1
|
Pham LT, Mangmool S, Parichatikanond W. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors: Guardians against Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Heart Diseases. ACS Pharmacol Transl Sci 2024; 7:3279-3298. [PMID: 39539254 PMCID: PMC11555527 DOI: 10.1021/acsptsci.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are an innovative class of antidiabetic drugs that provide cardiovascular benefits to both diabetic and nondiabetic patients, surpassing those of other antidiabetic drugs. Although the roles of mitochondria and endoplasmic reticulum (ER) in cardiovascular research are increasingly recognized as promising therapeutic targets, the exact molecular mechanisms by which SGLT2 inhibitors influence mitochondrial and ER homeostasis in the heart remain incompletely elucidated. This review comprehensively summarizes and discusses the impacts of SGLT2 inhibitors on mitochondrial dysfunction and ER stress in heart diseases including heart failure, ischemic heart disease/myocardial infarction, and arrhythmia from preclinical and clinical studies. Based on the existing evidence, the effects of SGLT2 inhibitors may potentially involve the restoration of mitochondrial biogenesis and alleviation of ER stress. Such consequences are achieved by enhancing adenosine triphosphate (ATP) production, preserving mitochondrial membrane potential, improving the activity of electron transport chain complexes, maintaining mitochondrial dynamics, mitigating oxidative stress and apoptosis, influencing cellular calcium and sodium handling, and targeting the unfolded protein response (UPR) through three signaling pathways including inositol requiring enzyme 1α (IRE1α), protein kinase R like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6). Therefore, SGLT2 inhibitors have emerged as a promising target for treating heart diseases due to their potential to improve mitochondrial functions and ER stress.
Collapse
Affiliation(s)
- Linh Thi
Truc Pham
- Biopharmaceutical
Sciences Program, Faculty of Pharmacy, Mahidol
University, Bangkok, 10400 Thailand
- Department
of Pharmacology, Faculty of Pharmacy, Mahidol
University, Bangkok, 10400 Thailand
| | - Supachoke Mangmool
- Department
of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai, 50200 Thailand
| | | |
Collapse
|
2
|
Ruiz-Orera J, Miller DC, Greiner J, Genehr C, Grammatikaki A, Blachut S, Mbebi J, Patone G, Myronova A, Adami E, Dewani N, Liang N, Hummel O, Muecke MB, Hildebrandt TB, Fritsch G, Schrade L, Zimmermann WH, Kondova I, Diecke S, van Heesch S, Hübner N. Evolution of translational control and the emergence of genes and open reading frames in human and non-human primate hearts. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1217-1235. [PMID: 39317836 PMCID: PMC11473369 DOI: 10.1038/s44161-024-00544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024]
Abstract
Evolutionary innovations can be driven by changes in the rates of RNA translation and the emergence of new genes and small open reading frames (sORFs). In this study, we characterized the transcriptional and translational landscape of the hearts of four primate and two rodent species through integrative ribosome and transcriptomic profiling, including adult left ventricle tissues and induced pluripotent stem cell-derived cardiomyocyte cell cultures. We show here that the translational efficiencies of subunits of the mitochondrial oxidative phosphorylation chain complexes IV and V evolved rapidly across mammalian evolution. Moreover, we discovered hundreds of species-specific and lineage-specific genomic innovations that emerged during primate evolution in the heart, including 551 genes, 504 sORFs and 76 evolutionarily conserved genes displaying human-specific cardiac-enriched expression. Overall, our work describes the evolutionary processes and mechanisms that have shaped cardiac transcription and translation in recent primate evolution and sheds light on how these can contribute to cardiac development and disease.
Collapse
Affiliation(s)
- Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Duncan C Miller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Pluripotent Stem Cells, Berlin, Germany
| | - Johannes Greiner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Carolin Genehr
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Pluripotent Stem Cells, Berlin, Germany
| | - Aliki Grammatikaki
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Susanne Blachut
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jeanne Mbebi
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Giannino Patone
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Anna Myronova
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Eleonora Adami
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Nikita Dewani
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ning Liang
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Oliver Hummel
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Michael B Muecke
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Thomas B Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Freie Universitaet Berlin, Berlin, Germany
| | - Guido Fritsch
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Lisa Schrade
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Wolfram H Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower Saxony, Göttingen, Germany
- DZNE (German Center for Neurodegenerative Diseases), Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany
| | - Ivanela Kondova
- Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Sebastian Diecke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Pluripotent Stem Cells, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Charité-Universitätsmedizin, Berlin, Germany.
- Helmholtz Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Evolution of cardiac genomic elements in humans and non-human primates. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1187-1188. [PMID: 39354158 DOI: 10.1038/s44161-024-00552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
|
4
|
Liao L, Zhang L, Yang C, Wang T, Feng L, Peng C, Long Y, Dai G, Chang L, Wei Y, Fan X. Sotagliflozin attenuates cardiac dysfunction and depression-like behaviors in mice with myocardial infarction through the gut-heart-brain axis. Neurobiol Dis 2024; 199:106598. [PMