicková P, Bárdyová Z, Reháková R, Melnikov K, Kucharíková S. The chemotactic response of Caenorhabditis elegans represents a promising tool for the early detection of cancer. Discov Oncol 2024; 15:817. [PMID: 39707061 DOI: 10.1007/s12672-024-01721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024] Open
Abstract
The nematode Caenorhabditis elegans, with its highly sensitive olfactory system, has emerged as a promising tool for testing chemotaxis. In the field of cancer diagnostics, there is a growing interest in the development of non-invasive screening methods for the detection of volatile organic compounds in a patient's urine. The objective of this study was to contribute to the existing body of knowledge by evaluating the ability of a Caenorhabditis elegans-based chemotaxis assay to discriminate between urine samples from healthy individuals and patients diagnosed with breast or colon cancer. Following synchronization of the developmental stages of C. elegans, nematodes were exposed to the urine of cancer patients and healthy individuals. Subsequently, chemotactic indices were calculated for each urine sample. Our results demonstrated a statistically significant difference in the chemotactic response of C. elegans to urine samples from cancer patients compared to healthy volunteers (p < 0.001). Furthermore, the test demonstrated promising diagnostic utility, with a sensitivity of 96%, a specificity of 62%, and a detection rate of 73% among patients with breast cancer and a sensitivity of 100%, a specificity of 62%, and a detection rate of 72% among those with colon cancer. Our findings expand on previous observations, confirming the remarkable sensitivity of C. elegans hermaphrodites to discriminating cancer-related volatile organic compounds in urine samples.
Collapse
Affiliation(s)
- Alžbeta Kaiglová
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné Námestie 1, 91843, Trnava, Slovakia
| | - Patrícia Hockicková
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné Námestie 1, 91843, Trnava, Slovakia
| | - Zuzana Bárdyová
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné Námestie 1, 91843, Trnava, Slovakia
| | - Radka Reháková
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné Námestie 1, 91843, Trnava, Slovakia
| | - Kamila Melnikov
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné Námestie 1, 91843, Trnava, Slovakia
| | - Soňa Kucharíková
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné Námestie 1, 91843, Trnava, Slovakia.
| |
Collapse
|
10
|
Zihan R, Jingsi C, Lingwen D, Xin L, Yan Z. Exosomes in esophageal cancer: a promising frontier for liquid biopsy in diagnosis and therapeutic monitoring. Front Pharmacol 2024; 15:1459938. [PMID: 39741631 PMCID: PMC11685219 DOI: 10.3389/fphar.2024.1459938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Esophageal cancer is a common and lethal digestive system malignancy, and both treatment efficacy and patient survival rates face significant challenges. In recent years, exosomes have emerged as crucial mediators of intercellular communication, demonstrating tremendous clinical potential, particularly in the diagnosis, treatment, and prognostic evaluation of esophageal cancer. These exosomes not only serve as biomarkers for early diagnosis and prognosis but also modulate tumor growth, metastasis, and drug resistance by delivering bioactive molecules. Importantly, exosomes can act as carriers for esophageal cancer-related therapeutic agents, optimizing gene therapy strategies to enhance efficacy while reducing toxicity and side effects. Despite facing challenges in clinical applications such as purification, enrichment, and standardization of analytical methods, exosomes maintain broad prospects for application in esophageal cancer treatment, with the potential to significantly improve patient outcomes and quality of life. This review focuses on the innovative role of exosomes in the early diagnosis of esophageal cancer, exploring their application value and safety in disease monitoring and assessment of treatment response. Furthermore, this study outlines the challenges and limitations of transitioning exosome research from basic studies to clinical applications, as well as potential solutions and future research directions to address these obstacles.
Collapse
Affiliation(s)
- Ren Zihan
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Cao Jingsi
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ding Lingwen
- Department of Vaccination Clinic, Xiangyang Center for Disease Control and Prevention, Xiangyang, Hubei, China
| | - Liu Xin
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhang Yan
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Hu A, Zhang J, Zhang L, Wang Z, Dai J, Lin L, Yan G, Shen F, Shen H. Efficient Cancer Biomarker Screening and Multicancer Detection Enabled by a Multidimensional Serum Proteomic Strategy. Anal Chem 2024; 96:19294-19303. [PMID: 39570115 DOI: 10.1021/acs.analchem.4c03006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Biomarker discovery and application are paramount for the early diagnosis, treatment, and prognosis assessment of diseases. Novel proteomic strategies have been developed for high-efficiency biomarker screening. However, evaluating various strategies and applying them for the in-depth mining of biomarkers from blood need to be elucidated. Herein, we systematically evaluated the technical characteristics of three representative biomarker discovery strategies, including the most popular DIA proteomics, and two promising strategies targeting the cancer-secreted proteome or extracellular vesicle proteome, and integrated them into one multidimensional serum proteomic strategy. The results showed that the three strategies each have unique characteristics in terms of sensitivity, reproducibility, and protein coverage and are highly complementary in biomarker discovery. The integrated multidimensional serum proteomic strategy achieves deep and comprehensive coverage of the serum proteome, discovers more cancer markers, and helps achieve a more accurate multicancer (breast, lung, stomach, liver, and colorectum) diagnosis with 87.5% localization accuracy.
Collapse
Affiliation(s)
- Anqi Hu
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jiayi Zhang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhenxin Wang
- Department of Laboratory Medicine of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiawei Dai
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ling Lin
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guoquan Yan
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Fenglin Shen
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Huali Shen
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Winn-Deen ES, Bortolin LT, Gusenleitner D, Biette KM, Copeland K, Gentry-Maharaj A, Apostolidou S, Couvillon AD, Salem DP, Banerjee S, Grosha J, Zabroski IO, Sedlak CR, Byrne DM, Hamzeh BF, King MS, Cuoco LT, Duff PA, Manning BJ, Hawkins TB, Mattoon D, Guettouche T, Skates SJ, Jamieson A, McAlpine JN, Huntsman D, Menon U. Improving Specificity for Ovarian Cancer Screening Using a Novel Extracellular Vesicle-Based Blood Test: Performance in a Training and Verification Cohort. J Mol Diagn 2024; 26:1129-1148. [PMID: 39326669 PMCID: PMC11600309 DOI: 10.1016/j.jmoldx.2024.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
The low incidence of ovarian cancer (OC) dictates that any screening strategy needs to be both highly sensitive and highly specific. This study explored the utility of detecting multiple colocalized proteins or glycosylation epitopes on single tumor-associated extracellular vesicles from blood. The novel Mercy Halo Ovarian Cancer Test (OC Test) uses immunoaffinity capture of tumor-associated extracellular vesicles, followed by proximity-ligation real-time quantitative PCR to detect combinations of up to three biomarkers to maximize specificity, and measures multiple combinations to maximize sensitivity. A high-grade serous carcinoma (HGSC) case-control training set of EDTA plasma samples from 397 women was used to lock down the test design, the data interpretation algorithm, and the cutoff between cancer and noncancer. Performance was verified and compared with cancer antigen 125 in an independent blinded case-control set of serum samples from 390 women (132 controls, 66 HGSC, 83 non-HGSC OC, and 109 benign). In the verification study, the OC Test showed a specificity of 97.0% (128/132; 95% CI, 92.4%-99.6%), a HGSC sensitivity of 97.0% (64/66; 95% CI, 87.8%-99.2%), and an area under the curve of 0.97 (95% CI, 0.93-0.99) and detected 73.5% (61/83; 95% CI, 62.7%-82.6%) of the non-HGSC OC cases. This test exhibited fewer false positives in subjects with benign ovarian tumors, nonovarian cancers, and inflammatory conditions when compared with cancer antigen 125. The combined sensitivity and specificity of this new test suggests that it may have potential in OC screening.
Collapse
Affiliation(s)
| | | | | | | | | | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute for Clinical Trials and Methodology, University College London, London, United Kingdom; Department of Women's Cancer, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Sophia Apostolidou
- MRC Clinical Trials Unit, Institute for Clinical Trials and Methodology, University College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Steven J Skates
- MGH Biostatistics, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Amy Jamieson
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, University of British Columbia and BC Cancer, Vancouver, British Columbia, Canada
| | - Jessica N McAlpine
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, University of British Columbia and BC Cancer, Vancouver, British Columbia, Canada
| | - David Huntsman
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, University of British Columbia and BC Cancer, Vancouver, British Columbia, Canada; Department of Pathology, University of British Columbia and BC Cancer, Vancouver, British Columbia, Canada
| | - Usha Menon
- MRC Clinical Trials Unit, Institute for Clinical Trials and Methodology, University College London, London, United Kingdom
| |
Collapse
|
13
|
Lewis JM, Harris DA, Kosmatka J, Mikrut E, Evenson J, Balcer HI, Dhani H, Hinestrosa JP, Rissman R, Billings PR. Single step capture and assessment of multiple plasma extracellular vesicle biomarkers in Alzheimer's disease detection. J Alzheimers Dis 2024; 102:659-669. [PMID: 39533951 DOI: 10.1177/13872877241291964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND Blood tests for Alzheimer's disease (AD) that measure biomarkers related to neuropathology have demonstrated to be useful, minimally-invasive ways to identify patients for screening into clinical trials. While some AD biomarkers can be detected in plasma, greater sensitivity is needed to make plasma AD tests more effective. Extracellular vesicles (EVs) in plasma carry AD-related biomarkers from the brain and could offer a concentrated source of brain-related biomarkers, though the methodological complexities involved in isolating plasma EVs have hampered its validation for clinical use. OBJECTIVE To explore the feasibility and effectiveness of developing blood tests for AD utilizing extracellular vesicle-bound protein biomarkers. METHODS We developed a simplified method for isolating EVs directly from plasma using an alternating current electrokinetic (ACE) microchip. No sample pretreatment steps were needed. Protein biomarkers on the EVs were detected by adding fluorescent antibodies to the plasma samples before capture by the chip. This allowed measurement of EV biomarker levels directly on the chip. RESULTS AD or non-AD control plasma was measured for ten different AD-related biomarkers. EV-associated NCAM1, pTau231, α-synuclein, and TDP-43 levels were able to distinguish a group of 10 AD, 10 mild cognitive impairment (MCI), and 10 non-AD subjects. pTau231 was different between AD and non-AD (p = 0.0300) and α-synuclein differentiated AD from MCI (p = 0.0148). CONCLUSIONS This study shows how ACE microfluidic chip technology can help differentiate AD and MCI patients from non-AD controls with clinical relevance. This work also highlights the important diagnostic role of plasma EV biomarkers in neurodegenerative disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Robert Rissman
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of the University of Southern California, San Diego, CA, USA
| | | |
Collapse
|
14
|
Samimi G, Temkin S, Weil C, Han P, LeeVan E, Rubinstein W, Swigart T, Caban S, Dent K, Minasian L. Perceptions of Multicancer Detection Tests Among Primary Care Physicians and Laypersons: A Qualitative Study. Cancer Med 2024; 13:e70281. [PMID: 39475101 PMCID: PMC11523003 DOI: 10.1002/cam4.70281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/31/2024] [Accepted: 09/20/2024] [Indexed: 11/02/2024] Open
Abstract
INTRODUCTION Multicancer detection tests (MCDs) are blood-based tests designed to detect multiple cancer types. It is currently unclear whether these cancer screening tests improve mortality. To understand awareness of MCDs among providers and patients, as well as explore how they perceive the benefits, harms, and acceptability of MCDs, we have undertaken a focus group study in primary care physicians (PCPs) and laypersons to explore knowledge, attitudes, and expectations of cancer screening using MCDs. METHODS We conducted six focus groups with 45 PCP participants and 12 focus groups with 80 layperson participants. Participants were identified via a consumer research firm and found eligible following the completion of a screener survey. Moderators used a semi-structured guide containing open-ended questions and prompts to facilitate the discussion. Recordings were transcribed and coded line by line using a codebook developed based on questions and emerging discussion concepts, and emergent themes were identified. RESULTS Both PCP and layperson participants felt the that benefits of MCDs included ease of use and potential ability to detect cancers early. However, they felt that additional data is needed to overcome some of the concerns related to MCDs. PCP participants expressed concerns related to lack of practice guidelines, cost of diagnostic follow-ups, privacy and insurance issues, fear/anxiety related to confirmation of MCD results, and malpractice liability related to perceived false negative test results. Layperson participants expressed concerns related to costs, insurance coverage, and privacy, as well as anxiety over the confirmation of a positive test result. CONCLUSIONS There is a major need for more rigorous data regarding MCDs to inform the development of guidelines for use as cancer screening tools.
Collapse
Affiliation(s)
- Goli Samimi
- Division of Cancer PreventionNational Cancer InstituteBethesdaMarylandUSA
| | - Sarah M. Temkin
- Office of Research on Women's HealthNational Institutes of HealthBethesdaMarylandUSA
| | - Carol J. Weil
- Independent Consultant, Human Research Protections and BioethicsBethesdaMarylandUSA
| | - Paul K. J. Han
- Division of Cancer Control and Population SciencesNational Cancer InstituteBethesdaMarylandUSA
| | - Elyse LeeVan
- Division of Cancer PreventionNational Cancer InstituteBethesdaMarylandUSA
| | | | | | | | | | - Lori M. Minasian
- Division of Cancer PreventionNational Cancer InstituteBethesdaMarylandUSA
| |
Collapse
|
15
|
Chatterjee M, Gupta S, Nag S, Rehman I, Parashar D, Maitra A, Das K. Circulating Extracellular Vesicles: An Effective Biomarker for Cancer Progression. FRONT BIOSCI-LANDMRK 2024; 29:375. [PMID: 39614441 DOI: 10.31083/j.fbl2911375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 12/01/2024]
Abstract
Extracellular vesicles (EVs), the ubiquitous part of human biology, represent a small heterogenous, membrane-enclosed body that contains a diverse payload including genetic materials in the form of DNA, RNAs, small non-coding RNAs, etc. mostly mirroring their source of origin. Since, a vast majority of research has been conducted on how nucleic acids, proteins, lipids, and metabolites, associated with EVs can be effectively utilized to identify disease progression and therapeutic responses in cancer patients, EVs are increasingly being touted as valuable and reliable identifiers of cancer biomarkers in liquid biopsies. However, the lack of comprehensive clinical validation and effective standardization protocols severely limits its applications beyond the laboratories. The present review focuses on understanding the role of circulating EVs in different cancers and how they could potentially be treated as cancer biomarkers, typically due to the presence of bioactive molecules such as small non-coding RNAs, RNAs, DNA, proteins, etc., and their utilization for fine-tuning therapies. Here, we provide a brief general biology of EVs including their classification and subsequently discuss the source of circulatory EVs, the role of their associated payload as biomarkers, and how different cancers affect the level of circulatory EVs population.
Collapse
Affiliation(s)
- Madhura Chatterjee
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, 281406 Mathura, India
| | - Sayoni Nag
- Department of Biotechnology, Brainware University, 700125 Barasat, India
| | - Ishita Rehman
- Department of Biotechnology, The Neotia University, 743368 Parganas, India
| | - Deepak Parashar
- Department of Medicine, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Arindam Maitra
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| |
Collapse
|
16
|
Dubrovsky G, Ross A, Jalali P, Lotze M. Liquid Biopsy in Pancreatic Ductal Adenocarcinoma: A Review of Methods and Applications. Int J Mol Sci 2024; 25:11013. [PMID: 39456796 PMCID: PMC11507494 DOI: 10.3390/ijms252011013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a malignancy with one of the highest mortality rates. One limitation in the diagnosis and treatment of PDAC is the lack of an early and universal biomarker. Extensive research performed recently to develop new assays which could fit this role is available. In this review, we will discuss the current landscape of liquid biopsy in patients with PDAC. Specifically, we will review the various methods of liquid biopsy, focusing on circulating tumor DNA (ctDNA) and exosomes and future opportunities for improvement using artificial intelligence or machine learning to analyze results from a multi-omic approach. We will also consider applications which have been evaluated, including the utility of liquid biopsy for screening and staging patients at diagnosis as well as before and after surgery. We will also examine the potential for liquid biopsy to monitor patient treatment response in the setting of clinical trial development.
Collapse
Affiliation(s)
- Genia Dubrovsky
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; (G.D.); (A.R.)
- Pittsburgh VA Medical Center, Pittsburgh, PA 15240, USA
| | - Alison Ross
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; (G.D.); (A.R.)
| | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Michael Lotze
- Departments of Surgery, Immunology, and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
17
|
Gustafson KT, Sayar Z, Modestino A, Le HH, Gower A, Civitci F, Esener SC, Heller MJ, Eksi SE. Oligo cyc-DEP: On-chip cyclic immunofluorescence profiling of cell-derived nanoparticles. Electrophoresis 2024; 45:1715-1720. [PMID: 39049673 DOI: 10.1002/elps.202400088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
We present a follow-on technique for the cyclic-immunofluorescence profiling of suspension particles isolated using dielectrophoresis. The original lab-on-chip technique ("cyc-DEP" [cyclic immunofluorescent imaging on dielectrophoretic chip]) was designed for the multiplex surveillance of circulating biomarkers. Nanoparticles were collected from low-volume liquid biopsies using microfluidic dielectrophoretic chip technology. Subsequent rounds of cyclic immunofluorescent labeling and quenching were imaged and quantified with a custom algorithm to detect multiple proteins. While cyc-DEP improved assay multiplicity, long runtimes threatened its clinical adoption. Here, we modify the original cyc-DEP platform to reduce assay runtimes. Nanoparticles were formulated from human prostate adenocarcinoma cells and collected using dielectrophoresis. Three proteins were labeled on-chip with a mixture of short oligonucleotide-conjugated antibodies. The sample was then incubated with complementary fluorophore-conjugated oligonucleotides, which were dehybridized using an ethylene carbonate buffer after each round of imaging. Oligonucleotide removal exhibited an average quenching efficiency of 98 ± 3% (n = 12 quenching events), matching the original cyc-DEP platform. The presented "oligo cyc-DEP" platform achieved clinically relevant sample-to-answer times, reducing the duration for three rounds of cyclic immunolabeling from approximately 20 to 6.5 h-a 67% decrease attributed to rapid fluorophore removal and the consolidated co-incubation of antibodies.
Collapse
Affiliation(s)
- Kyle T Gustafson
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Zeynep Sayar
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Augusta Modestino
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Hillary H Le
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Austin Gower
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Fehmi Civitci
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Sadik C Esener
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael J Heller
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Sebnem Ece Eksi
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
18
|
Batista IA, Machado JC, Melo SA. Advances in exosomes utilization for clinical applications in cancer. Trends Cancer 2024; 10:947-968. [PMID: 39168775 DOI: 10.1016/j.trecan.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Exosomes are regarded as having transformative potential for clinical applications. Exosome-based liquid biopsies offer a noninvasive method for early cancer detection and real-time disease monitoring. Clinical trials are underway to validate the efficacy of exosomal biomarkers for enhancing diagnostic accuracy and predicting treatment responses. Additionally, engineered exosomes are being developed as targeted drug delivery systems that can navigate the bloodstream to deliver therapeutic agents to tumor sites, thus enhancing treatment efficacy while minimizing systemic toxicity. Exosomes also exhibit immunomodulatory properties, which are being harnessed to boost antitumor immune responses. In this review, we detail the latest advances in clinical trials and research studies, underscoring the potential of exosomes to revolutionize cancer care.
Collapse
Affiliation(s)
- Inês A Batista
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José C Machado
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; P.CCC Porto Comprehensive Cancer Centre, Raquel Seruca, Portugal
| | - Sonia A Melo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; P.CCC Porto Comprehensive Cancer Centre, Raquel Seruca, Portugal.
| |
Collapse
|
19
|
Raoof S, Kurzrock R. Turning the Knobs on Screening Liquid Biopsies for High-Risk Populations: Potential for Dialing Down Invasive Procedures. J Clin Oncol 2024; 42:3073-3076. [PMID: 38905582 DOI: 10.1200/jco.23.02665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 06/23/2024] Open
Affiliation(s)
- Sana Raoof
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
20
|
Reese KL, Pantel K, Smit DJ. Multibiomarker panels in liquid biopsy for early detection of pancreatic cancer - a comprehensive review. J Exp Clin Cancer Res 2024; 43:250. [PMID: 39218911 PMCID: PMC11367781 DOI: 10.1186/s13046-024-03166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is frequently detected in late stages, which leads to limited therapeutic options and a dismal overall survival rate. To date, no robust method for the detection of early-stage PDAC that can be used for targeted screening approaches is available. Liquid biopsy allows the minimally invasive collection of body fluids (typically peripheral blood) and the subsequent analysis of circulating tumor cells or tumor-associated molecules such as nucleic acids, proteins, or metabolites that may be useful for the early diagnosis of PDAC. Single biomarkers may lack sensitivity and/or specificity to reliably detect PDAC, while combinations of these circulating biomarkers in multimarker panels may improve the sensitivity and specificity of blood test-based diagnosis. In this narrative review, we present an overview of different liquid biopsy biomarkers for the early diagnosis of PDAC and discuss the validity of multimarker panels.
Collapse
Affiliation(s)
- Kim-Lea Reese
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| | - Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| |
Collapse
|
21
|
De Giorgis V, Barberis E, Manfredi M. Extracellular vesicles proteins for early cancer diagnosis: From omics to biomarkers. Semin Cancer Biol 2024; 104-105:18-31. [PMID: 39074601 DOI: 10.1016/j.semcancer.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Extracellular vesicles (EVs) are a promising source of early biomarkers for cancer diagnosis. They are enriched with diverse molecular content, such as proteins, DNA, mRNA, miRNA, lipids, and metabolites. EV proteins have been widely investigated as potential biomarkers since they reflect specific patient conditions. However, although many markers have been validated and confirmed using external cohorts of patients and different analytical approaches, no EV protein markers are approved for diagnostic use. This review presents the primary strategies adopted using mass spectrometry and immune-based techniques to identify and validate EV protein biomarkers. We report and discuss recent scientific research focusing on cancer biomarker discovery through EVs, emphasizing their significant potential for the tempestive diagnosis of several cancer typologies. Finally, recent advancements in the standardization of EV isolation and quantitation through the development of easy-to-use and high-throughput kits for sample preparation-that should make protein EV biomarkers more reliable and accessible-are presented. The data reported here showed that there are still several challenges to be addressed before a protein vesicle marker becomes an essential tool in diagnosing cancer.
Collapse
Affiliation(s)
- Veronica De Giorgis
- Department of Translational Medicine, University of Piemonte Orientale, via Solaroli 17, Novara 28100, Italy; CAAD, Centre for Translational Research on Autoimmune and Allergic Diseases, Corso Trieste 15/A, Novara 28100, Italy
| | - Elettra Barberis
- CAAD, Centre for Translational Research on Autoimmune and Allergic Diseases, Corso Trieste 15/A, Novara 28100, Italy; Department of Sciences and Technological Innovation, University of Piemonte Orientale, viale T. Michel 11, Alessandria 15121, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, via Solaroli 17, Novara 28100, Italy; CAAD, Centre for Translational Research on Autoimmune and Allergic Diseases, Corso Trieste 15/A, Novara 28100, Italy.
| |
Collapse
|
22
|
Ikhlef L, Ratti N, Durand S, Formento R, Daverat H, Boutaud M, Guillou C, Dmytruk N, Gachard N, Cosette P, Jauberteau MO, Gallet PF. Extracellular vesicles from type-2 macrophages increase the survival of chronic lymphocytic leukemia cells ex vivo. Cancer Gene Ther 2024; 31:1164-1176. [PMID: 38918490 PMCID: PMC11327105 DOI: 10.1038/s41417-024-00802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
The resistance of Chronic Lymphocytic Leukemia (CLL) B-cells to cell death is mainly attributed to interactions within their microenvironment, where they interact with various types of cells. Within this microenvironment, CLL-B-cells produce and bind cytokines, growth factors, and extracellular vesicles (EVs). In the present study, EVs purified from nurse-like cells and M2-polarized THP1 cell (M2-THP1) cultures were added to CLL-B-cells cultures. EVs were rapidly internalized by B-cells, leading to a decrease in apoptosis (P = 0.0162 and 0.0469, respectively) and an increased proliferation (P = 0.0335 and 0.0109). Additionally, they induced an increase in the resistance of CLL-B-cells to Ibrutinib, the Bruton kinase inhibitor in vitro (P = 0.0344). A transcriptomic analysis showed an increase in the expression of anti-apoptotic gene BCL-2 (P = 0.0286) but not MCL-1 and an increase in the expression of proliferation-inducing gene APRIL (P = 0.0286) following treatment with EVs. Meanwhile, an analysis of apoptotic protein markers revealed increased amounts of IGFBP-2 (P = 0.0338), CD40 (P = 0.0338), p53 (P = 0.0219) and BCL-2 (P = 0.0338). Finally, exploration of EVs protein content by mass spectrometry revealed they carry various proteins involved in known oncogenic pathways and the RNAseq analysis of CLL-B-cells treated or not with NLCs EVs show various differentially expressed genes.
Collapse
Affiliation(s)
- Léa Ikhlef
- University of Limoges, UMR INSERM 1308, CAPTuR, Limoges, France
| | - Nina Ratti
- University of Limoges, UMR INSERM 1308, CAPTuR, Limoges, France
| | | | - Rémy Formento
- University of Limoges, UMR INSERM 1308, CAPTuR, Limoges, France
| | - Héloïse Daverat
- University of Limoges, UMR INSERM 1308, CAPTuR, Limoges, France
| | - Marie Boutaud
- University of Limoges, UMR INSERM 1308, CAPTuR, Limoges, France
| | - Clément Guillou
- PISSARO Proteomics Platform, Mont-Saint-Aignan Campus, Mont-Saint-Aignan, France
| | - Natalya Dmytruk
- Department of Clinical Hematology, University Hospital of Limoges, Limoges, France
| | - Nathalie Gachard
- Hematology laboratory, UMR CNRS7276/ INSERM 1262, University Hospital of Limoges, Limoges, France
| | - Pascal Cosette
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, Normandie University, UNIROUEN, INSA Rouen, Mont-Saint-Aignan, France
- HeRacLeS-PISSARO, INSERM US 51, CNRS UAR 2026, Normandie University, Mont-Saint-Aignan, France
| | - Marie-Odile Jauberteau
- University of Limoges, UMR INSERM 1308, CAPTuR, Limoges, France
- Immunology laboratory, University Hospital of Limoges, Limoges, France
| | | |
Collapse
|
23
|
Xu C, Jiang C, Li Z, Gao H, Xian J, Guo W, He D, Peng X, Zhou D, Li D. Exosome nanovesicles: biomarkers and new strategies for treatment of human diseases. MedComm (Beijing) 2024; 5:e660. [PMID: 39015555 PMCID: PMC11247338 DOI: 10.1002/mco2.660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
Exosomes are nanoscale vesicles of cellular origin. One of the main characteristics of exosomes is their ability to carry a wide range of biomolecules from their parental cells, which are important mediators of intercellular communication and play an important role in physiological and pathological processes. Exosomes have the advantages of biocompatibility, low immunogenicity, and wide biodistribution. As researchers' understanding of exosomes has increased, various strategies have been proposed for their use in diagnosing and treating diseases. Here, we provide an overview of the biogenesis and composition of exosomes, describe the relationship between exosomes and disease progression, and focus on the use of exosomes as biomarkers for early screening, disease monitoring, and guiding therapy in refractory diseases such as tumors and neurodegenerative diseases. We also summarize the current applications of exosomes, especially engineered exosomes, for efficient drug delivery, targeted therapies, gene therapies, and immune vaccines. Finally, the current challenges and potential research directions for the clinical application of exosomes are also discussed. In conclusion, exosomes, as an emerging molecule that can be used in the diagnosis and treatment of diseases, combined with multidisciplinary innovative solutions, will play an important role in clinical applications.
Collapse
Affiliation(s)
- Chuan Xu
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Chaoyang Jiang
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Zhihui Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Hui Gao
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Jing Xian
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Wenyan Guo
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dan He
- Department of OncologyThe Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanChina
| | - Xingchen Peng
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Daijun Zhou
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dong Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| |
Collapse
|
24
|
Kohaar I, Hodges NA, Srivastava S. Biomarkers in Cancer Screening: Promises and Challenges in Cancer Early Detection. Hematol Oncol Clin North Am 2024; 38:869-888. [PMID: 38782647 PMCID: PMC11222039 DOI: 10.1016/j.hoc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Cancer continues to be one the leading causes of death worldwide, primarily due to the late detection of the disease. Cancers detected at early stages may enable more effective intervention of the disease. However, most cancers lack well-established screening procedures except for cancers with an established early asymptomatic phase and clinically validated screening tests. There is a critical need to identify and develop assays/tools in conjunction with imaging approaches for precise screening and detection of the aggressive disease at an early stage. New developments in molecular cancer screening and early detection include germline testing, synthetic biomarkers, and liquid biopsy approaches.
Collapse
Affiliation(s)
- Indu Kohaar
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, 9609 Medical Center Drive, NCI Shady Grove Building, Rockville, MD 20850, USA
| | - Nicholas A Hodges
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, 9609 Medical Center Drive, NCI Shady Grove Building, Rockville, MD 20850, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, 9609 Medical Center Drive, NCI Shady Grove Building, Rockville, MD 20850, USA.
| |
Collapse
|
25
|
Liao H, Zhang C, Wang F, Jin F, Zhao Q, Wang X, Wang S, Gao J. Tumor-derived extracellular vesicle proteins as new biomarkers and targets in precision oncology. J Mol Med (Berl) 2024; 102:961-971. [PMID: 38814362 PMCID: PMC11269371 DOI: 10.1007/s00109-024-02452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024]
Abstract
Extracellular vesicles (EVs) are important carriers of signaling molecules, such as nucleic acids, proteins, and lipids, and have become a focus of increasing interest due to their numerous physiological and pathological functions. For a long time, most studies on EV components focused on noncoding RNAs; however, in recent years, extracellular vesicle proteins (EVPs) have been found to play important roles in diagnosis, treatment, and drug resistance and thus have been considered favorable biomarkers and therapeutic targets for various tumors. In this review, we describe the general protocols of research on EVPs and summarize their multifaceted roles in precision medicine applications, including cancer diagnosis, dynamic monitoring of therapeutic efficacy, drug resistance research, tumor microenvironment interaction research, and anticancer drug delivery.
Collapse
Affiliation(s)
- Haiyan Liao
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Cheng Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Fen Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Feng Jin
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Qiqi Zhao
- Chi Biotech Co., Ltd., Shenzhen, China
| | | | - Shubin Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
| | - Jing Gao
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
| |
Collapse
|
26
|
Goggins M. The role of biomarkers in the early detection of pancreatic cancer. Fam Cancer 2024; 23:309-322. [PMID: 38662265 PMCID: PMC11309746 DOI: 10.1007/s10689-024-00381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
Pancreatic surveillance can detect early-stage pancreatic cancer and achieve long-term survival, but currently involves annual endoscopic ultrasound and MRI/MRCP, and is recommended only for individuals who meet familial/genetic risk criteria. To improve upon current approaches to pancreatic cancer early detection and to expand access, more accurate, inexpensive, and safe biomarkers are needed, but finding them has remained elusive. Newer approaches to early detection, such as using gene tests to personalize biomarker interpretation, and the increasing application of artificial intelligence approaches to integrate complex biomarker data, offer promise that clinically useful biomarkers for early pancreatic cancer detection are on the horizon.
Collapse
Affiliation(s)
- Michael Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD, 21231, USA.
- Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
27
|
He D, Cui B, Lv H, Lu S, Zhu Y, Cheng Y, Dang L, Zhang H. Blood-Derived Extracellular Vesicles as a Promising Liquid Biopsy Diagnostic Tool for Early Cancer Detection. Biomolecules 2024; 14:847. [PMID: 39062561 PMCID: PMC11275243 DOI: 10.3390/biom14070847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer poses a significant public health challenge worldwide, and timely screening has the potential to mitigate cancer progression and reduce mortality rates. Currently, early identification of most tumors relies on imaging techniques and tissue biopsies. However, the use of low-cost, highly sensitive, non-invasive detection methods for early cancer screening has become more attractive. Extracellular Vesicles (EVs) released by all living cells contain distinctive biological components, such as nucleic acids, proteins, and lipids. These vesicles play crucial roles in the tumor microenvironment and intercellular communication during tumor progression, rendering liquid biopsy a particularly suitable method for diagnosis. Nevertheless, challenges related to purification methods and validation of efficacy currently hinder its widespread clinical implementation. These limitations underscore the importance of refining isolation techniques and conducting comprehensive investigations on EVs. This study seeks to evaluate the potential of liquid biopsy utilizing blood-derived EVs as a practical, cost-effective, and secure approach for early cancer detection.
Collapse
Affiliation(s)
- Dan He
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| | - Bozhou Cui
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China;
| | - Hongkai Lv
- Department of Clinical Medicine of Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (H.L.); (Y.C.)
| | - Shuxian Lu
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| | - Yuan Zhu
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| | - Yuqiang Cheng
- Department of Clinical Medicine of Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (H.L.); (Y.C.)
| | - Lin Dang
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Hong Zhang
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| |
Collapse
|
28
|
Lee AA, Godwin AK, Abdelhakim H. The multifaceted roles of extracellular vesicles for therapeutic intervention with non-Hodgkin lymphoma. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:329-343. [PMID: 39639879 PMCID: PMC11618822 DOI: 10.20517/evcna.2024.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Extracellular vesicles (EVs) contribute to the development of cancer in various ways. Non-Hodgkin lymphoma (NHL) is a cancer of mature lymphocytes and the most common hematological malignancy globally. The most common form of NHL, diffuse large B-cell lymphoma (DLBCL), is primarily treated with chemotherapy, autologous stem cell transplantation (ASCT), and/or chimeric antigen receptor T-cell (CAR-T) therapy. With NHL disease progression and its treatment, extracellular vesicles play remarkable roles in influencing outcomes. This finding can be utilized for therapeutic intervention to improve patient outcomes for NHL. This review focuses on the multifaceted roles of EVs with NHL and its potential for guiding patient care.
Collapse
Affiliation(s)
- Arthur A. Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 64111, USA
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 64111, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Haitham Abdelhakim
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
29
|
Bhavsar D, Raguraman R, Kim D, Ren X, Munshi A, Moore K, Sikavitsas V, Ramesh R. Exosomes in diagnostic and therapeutic applications of ovarian cancer. J Ovarian Res 2024; 17:113. [PMID: 38796525 PMCID: PMC11127348 DOI: 10.1186/s13048-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/16/2024] [Indexed: 05/28/2024] Open
Abstract
Ovarian cancer accounts for more deaths than any other female reproductive tract cancer. The major reasons for the high mortality rates include delayed diagnoses and drug resistance. Hence, improved diagnostic and therapeutic options for ovarian cancer are a pressing need. Extracellular vesicles (EVs), that include exosomes provide hope in both diagnostic and therapeutic aspects. They are natural lipid nanovesicles secreted by all cell types and carry molecules that reflect the status of the parent cell. This facilitates their potential use as biomarkers for an early diagnosis. Additionally, EVs can be loaded with exogenous cargo, and have features such as high stability and favorable pharmacokinetic properties. This makes them ideal for tumor-targeted delivery of biological moieties. The International Society of Extracellular Vesicles (ISEV) based on the Minimal Information for Studies on Extracellular Vesicles (MISEV) recommends the usage of the term "small extracellular vesicles (sEVs)" that includes exosomes for particles that are 30-200 nm in size. However, majority of the studies reported in the literature and relevant to this review have used the term "exosomes". Therefore, this review will use the term "exosomes" interchangeably with sEVs for consistency with the literature and avoid confusion to the readers. This review, initially summarizes the different isolation and detection techniques developed to study ovarian cancer-derived exosomes and the potential use of these exosomes as biomarkers for the early diagnosis of this devastating disease. It addresses the role of exosome contents in the pathogenesis of ovarian cancer, discusses strategies to limit exosome-mediated ovarian cancer progression, and provides options to use exosomes for tumor-targeted therapy in ovarian cancer. Finally, it states future research directions and recommends essential research needed to successfully transition exosomes from the laboratory to the gynecologic-oncology clinic.
Collapse
Affiliation(s)
- Dhaval Bhavsar
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Rajeswari Raguraman
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Xiaoyu Ren
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Kathleen Moore
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Vassilios Sikavitsas
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- Department of Chemical, Biological and Materials Engineering, Oklahoma University, Norman, OK, 73019, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA.
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
30
|
Shojaeian A, Naeimi Torshizi SR, Parsapasand MS, Amjad ZS, Khezrian A, Alibakhshi A, Yun F, Baghaei K, Amini R, Pecic S. Harnessing exosomes in theranostic applications: advancements and insights in gastrointestinal cancer research. Discov Oncol 2024; 15:162. [PMID: 38743146 PMCID: PMC11093943 DOI: 10.1007/s12672-024-01024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Exosomes are small extracellular vesicles (30-150 nm) that are formed by endocytosis containing complex RNA as well as protein structures and are vital in intercellular communication and can be used in gene therapy and drug delivery. According to the cell sources of origin and the environmental conditions they are exposed to, these nanovesicles are very heterogeneous and dynamic in terms of content (cargo), size and membrane composition. Exosomes are released under physiological and pathological conditions and influence the pathogenesis of cancers through various mechanisms, including angiogenesis, metastasis, immune dysregulation, drug resistance, and tumor growth/development. Gastrointestinal cancer is one of the deadliest types of cancer in humans and can involve organs e.g., the esophagus and stomach, or others such as the liver, pancreas, small intestine, and colon. Early diagnosis is very important in this field because the overall survival of patients is low due to diagnosis in late stages and recurrence. Also, various therapeutic strategies have failed and there is an unmet need for the new therapeutic agents. Exosomes can become promising candidates in gastrointestinal cancers as biomarkers and therapeutic agents due to their lower immunity and passing the main physiological barriers. In this work, we provide a general overview of exosomes, their biogenesis and biological functions. In addition, we discuss the potential of exosomes to serve as biomarkers, agents in cancer treatment, drug delivery systems, and effective vaccines in immunotherapy, with an emphasis on gastrointestinal cancers.
Collapse
Affiliation(s)
- Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - S R Naeimi Torshizi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahsa Sadat Parsapasand
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Sobhi Amjad
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Khezrian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Alibakhshi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faye Yun
- Department of Chemistry and Biochemistry, California State University, Fullerton, USA
| | - Kaveh Baghaei
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, USA.
| |
Collapse
|
31
|
Kapoor KS, Kong S, Sugimoto H, Guo W, Boominathan V, Chen YL, Biswal SL, Terlier T, McAndrews KM, Kalluri R. Single Extracellular Vesicle Imaging and Computational Analysis Identifies Inherent Architectural Heterogeneity. ACS NANO 2024; 18:11717-11731. [PMID: 38651873 DOI: 10.1021/acsnano.3c12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Evaluating the heterogeneity of extracellular vesicles (EVs) is crucial for unraveling their complex actions and biodistribution. Here, we identify consistent architectural heterogeneity of EVs using cryogenic transmission electron microscopy (cryo-TEM), which has an inherent ability to image biological samples without harsh labeling methods while preserving their native conformation. Imaging EVs isolated using different methodologies from distinct sources, such as cancer cells, normal cells, immortalized cells, and body fluids, we identify a structural atlas of their dominantly consistent shapes. We identify EV architectural attributes by utilizing a segmentation neural network model. In total, 7,576 individual EVs were imaged and quantified by our computational pipeline. Across all 7,576 independent EVs, the average eccentricity was 0.5366 ± 0.2, and the average equivalent diameter was 132.43 ± 67 nm. The architectural heterogeneity was consistent across all sources of EVs, independent of purification techniques, and compromised of single spherical, rod-like or tubular, and double shapes. This study will serve as a reference foundation for high-resolution images of EVs and offer insights into their potential biological impact.
Collapse
Affiliation(s)
- Kshipra S Kapoor
- Department of Cancer Biology and Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Seoyun Kong
- Department of Cancer Biology and Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Hikaru Sugimoto
- Department of Cancer Biology and Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Wenhua Guo
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Vivek Boominathan
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Yi-Lin Chen
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Tanguy Terlier
- SIMS Laboratory, Shared Equipment Authority, Rice University, Houston, Texas 77005, United States
| | - Kathleen M McAndrews
- Department of Cancer Biology and Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Raghu Kalluri
- Department of Cancer Biology and Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
32
|
Gu X, Minko T. Targeted Nanoparticle-Based Diagnostic and Treatment Options for Pancreatic Cancer. Cancers (Basel) 2024; 16:1589. [PMID: 38672671 PMCID: PMC11048786 DOI: 10.3390/cancers16081589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest cancers, presents significant challenges in diagnosis and treatment due to its aggressive, metastatic nature and lack of early detection methods. A key obstacle in PDAC treatment is the highly complex tumor environment characterized by dense stroma surrounding the tumor, which hinders effective drug delivery. Nanotechnology can offer innovative solutions to these challenges, particularly in creating novel drug delivery systems for existing anticancer drugs for PDAC, such as gemcitabine and paclitaxel. By using customization methods such as incorporating conjugated targeting ligands, tumor-penetrating peptides, and therapeutic nucleic acids, these nanoparticle-based systems enhance drug solubility, extend circulation time, improve tumor targeting, and control drug release, thereby minimizing side effects and toxicity in healthy tissues. Moreover, nanoparticles have also shown potential in precise diagnostic methods for PDAC. This literature review will delve into targeted mechanisms, pathways, and approaches in treating pancreatic cancer. Additional emphasis is placed on the study of nanoparticle-based delivery systems, with a brief mention of those in clinical trials. Overall, the overview illustrates the significant advances in nanomedicine, underscoring its role in transcending the constraints of conventional PDAC therapies and diagnostics.
Collapse
Affiliation(s)
- Xin Gu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
33
|
Mitchell MI, Ben-Dov IZ, Liu C, Wang T, Hazan RB, Bauer TL, Zakrzewski J, Donnelly K, Chow K, Ma J, Loudig O. Non-invasive detection of orthotopic human lung tumors by microRNA expression profiling of mouse exhaled breath condensates and exhaled extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:138-164. [PMID: 38863869 PMCID: PMC11165456 DOI: 10.20517/evcna.2023.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Aim The lung is the second most frequent site of metastatic dissemination. Early detection is key to improving survival. Given that the lung interfaces with the external environment, the collection of exhaled breath condensate (EBC) provides the opportunity to obtain biological material including exhaled miRNAs that originate from the lung. Methods In this proof-of-principal study, we used the highly metastatic MDA-MB-231 subline 3475 breast cancer cell line (LM-3475) to establish an orthotopic lung tumor-bearing mouse model and investigate non-invasive detection of lung tumors by analysis of exhaled miRNAs. We initially conducted miRNA NGS and qPCR validation analyses on condensates collected from unrestrained animals and identified significant miRNA expression differences between the condensates of lung tumor-bearing and control mice. To focus our purification of EBC and evaluate the origin of these differentially expressed miRNAs, we developed a system to collect EBC directly from the nose and mouth of our mice. Results Using nanoparticle distribution analyses, TEM, and ONi super-resolution nanoimaging, we determined that human tumor EVs could be increasingly detected in mouse EBC during the progression of secondary lung tumors. Using our customizable EV-CATCHER assay, we purified human tumor EVs from mouse EBC and demonstrated that the bulk of differentially expressed exhaled miRNAs originate from lung tumors, which could be detected by qPCR within 1 to 2 weeks after tail vein injection of the metastatic cells. Conclusion This study is the first of its kind and demonstrates that lung tumor EVs are exhaled in mice and provide non-invasive biomarkers for detection of lung tumors.
Collapse
Affiliation(s)
- Megan I. Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Iddo Z. Ben-Dov
- Laboratory of Medical Transcriptomics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Christina Liu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, The Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Rachel B. Hazan
- Department of Pathology, The Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Thomas L. Bauer
- Jersey Shore University Medical Center, Hackensack Meridian Health, Neptune City, NJ 07753, USA
| | - Johannes Zakrzewski
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Kathryn Donnelly
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kar Chow
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| |
Collapse
|
34
|
Galeș LN, Păun MA, Anghel RM, Trifănescu OG. Cancer Screening: Present Recommendations, the Development of Multi-Cancer Early Development Tests, and the Prospect of Universal Cancer Screening. Cancers (Basel) 2024; 16:1191. [PMID: 38539525 PMCID: PMC10969110 DOI: 10.3390/cancers16061191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 11/11/2024] Open
Abstract
Cancer continues to pose a considerable challenge to global health. In the search for innovative strategies to combat this complex enemy, the concept of universal cancer screening has emerged as a promising avenue for early detection and prevention. In contrast to targeted approaches that focus on specific populations or high-risk individuals, universal screening seeks to cast a wide net to detect incipient malignancies in different demographic groups. This paradigm shift in cancer care underscores the importance of comprehensive screening programs that go beyond conventional boundaries. As our understanding of the complex molecular and genetic basis of cancer deepens, the need to develop comprehensive screening methods becomes increasingly apparent. In this article, we look at the rationale and potential benefits of universal cancer screening.
Collapse
Affiliation(s)
- Laurenția Nicoleta Galeș
- Department of Oncology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.N.G.); (R.M.A.); (O.G.T.)
- Department of Medical Oncology II, Prof. Dr. Al. Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Mihai-Andrei Păun
- Department of Radiotherapy II, Prof. Dr. Al. Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Rodica Maricela Anghel
- Department of Oncology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.N.G.); (R.M.A.); (O.G.T.)
- Department of Radiotherapy II, Prof. Dr. Al. Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Oana Gabriela Trifănescu
- Department of Oncology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.N.G.); (R.M.A.); (O.G.T.)
- Department of Radiotherapy II, Prof. Dr. Al. Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| |
Collapse
|
35
|
Chung DC, Gray DM, Singh H, Issaka RB, Raymond VM, Eagle C, Hu S, Chudova DI, Talasaz A, Greenson JK, Sinicrope FA, Gupta S, Grady WM. A Cell-free DNA Blood-Based Test for Colorectal Cancer Screening. N Engl J Med 2024; 390:973-983. [PMID: 38477985 DOI: 10.1056/nejmoa2304714] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
BACKGROUND Colorectal cancer is the third most diagnosed cancer in adults in the United States. Early detection could prevent more than 90% of colorectal cancer-related deaths, yet more than one third of the screening-eligible population is not up to date with screening despite multiple available tests. A blood-based test has the potential to improve screening adherence, detect colorectal cancer earlier, and reduce colorectal cancer-related mortality. METHODS We assessed the performance characteristics of a cell-free DNA (cfDNA) blood-based test in a population eligible for colorectal cancer screening. The coprimary outcomes were sensitivity for colorectal cancer and specificity for advanced neoplasia (colorectal cancer or advanced precancerous lesions) relative to screening colonoscopy. The secondary outcome was sensitivity to detect advanced precancerous lesions. RESULTS The clinical validation cohort included 10,258 persons, 7861 of whom met eligibility criteria and were evaluable. A total of 83.1% of the participants with colorectal cancer detected by colonoscopy had a positive cfDNA test and 16.9% had a negative test, which indicates a sensitivity of the cfDNA test for detection of colorectal cancer of 83.1% (95% confidence interval [CI], 72.2 to 90.3). Sensitivity for stage I, II, or III colorectal cancer was 87.5% (95% CI, 75.3 to 94.1), and sensitivity for advanced precancerous lesions was 13.2% (95% CI, 11.3 to 15.3). A total of 89.6% of the participants without any advanced colorectal neoplasia (colorectal cancer or advanced precancerous lesions) identified on colonoscopy had a negative cfDNA blood-based test, whereas 10.4% had a positive cfDNA blood-based test, which indicates a specificity for any advanced neoplasia of 89.6% (95% CI, 88.8 to 90.3). Specificity for negative colonoscopy (no colorectal cancer, advanced precancerous lesions, or nonadvanced precancerous lesions) was 89.9% (95% CI, 89.0 to 90.7). CONCLUSIONS In an average-risk screening population, this cfDNA blood-based test had 83% sensitivity for colorectal cancer, 90% specificity for advanced neoplasia, and 13% sensitivity for advanced precancerous lesions. (Funded by Guardant Health; ECLIPSE ClinicalTrials.gov number, NCT04136002.).
Collapse
Affiliation(s)
- Daniel C Chung
- From the Division of Gastroenterology and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston (D.C.C.); Gray Area Strategies, Owings Mills, MD (D.M.G.); the Association of Black Gastroenterologists and Hepatologists, New York (D.M.G.); the Departments of Internal Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, Canada (H.S.); the Divisions of Public Health Sciences (R.B.I., W.M.G.), Clinical Research (R.B.I.), and Translational Science and Therapeutics (W.M.G.), Fred Hutchinson Cancer Center, and the Division of Gastroenterology, University of Washington School of Medicine (R.B.I., W.M.G.) - both in Seattle; Guardant Health, Palo Alto (V.M.R., C.E., S.H., D.I.C., A.T.), and the University of California, San Diego, La Jolla (S.G.) - both in California; the Department of Pathology, Michigan Medicine, Ann Arbor (J.K.G.); and the Divisions of Oncology, Gastroenterology, and Hepatology, Mayo Clinic, Mayo Comprehensive Cancer Center and Mayo Alix School of Medicine, Rochester, MN (F.A.S.)
| | - Darrell M Gray
- From the Division of Gastroenterology and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston (D.C.C.); Gray Area Strategies, Owings Mills, MD (D.M.G.); the Association of Black Gastroenterologists and Hepatologists, New York (D.M.G.); the Departments of Internal Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, Canada (H.S.); the Divisions of Public Health Sciences (R.B.I., W.M.G.), Clinical Research (R.B.I.), and Translational Science and Therapeutics (W.M.G.), Fred Hutchinson Cancer Center, and the Division of Gastroenterology, University of Washington School of Medicine (R.B.I., W.M.G.) - both in Seattle; Guardant Health, Palo Alto (V.M.R., C.E., S.H., D.I.C., A.T.), and the University of California, San Diego, La Jolla (S.G.) - both in California; the Department of Pathology, Michigan Medicine, Ann Arbor (J.K.G.); and the Divisions of Oncology, Gastroenterology, and Hepatology, Mayo Clinic, Mayo Comprehensive Cancer Center and Mayo Alix School of Medicine, Rochester, MN (F.A.S.)
| | - Harminder Singh
- From the Division of Gastroenterology and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston (D.C.C.); Gray Area Strategies, Owings Mills, MD (D.M.G.); the Association of Black Gastroenterologists and Hepatologists, New York (D.M.G.); the Departments of Internal Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, Canada (H.S.); the Divisions of Public Health Sciences (R.B.I., W.M.G.), Clinical Research (R.B.I.), and Translational Science and Therapeutics (W.M.G.), Fred Hutchinson Cancer Center, and the Division of Gastroenterology, University of Washington School of Medicine (R.B.I., W.M.G.) - both in Seattle; Guardant Health, Palo Alto (V.M.R., C.E., S.H., D.I.C., A.T.), and the University of California, San Diego, La Jolla (S.G.) - both in California; the Department of Pathology, Michigan Medicine, Ann Arbor (J.K.G.); and the Divisions of Oncology, Gastroenterology, and Hepatology, Mayo Clinic, Mayo Comprehensive Cancer Center and Mayo Alix School of Medicine, Rochester, MN (F.A.S.)
| | - Rachel B Issaka
- From the Division of Gastroenterology and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston (D.C.C.); Gray Area Strategies, Owings Mills, MD (D.M.G.); the Association of Black Gastroenterologists and Hepatologists, New York (D.M.G.); the Departments of Internal Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, Canada (H.S.); the Divisions of Public Health Sciences (R.B.I., W.M.G.), Clinical Research (R.B.I.), and Translational Science and Therapeutics (W.M.G.), Fred Hutchinson Cancer Center, and the Division of Gastroenterology, University of Washington School of Medicine (R.B.I., W.M.G.) - both in Seattle; Guardant Health, Palo Alto (V.M.R., C.E., S.H., D.I.C., A.T.), and the University of California, San Diego, La Jolla (S.G.) - both in California; the Department of Pathology, Michigan Medicine, Ann Arbor (J.K.G.); and the Divisions of Oncology, Gastroenterology, and Hepatology, Mayo Clinic, Mayo Comprehensive Cancer Center and Mayo Alix School of Medicine, Rochester, MN (F.A.S.)
| | - Victoria M Raymond
- From the Division of Gastroenterology and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston (D.C.C.); Gray Area Strategies, Owings Mills, MD (D.M.G.); the Association of Black Gastroenterologists and Hepatologists, New York (D.M.G.); the Departments of Internal Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, Canada (H.S.); the Divisions of Public Health Sciences (R.B.I., W.M.G.), Clinical Research (R.B.I.), and Translational Science and Therapeutics (W.M.G.), Fred Hutchinson Cancer Center, and the Division of Gastroenterology, University of Washington School of Medicine (R.B.I., W.M.G.) - both in Seattle; Guardant Health, Palo Alto (V.M.R., C.E., S.H., D.I.C., A.T.), and the University of California, San Diego, La Jolla (S.G.) - both in California; the Department of Pathology, Michigan Medicine, Ann Arbor (J.K.G.); and the Divisions of Oncology, Gastroenterology, and Hepatology, Mayo Clinic, Mayo Comprehensive Cancer Center and Mayo Alix School of Medicine, Rochester, MN (F.A.S.)
| | - Craig Eagle
- From the Division of Gastroenterology and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston (D.C.C.); Gray Area Strategies, Owings Mills, MD (D.M.G.); the Association of Black Gastroenterologists and Hepatologists, New York (D.M.G.); the Departments of Internal Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, Canada (H.S.); the Divisions of Public Health Sciences (R.B.I., W.M.G.), Clinical Research (R.B.I.), and Translational Science and Therapeutics (W.M.G.), Fred Hutchinson Cancer Center, and the Division of Gastroenterology, University of Washington School of Medicine (R.B.I., W.M.G.) - both in Seattle; Guardant Health, Palo Alto (V.M.R., C.E., S.H., D.I.C., A.T.), and the University of California, San Diego, La Jolla (S.G.) - both in California; the Department of Pathology, Michigan Medicine, Ann Arbor (J.K.G.); and the Divisions of Oncology, Gastroenterology, and Hepatology, Mayo Clinic, Mayo Comprehensive Cancer Center and Mayo Alix School of Medicine, Rochester, MN (F.A.S.)
| | - Sylvia Hu
- From the Division of Gastroenterology and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston (D.C.C.); Gray Area Strategies, Owings Mills, MD (D.M.G.); the Association of Black Gastroenterologists and Hepatologists, New York (D.M.G.); the Departments of Internal Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, Canada (H.S.); the Divisions of Public Health Sciences (R.B.I., W.M.G.), Clinical Research (R.B.I.), and Translational Science and Therapeutics (W.M.G.), Fred Hutchinson Cancer Center, and the Division of Gastroenterology, University of Washington School of Medicine (R.B.I., W.M.G.) - both in Seattle; Guardant Health, Palo Alto (V.M.R., C.E., S.H., D.I.C., A.T.), and the University of California, San Diego, La Jolla (S.G.) - both in California; the Department of Pathology, Michigan Medicine, Ann Arbor (J.K.G.); and the Divisions of Oncology, Gastroenterology, and Hepatology, Mayo Clinic, Mayo Comprehensive Cancer Center and Mayo Alix School of Medicine, Rochester, MN (F.A.S.)
| | - Darya I Chudova
- From the Division of Gastroenterology and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston (D.C.C.); Gray Area Strategies, Owings Mills, MD (D.M.G.); the Association of Black Gastroenterologists and Hepatologists, New York (D.M.G.); the Departments of Internal Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, Canada (H.S.); the Divisions of Public Health Sciences (R.B.I., W.M.G.), Clinical Research (R.B.I.), and Translational Science and Therapeutics (W.M.G.), Fred Hutchinson Cancer Center, and the Division of Gastroenterology, University of Washington School of Medicine (R.B.I., W.M.G.) - both in Seattle; Guardant Health, Palo Alto (V.M.R., C.E., S.H., D.I.C., A.T.), and the University of California, San Diego, La Jolla (S.G.) - both in California; the Department of Pathology, Michigan Medicine, Ann Arbor (J.K.G.); and the Divisions of Oncology, Gastroenterology, and Hepatology, Mayo Clinic, Mayo Comprehensive Cancer Center and Mayo Alix School of Medicine, Rochester, MN (F.A.S.)
| | - AmirAli Talasaz
- From the Division of Gastroenterology and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston (D.C.C.); Gray Area Strategies, Owings Mills, MD (D.M.G.); the Association of Black Gastroenterologists and Hepatologists, New York (D.M.G.); the Departments of Internal Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, Canada (H.S.); the Divisions of Public Health Sciences (R.B.I., W.M.G.), Clinical Research (R.B.I.), and Translational Science and Therapeutics (W.M.G.), Fred Hutchinson Cancer Center, and the Division of Gastroenterology, University of Washington School of Medicine (R.B.I., W.M.G.) - both in Seattle; Guardant Health, Palo Alto (V.M.R., C.E., S.H., D.I.C., A.T.), and the University of California, San Diego, La Jolla (S.G.) - both in California; the Department of Pathology, Michigan Medicine, Ann Arbor (J.K.G.); and the Divisions of Oncology, Gastroenterology, and Hepatology, Mayo Clinic, Mayo Comprehensive Cancer Center and Mayo Alix School of Medicine, Rochester, MN (F.A.S.)
| | - Joel K Greenson
- From the Division of Gastroenterology and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston (D.C.C.); Gray Area Strategies, Owings Mills, MD (D.M.G.); the Association of Black Gastroenterologists and Hepatologists, New York (D.M.G.); the Departments of Internal Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, Canada (H.S.); the Divisions of Public Health Sciences (R.B.I., W.M.G.), Clinical Research (R.B.I.), and Translational Science and Therapeutics (W.M.G.), Fred Hutchinson Cancer Center, and the Division of Gastroenterology, University of Washington School of Medicine (R.B.I., W.M.G.) - both in Seattle; Guardant Health, Palo Alto (V.M.R., C.E., S.H., D.I.C., A.T.), and the University of California, San Diego, La Jolla (S.G.) - both in California; the Department of Pathology, Michigan Medicine, Ann Arbor (J.K.G.); and the Divisions of Oncology, Gastroenterology, and Hepatology, Mayo Clinic, Mayo Comprehensive Cancer Center and Mayo Alix School of Medicine, Rochester, MN (F.A.S.)
| | - Frank A Sinicrope
- From the Division of Gastroenterology and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston (D.C.C.); Gray Area Strategies, Owings Mills, MD (D.M.G.); the Association of Black Gastroenterologists and Hepatologists, New York (D.M.G.); the Departments of Internal Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, Canada (H.S.); the Divisions of Public Health Sciences (R.B.I., W.M.G.), Clinical Research (R.B.I.), and Translational Science and Therapeutics (W.M.G.), Fred Hutchinson Cancer Center, and the Division of Gastroenterology, University of Washington School of Medicine (R.B.I., W.M.G.) - both in Seattle; Guardant Health, Palo Alto (V.M.R., C.E., S.H., D.I.C., A.T.), and the University of California, San Diego, La Jolla (S.G.) - both in California; the Department of Pathology, Michigan Medicine, Ann Arbor (J.K.G.); and the Divisions of Oncology, Gastroenterology, and Hepatology, Mayo Clinic, Mayo Comprehensive Cancer Center and Mayo Alix School of Medicine, Rochester, MN (F.A.S.)
| | - Samir Gupta
- From the Division of Gastroenterology and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston (D.C.C.); Gray Area Strategies, Owings Mills, MD (D.M.G.); the Association of Black Gastroenterologists and Hepatologists, New York (D.M.G.); the Departments of Internal Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, Canada (H.S.); the Divisions of Public Health Sciences (R.B.I., W.M.G.), Clinical Research (R.B.I.), and Translational Science and Therapeutics (W.M.G.), Fred Hutchinson Cancer Center, and the Division of Gastroenterology, University of Washington School of Medicine (R.B.I., W.M.G.) - both in Seattle; Guardant Health, Palo Alto (V.M.R., C.E., S.H., D.I.C., A.T.), and the University of California, San Diego, La Jolla (S.G.) - both in California; the Department of Pathology, Michigan Medicine, Ann Arbor (J.K.G.); and the Divisions of Oncology, Gastroenterology, and Hepatology, Mayo Clinic, Mayo Comprehensive Cancer Center and Mayo Alix School of Medicine, Rochester, MN (F.A.S.)
| | - William M Grady
- From the Division of Gastroenterology and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston (D.C.C.); Gray Area Strategies, Owings Mills, MD (D.M.G.); the Association of Black Gastroenterologists and Hepatologists, New York (D.M.G.); the Departments of Internal Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, Canada (H.S.); the Divisions of Public Health Sciences (R.B.I., W.M.G.), Clinical Research (R.B.I.), and Translational Science and Therapeutics (W.M.G.), Fred Hutchinson Cancer Center, and the Division of Gastroenterology, University of Washington School of Medicine (R.B.I., W.M.G.) - both in Seattle; Guardant Health, Palo Alto (V.M.R., C.E., S.H., D.I.C., A.T.), and the University of California, San Diego, La Jolla (S.G.) - both in California; the Department of Pathology, Michigan Medicine, Ann Arbor (J.K.G.); and the Divisions of Oncology, Gastroenterology, and Hepatology, Mayo Clinic, Mayo Comprehensive Cancer Center and Mayo Alix School of Medicine, Rochester, MN (F.A.S.)
| |
Collapse
|
36
|
Eledkawy A, Hamza T, El-Metwally S. Precision cancer classification using liquid biopsy and advanced machine learning techniques. Sci Rep 2024; 14:5841. [PMID: 38462648 PMCID: PMC10925597 DOI: 10.1038/s41598-024-56419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Cancer presents a significant global health burden, resulting in millions of annual deaths. Timely detection is critical for improving survival rates, offering a crucial window for timely medical interventions. Liquid biopsy, analyzing genetic variations, and mutations in circulating cell-free, circulating tumor DNA (cfDNA/ctDNA) or molecular biomarkers, has emerged as a tool for early detection. This study focuses on cancer detection using mutations in plasma cfDNA/ctDNA and protein biomarker concentrations. The proposed system initially calculates the correlation coefficient to identify correlated features, while mutual information assesses each feature's relevance to the target variable, eliminating redundant features to improve efficiency. The eXtrem Gradient Boosting (XGBoost) feature importance method iteratively selects the top ten features, resulting in a 60% dataset dimensionality reduction. The Light Gradient Boosting Machine (LGBM) model is employed for classification, optimizing its performance through a random search for hyper-parameters. Final predictions are obtained by ensembling LGBM models from tenfold cross-validation, weighted by their respective balanced accuracy, and averaged to get final predictions. Applying this methodology, the proposed system achieves 99.45% accuracy and 99.95% AUC for detecting the presence of cancer while achieving 93.94% accuracy and 97.81% AUC for cancer-type classification. Our methodology leads to enhanced healthcare outcomes for cancer patients.
Collapse
Affiliation(s)
- Amr Eledkawy
- Department of Computer Science, Faculty of Computers and Information, Mansoura University, P.O. Box: 35516, Mansoura, Egypt
| | - Taher Hamza
- Department of Computer Science, Faculty of Computers and Information, Mansoura University, P.O. Box: 35516, Mansoura, Egypt
| | - Sara El-Metwally
- Department of Computer Science, Faculty of Computers and Information, Mansoura University, P.O. Box: 35516, Mansoura, Egypt.
- Biomedical Informatics Department, Faculty of Computer Science and Engineering, New Mansoura University, Gamasa, 35712, Egypt.
| |
Collapse
|
37
|
Sorrells JE, Park J, Aksamitiene E, Marjanovic M, Martin EM, Chaney EJ, Higham AM, Cradock KA, Liu ZG, Boppart SA. Label-free nonlinear optical signatures of extracellular vesicles in liquid and tissue biopsies of human breast cancer. Sci Rep 2024; 14:5528. [PMID: 38448508 PMCID: PMC10917806 DOI: 10.1038/s41598-024-55781-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Extracellular vesicles (EVs) have been implicated in metastasis and proposed as cancer biomarkers. However, heterogeneity and small size makes assessments of EVs challenging. Often, EVs are isolated from biofluids, losing spatial and temporal context and thus lacking the ability to access EVs in situ in their native microenvironment. This work examines the capabilities of label-free nonlinear optical microscopy to extract biochemical optical metrics of EVs in ex vivo tissue and EVs isolated from biofluids in cases of human breast cancer, comparing these metrics within and between EV sources. Before surgery, fresh urine and blood serum samples were obtained from human participants scheduled for breast tumor surgery (24 malignant, 6 benign) or healthy participants scheduled for breast reduction surgery (4 control). EVs were directly imaged both in intact ex vivo tissue that was removed during surgery and in samples isolated from biofluids by differential ultracentrifugation. Isolated EVs and freshly excised ex vivo breast tissue samples were imaged with custom nonlinear optical microscopes to extract single-EV optical metabolic signatures of NAD(P)H and FAD autofluorescence. Optical metrics were significantly altered in cases of malignant breast cancer in biofluid-derived EVs and intact tissue EVs compared to control samples. Specifically, urinary isolated EVs showed elevated NAD(P)H fluorescence lifetime in cases of malignant cancer, serum-derived isolated EVs showed decreased optical redox ratio in stage II cancer, but not earlier stages, and ex vivo breast tissue showed an elevated number of EVs in cases of malignant cancer. Results further indicated significant differences in the measured optical metabolic signature based on EV source (urine, serum and tissue) within individuals.
Collapse
Affiliation(s)
- Janet E Sorrells
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jaena Park
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Edita Aksamitiene
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marina Marjanovic
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- NIH/NIBIB P41 Center for Label-Free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elisabeth M Martin
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eric J Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, Urbana, IL, 61801, USA
| | | | | | - Zheng G Liu
- Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- NIH/NIBIB P41 Center for Label-Free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, Urbana, IL, 61801, USA.
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Interdisciplinary Health Sciences Institute, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
38
|
Min Y, Deng W, Yuan H, Zhu D, Zhao R, Zhang P, Xue J, Yuan Z, Zhang T, Jiang Y, Xu K, Wu D, Cai Y, Suo C, Chen X. Single extracellular vesicle surface protein-based blood assay identifies potential biomarkers for detection and screening of five cancers. Mol Oncol 2024; 18:743-761. [PMID: 38194998 PMCID: PMC10920081 DOI: 10.1002/1878-0261.13586] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/21/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Extracellular vesicles (EVs) and EV proteins are promising biomarkers for cancer liquid biopsy. Herein, we designed a case-control study involving 100 controls and 100 patients with esophageal, stomach, colorectal, liver, or lung cancer to identify common and type-specific biomarkers of plasma-derived EV surface proteins for the five cancers. EV surface proteins were profiled using a sequencing-based proximity barcoding assay. In this study, five differentially expressed proteins (DEPs) and eight differentially expressed protein combinations (DEPCs) showed promising performance (area under curve, AUC > 0.900) in pan-cancer identification [e.g., TENM2 (AUC = 0.982), CD36 (AUC = 0.974), and CD36-ITGA1 (AUC = 0.971)]. Our classification model could properly discriminate between cancer patients and controls using DEPs (AUC = 0.981) or DEPCs (AUC = 0.965). When distinguishing one cancer from the other four, the accuracy of the classification model using DEPCs (85-92%) was higher than that using DEPs (78-84%). We validated the performance in an additional 14 cancer patients and 14 controls, and achieved an AUC value of 0.786 for DEPs and 0.622 for DEPCs, highlighting the necessity to recruit a larger cohort for further validation. When clustering EVs into subpopulations, we detected cluster-specific proteins highly expressed in immune-related tissues. In the context of colorectal cancer, we identified heterogeneous EV clusters enriched in cancer patients, correlating with tumor initiation and progression. These findings provide epidemiological and molecular evidence for the clinical application of EV proteins in cancer prediction, while also illuminating their functional roles in cancer physiopathology.
Collapse
Affiliation(s)
- Yuxin Min
- Department of Epidemiology, School of Public HealthFudan UniversityShanghaiChina
| | - Wenjiang Deng
- Department of Medical Epidemiology and BiostatisticsKarolinska InstituteStockholmSweden
| | - Huangbo Yuan
- State Key Laboratory of Genetic Engineering, School of Life ScienceHuman Phenome Institute, Fudan UniversityShanghaiChina
| | - Dongliang Zhu
- Department of Epidemiology, School of Public HealthFudan UniversityShanghaiChina
| | - Renjia Zhao
- State Key Laboratory of Genetic Engineering, School of Life ScienceHuman Phenome Institute, Fudan UniversityShanghaiChina
| | - Pengyan Zhang
- Department of Epidemiology, School of Public HealthFudan UniversityShanghaiChina
| | - Jiangli Xue
- Fudan University Taizhou Institute of Health SciencesTaizhouChina
| | - Ziyu Yuan
- Fudan University Taizhou Institute of Health SciencesTaizhouChina
| | - Tiejun Zhang
- Department of Epidemiology, School of Public HealthFudan UniversityShanghaiChina
- Fudan University Taizhou Institute of Health SciencesTaizhouChina
- Yiwu Research Institute of Fudan UniversityChina
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, School of Life ScienceHuman Phenome Institute, Fudan UniversityShanghaiChina
- Fudan University Taizhou Institute of Health SciencesTaizhouChina
| | - Kelin Xu
- Department of Biostatistics, School of Public HealthFudan UniversityShanghaiChina
| | - Di Wu
- Vesicode ABStockholmSweden
| | - Yanling Cai
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of UrologyThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen Institute of Translational MedicineShenzhenChina
| | - Chen Suo
- Department of Epidemiology, School of Public HealthFudan UniversityShanghaiChina
- Fudan University Taizhou Institute of Health SciencesTaizhouChina
- Shanghai Institute of Infectious Disease and BiosecurityShanghaiChina
| | - Xingdong Chen
- Fudan University Taizhou Institute of Health SciencesTaizhouChina
- Yiwu Research Institute of Fudan UniversityChina
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and National Clinical Research Center for Aging and Medicine, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
39
|
Verma S, Young S, Kennedy TAC, Carvalhana I, Black M, Baer K, Churchman E, Warner A, Allan AL, Izaguirre-Carbonell J, Dhani H, Louie AV, Palma DA, Breadner DA. Detection of Circulating Tumor DNA After Stereotactic Ablative Radiotherapy in Patients With Unbiopsied Lung Tumors (SABR-DETECT). Clin Lung Cancer 2024; 25:e87-e91. [PMID: 38101984 DOI: 10.1016/j.cllc.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
For patients with stage I/IIA non-small-cell lung cancer (NSCLC), surgical resection is the standard treatment. However, some of these patients are not candidates for surgery or refuse a surgical option. Definitive stereotactic ablative radiotherapy (SABR) is a standard approach in these patients. Approximately 15% of patients undergoing SABR for localized NSCLC will experience a recurrence within 2 years. Furthermore, many of these patients are deemed appropriate for SABR without a tissue diagnosis, based on the likelihood of malignancy which can be calculated by validated models. A liquid biopsy, detecting ctDNA, would be useful in early detection of recurrences, and documenting a cancer diagnosis in patients without a biopsy. This is a multi-institutional study enrolling patients with suspected stage I/IIA NSCLC and a pretreatment likelihood of malignancy of ≥60% using the validated models for patients without a tissue diagnosis, in cohort 1 (n = 45). The second cohort will consist of biopsied patients (n = 30-60). SABR will be delivered as per risk-adapted protocol. Plasma will be collected for ctDNA analysis prior to the first fraction of SABR, 24 to 72 hours after first fraction, and at 3, 6, 9, 12, 18, and 24-months. The patients will be followed up with imaging at 3, 6, 9, 12, 18, and 24-months. The primary objective is to assess whether a cancer detection liquid biopsy platform can predict recurrence of NSCLC. The secondary objectives are to assess the impact of SABR on detection rates of ctDNA in patients undergoing SABR and to correlate ctDNA positivity and pretreatment probability of malignancy (NCT05921474).
Collapse
Affiliation(s)
- Saurav Verma
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - Sympascho Young
- Division of Radiation Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - Thomas A C Kennedy
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Ilda Carvalhana
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Morgan Black
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - Kathie Baer
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - Emma Churchman
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - Andrew Warner
- Division of Radiation Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada; Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | | | | | - Alexander V Louie
- Division of Radiation Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - David A Palma
- Division of Radiation Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - Daniel A Breadner
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.
| |
Collapse
|
40
|
Scherübl H. [Early detection of sporadic pancreatic cancer]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:412-419. [PMID: 37827502 DOI: 10.1055/a-2114-9847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The incidence of pancreatic cancer is rising. At present, pancreatic cancer is the third most common cancer-causing death in Germany, but it is expected to become the second in 2030 and finally the leading cause of cancer death in 2050. Pancreatic ductal adenocarcinoma (PC) is generally diagnosed at advanced stages, and 5-year-survival has remained poor. Early detection of sporadic PC at stage IA, however, can yield a 5-year-survival rate of about 80%. Early detection initiatives aim at identifying persons at high risk. People with new-onset diabetes at age 50 or older have attracted much interest. Novel strategies regarding how to detect sporadic PC at an early stage are being discussed.
Collapse
Affiliation(s)
- Hans Scherübl
- Klinik für Innere Medizin; Gastroenterol., GI Onkol. u. Infektiol., Vivantes Klinikum Am Urban, Berlin, Germany
- Akademisches Lehrkrankenhaus der Charité, Berlin, Germany
| |
Collapse
|
41
|
Wang Z, Wang Q, Qin F, Chen J. Exosomes: a promising avenue for cancer diagnosis beyond treatment. Front Cell Dev Biol 2024; 12:1344705. [PMID: 38419843 PMCID: PMC10900531 DOI: 10.3389/fcell.2024.1344705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Exosomes, extracellular vesicles secreted by cells, have garnered significant attention in recent years for their remarkable therapeutic potential. These nanoscale carriers can be harnessed for the targeted delivery of therapeutic agents, such as pharmaceuticals, proteins, and nucleic acids, across biological barriers. This versatile attribute of exosomes is a promising modality for precision medicine applications, notably in the realm of cancer therapy. However, despite their substantial therapeutic potential, exosomes still confront challenges tied to standardization and scalability that impede their practice in clinical applications. Moreover, heterogeneity in isolation methodologies and limited cargo loading mechanisms pose obstacles to ensuring consistent outcomes, thereby constraining their therapeutic utility. In contrast, exosomes exhibit a distinct advantage in cancer diagnosis, as they harbor specific signatures reflective of the tumor's genetic and proteomic profile. This characteristic endows them with the potential to serve as valuable liquid biopsies for non-invasive and real-time monitoring, making possible early cancer detection for the development of personalized treatment strategies. In this review, we provide an extensive evaluation of the advancements in exosome research, critically examining their advantages and limitations in the context of cancer therapy and early diagnosis. Furthermore, we present a curated overview of the most recent technological innovations utilizing exosomes, with a focus on enhancing the efficacy of early cancer detection.
Collapse
Affiliation(s)
- Zhu Wang
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Qin
- School of Basic Medicine, Dali University, Dali, Yunnan, China
| | - Jie Chen
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Anitha K, Posinasetty B, Naveen Kumari K, Chenchula S, Padmavathi R, Prakash S, Radhika C. Liquid biopsy for precision diagnostics and therapeutics. Clin Chim Acta 2024; 554:117746. [PMID: 38151071 DOI: 10.1016/j.cca.2023.117746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Liquid biopsy (LB) has emerged as a highly promising and non-invasive diagnostic approach, particularly in the field of oncology, and has garnered interest in various medical disciplines. This technique involves the examination of biomolecules released into physiological fluids, such as urine samples, blood, and cerebrospinal fluid (CSF). The analysed biomolecules included circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), cell-free DNA (cfDNA), exosomes, and other cell-free components. In contrast to conventional tissue biopsies, LB provides minimally invasive diagnostics, offering invaluable insights into tumor characteristics, treatment response, and early disease detection. This Review explores the contemporary landscape of technologies and clinical applications in the realm of LB, with a particular emphasis on the isolation and analysis of ctDNA and/or cfDNA. Various methodologies have been employed, including droplet digital polymerase chain reaction (DDP), BEAMing (beads, emulsion, amplification, and magnetics), TAm-Seq (tagged-amplicon deep sequencing), CAPP-Seq (cancer personalized profiling by deep sequencing), WGBS-Seq (whole genome bisulfite sequencing), WES (whole exome sequencing), and WGS (whole-genome sequencing). Additionally, CTCs have been successfully isolated through biomarker-based cell capture, employing both positive and negative enrichment strategies based on diverse biophysical and other inherent properties. This approach also addresses challenges and limitations associated with liquid biopsy techniques, such as sensitivity, specificity, standardization and interpretability of findings. This review seeks to identify the current technologies used in liquid biopsy samples, emphasizing their significance in identifying tumor markers for cancer detection, prognosis, and treatment outcome monitoring.
Collapse
Affiliation(s)
- Kuttiappan Anitha
- Department of Pharmacology, School of Pharmacy and Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur 425405, India
| | | | - K Naveen Kumari
- Sri Krishna Teja Pharmacy College, Tirupati, Andhra Pradesh 517502, India
| | | | - R Padmavathi
- SVS Medical College, Hyderabad, Telangana, India
| | - Satya Prakash
- All India Institute of Medical Sciences, Bhopal 462020, India
| | | |
Collapse
|
43
|
Thomas S, Kaur J, Kamboj R, Thangariyal S, Yadav R, Kumar K, Dhania NK. Investigate the efficacy of size exclusion chromatography for the isolation of extracellular vesicles from C. elegans. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1233:123982. [PMID: 38176095 DOI: 10.1016/j.jchromb.2023.123982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Isolation of Extracellular Vesicles (EVs) has been done extensively in the past using ultracentrifugation, a recent shift has been observed towards precipitation, and exosome isolation kits. These methods often co-elute contaminants of similar size and density which makes their detection and downstream applications quite challenging. As well as the EV yield is also compromised in some methodologies due to aggregate formation. In recent reports, size-exclusion chromatography (SEC) is replacing density gradient-based ultracentrifugation as the gold standard of exosome isolation. It outperforms in yield, purity and does not account for any physical damage to the EVs. We have standardized the methodology for an efficient pure yield of homogenous exosomes of size even smaller than 75 nm in Caenorhabditis elegans homogenate. The paper entails the application and optimization of EV isolation by SEC based on previous studies by optimizing bed size and type of sepharose column employed. We propose that this method is economically feasible in comparison with currently available approaches. A comparative study was conducted to investigate the performance of CL-6B in relation to CL-2B and further, this was combined with ultracentrifugation for higher efficacy. The methodology could be introduced in a clinical setting due to its therapeutic potential and scope. The eluted EVs were studied by flow cytometry, nanotracking and characterized for size and morphology.
Collapse
Affiliation(s)
- Sharon Thomas
- Department of Zoology, Faculty of Sciences, University of Delhi, Delhi 110007, India
| | - Jaspreet Kaur
- Department of Zoology, Faculty of Sciences, University of Delhi, Delhi 110007, India
| | - Robinsh Kamboj
- USIC, Faculty of Sciences, University of Delhi, Delhi 110007, India
| | - Swati Thangariyal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Delhi 110070, India
| | - Rahul Yadav
- Department of Chemistry, Indian Institute of Technology, New Delhi, Delhi 110016, India
| | - Kamlesh Kumar
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Narender K Dhania
- Department of Zoology, Faculty of Sciences, University of Delhi, Delhi 110007, India.
| |
Collapse
|
44
|
Rayamajhi S, Sipes J, Tetlow AL, Saha S, Bansal A, Godwin AK. Extracellular Vesicles as Liquid Biopsy Biomarkers across the Cancer Journey: From Early Detection to Recurrence. Clin Chem 2024; 70:206-219. [PMID: 38175602 DOI: 10.1093/clinchem/hvad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Cancer is a dynamic process and thus requires highly informative and reliable biomarkers to help guide patient care. Liquid-based biopsies have emerged as a clinical tool for tracking cancer dynamics. Extracellular vesicles (EVs), lipid bilayer delimited particles secreted by cells, are a new class of liquid-based biomarkers. EVs are rich in selectively sorted biomolecule cargos, which provide a spatiotemporal fingerprint of the cell of origin, including cancer cells. CONTENT This review summarizes the performance characteristics of EV-based biomarkers at different stages of cancer progression, from early malignancy to recurrence, while emphasizing their potential as diagnostic, prognostic, and screening biomarkers. We discuss the characteristics of effective biomarkers, consider challenges associated with the EV biomarker field, and report guidelines based on the biomarker discovery pipeline. SUMMARY Basic science and clinical trial studies have shown the potential of EVs as precision-based biomarkers for tracking cancer status, with promising applications for diagnosing disease, predicting response to therapy, and tracking disease burden. The multi-analyte cargos of EVs enhance the performance characteristics of biomarkers. Recent technological advances in ultrasensitive detection of EVs have shown promise with high specificity and sensitivity to differentiate early-cancer cases vs healthy individuals, potentially outperforming current gold-standard imaging-based cancer diagnosis. Ultimately, clinical translation will be dictated by how these new EV biomarker-based platforms perform in larger sample cohorts. Applying ultrasensitive, scalable, and reproducible EV detection platforms with better design considerations based upon the biomarker discovery pipeline should guide the field towards clinically useful liquid biopsy biomarkers.
Collapse
Affiliation(s)
- Sagar Rayamajhi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jared Sipes
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Ashley L Tetlow
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Souvik Saha
- Division of Gastroenterology and Hepatology, University of Kansas Health System, Kansas City, KS, United States
| | - Ajay Bansal
- Division of Gastroenterology and Hepatology, University of Kansas Health System, Kansas City, KS, United States
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, United States
- Division of Genomic Diagnostics, University of Kansas Health System, Kansas City, KS, United States
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
45
|
Van Dorpe S, Tummers P, Denys H, Hendrix A. Towards the Clinical Implementation of Extracellular Vesicle-Based Biomarker Assays for Cancer. Clin Chem 2024; 70:165-178. [PMID: 38175582 DOI: 10.1093/clinchem/hvad189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/24/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Substantial research has been devoted to elucidating the role of extracellular vesicles (EVs) in the different hallmarks of cancer. Consequently, EVs are increasingly explored as a source of cancer biomarkers in body fluids. However, the heterogeneity in EVs, the complexity of body fluids, and the diversity in methods available for EV analysis, challenge the development and translation of EV-based biomarker assays. CONTENT Essential steps in EV-associated biomarker development are emphasized covering biobanking, biomarker discovery, verification and validation, and clinical implementation. A meticulous study design is essential and ideally results from close interactions between clinicians and EV researchers. A plethora of different EV preparation protocols exists which warrants quality control and transparency to ensure reproducibility and thus enable verification of EV-associated biomarker candidates identified in the discovery phase in subsequent independent cohorts. The development of an EV-associated biomarker assay requires thorough analytical and clinical validation. Finally, regulatory affairs must be considered for clinical implementation of EV-based biomarker assays. SUMMARY In this review, the current challenges that prevent us from exploiting the full potential of EV-based biomarker assays are identified. Guidelines and tools to overcome these hurdles are highlighted and are crucial to advance EV-based biomarker assays into clinical use.
Collapse
Affiliation(s)
- Sofie Van Dorpe
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Gynecology, Ghent University Hospital, Ghent, Belgium
| | - Philippe Tummers
- Department of Gynecology, Ghent University Hospital, Ghent, Belgium
| | - Hannelore Denys
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| |
Collapse
|
46
|
Krishnan S, Kanthaje S, Rekha PD, Mujeeburahiman M, Ratnacaram CK. Expanding frontiers in liquid biopsy-discovery and validation of circulating biomarkers in renal cell carcinoma and bladder cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024. [DOI: 10.1016/bs.ircmb.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
47
|
Challa K, Paysan D, Leiser D, Sauder N, Weber DC, Shivashankar GV. Imaging and AI based chromatin biomarkers for diagnosis and therapy evaluation from liquid biopsies. NPJ Precis Oncol 2023; 7:135. [PMID: 38092866 PMCID: PMC10719365 DOI: 10.1038/s41698-023-00484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Multiple genomic and proteomic studies have suggested that peripheral blood mononuclear cells (PBMCs) respond to tumor secretomes and thus could provide possible avenues for tumor prognosis and treatment evaluation. We hypothesized that the chromatin organization of PBMCs obtained from liquid biopsies, which integrates secretome signals with gene expression programs, provides efficient biomarkers to characterize tumor signals and the efficacy of proton therapy in tumor patients. Here, we show that chromatin imaging of PBMCs combined with machine learning methods provides such robust and predictive chromatin biomarkers. We show that such chromatin biomarkers enable the classification of 10 healthy and 10 pan-tumor patients. Furthermore, we extended our pipeline to assess the tumor types and states of 30 tumor patients undergoing (proton) radiation therapy. We show that our pipeline can thereby accurately distinguish between three tumor groups with up to 89% accuracy and enables the monitoring of the treatment effects. Collectively, we show the potential of chromatin biomarkers for cancer diagnostics and therapy evaluation.
Collapse
Affiliation(s)
- Kiran Challa
- Mechano-Genomic Group, Division of Biology and Chemistry, Paul-Scherrer Institute, Villigen, Switzerland
| | - Daniel Paysan
- Mechano-Genomic Group, Division of Biology and Chemistry, Paul-Scherrer Institute, Villigen, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Dominic Leiser
- Center for Proton Therapy, Paul-Scherrer Institute, Villigen, Switzerland
| | - Nadia Sauder
- Center for Proton Therapy, Paul-Scherrer Institute, Villigen, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul-Scherrer Institute, Villigen, Switzerland.
- Department of Radio-Oncology, University Hospital Zurich, Zurich, Switzerland.
- Department of Radio-Oncology, University of Bern, Bern, Switzerland.
| | - G V Shivashankar
- Mechano-Genomic Group, Division of Biology and Chemistry, Paul-Scherrer Institute, Villigen, Switzerland.
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
48
|
Rey-Cadilhac F, Rachenne F, Missé D, Pompon J. Viral Components Trafficking with(in) Extracellular Vesicles. Viruses 2023; 15:2333. [PMID: 38140574 PMCID: PMC10747788 DOI: 10.3390/v15122333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The global public health burden exerted by viruses partially stems from viruses' ability to subdue host cells into creating an environment that promotes their multiplication (i.e., pro-viral). It has been discovered that viruses alter cell physiology by transferring viral material through extracellular vesicles (EVs), which serve as vehicles for intercellular communication. Here, we aim to provide a conceptual framework of all possible EV-virus associations and their resulting functions in infection output. First, we describe the different viral materials potentially associated with EVs by reporting that EVs can harbor entire virions, viral proteins and viral nucleic acids. We also delineate the different mechanisms underlying the internalization of these viral components into EVs. Second, we describe the potential fate of EV-associated viral material cargo by detailing how EV can circulate and target a naive cell once secreted. Finally, we itemize the different pro-viral strategies resulting from EV associations as the Trojan horse strategy, an alternative mode of viral transmission, an expansion of viral cellular tropism, a pre-emptive alteration of host cell physiology and an immunity decoy. With this conceptual overview, we aim to stimulate research on EV-virus interactions.
Collapse
Affiliation(s)
- Félix Rey-Cadilhac
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
- Faculty of Science, Université de Montpellier, 34095 Montpellier, France
| | - Florian Rachenne
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
- Faculty of Science, Université de Montpellier, 34095 Montpellier, France
| | - Dorothée Missé
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
| | - Julien Pompon
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
| |
Collapse
|
49
|
Hinestrosa JP, Sears RC, Dhani H, Lewis JM, Schroeder G, Balcer HI, Keith D, Sheppard BC, Kurzrock R, Billings PR. Development of a blood-based extracellular vesicle classifier for detection of early-stage pancreatic ductal adenocarcinoma. COMMUNICATIONS MEDICINE 2023; 3:146. [PMID: 37857666 PMCID: PMC10587093 DOI: 10.1038/s43856-023-00351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has an overall 5-year survival rate of just 12.5% and thus is among the leading causes of cancer deaths. When detected at early stages, PDAC survival rates improve substantially. Testing high-risk patients can increase early-stage cancer detection; however, currently available liquid biopsy approaches lack high sensitivity and may not be easily accessible. METHODS Extracellular vesicles (EVs) were isolated from blood plasma that was collected from a training set of 650 patients (105 PDAC stages I and II, 545 controls). EV proteins were analyzed using a machine learning approach to determine which were the most informative to develop a classifier for early-stage PDAC. The classifier was tested on a validation cohort of 113 patients (30 PDAC stages I and II, 83 controls). RESULTS The training set demonstrates an AUC of 0.971 (95% CI = 0.953-0.986) with 93.3% sensitivity (95% CI: 86.9-96.7) at 91.0% specificity (95% CI: 88.3-93.1). The trained classifier is validated using an independent cohort (30 stage I and II cases, 83 controls) and achieves a sensitivity of 90.0% and a specificity of 92.8%. CONCLUSIONS Liquid biopsy using EVs may provide unique or complementary information that improves early PDAC and other cancer detection. EV protein determinations herein demonstrate that the AC Electrokinetics (ACE) method of EV enrichment provides early-stage detection of cancer distinct from normal or pancreatitis controls.
Collapse
Affiliation(s)
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Brenden-Colson Center for Pancreatic Cancer, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR, USA
| | | | | | | | | | - Dove Keith
- Brenden-Colson Center for Pancreatic Cancer, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Brett C Sheppard
- Brenden-Colson Center for Pancreatic Cancer, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Razelle Kurzrock
- Medical College of Wisconsin, Milwaukee, WI, USA
- Worldwide Innovative Network for Personalized Cancer Medicine, Chevilly-Larue, France
| | | |
Collapse
|
50
|
Zhang Y, Zhao L, Li Y, Wan S, Yuan Z, Zu G, Peng F, Ding X. Advanced extracellular vesicle bioinformatic nanomaterials: from enrichment, decoding to clinical diagnostics. J Nanobiotechnology 2023; 21:366. [PMID: 37798669 PMCID: PMC10557264 DOI: 10.1186/s12951-023-02127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane nanoarchitectures generated by cells that carry a variety of biomolecules, including DNA, RNA, proteins and metabolites. These characteristics make them attractive as circulating bioinformatic nanocabinets for liquid biopsy. Recent advances on EV biology and biogenesis demonstrate that EVs serve as highly important cellular surrogates involved in a wide range of diseases, opening up new frontiers for modern diagnostics. However, inefficient methods for EV enrichment, as well as low sensitivity of EV bioinformatic decoding technologies, hinder the use of EV nanocabinet for clinical diagnosis. To overcome these challenges, new EV nanotechnology is being actively developed to promote the clinical translation of EV diagnostics. This article aims to present the emerging enrichment strategies and bioinformatic decoding platforms for EV analysis, and their applications as bioinformatic nanomaterials in clinical settings.
Collapse
Affiliation(s)
- Yawei Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Liang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yaocheng Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Shuangshuang Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhiyao Yuan
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Guangyue Zu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Fei Peng
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02114, USA
| | - Xianguang Ding
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|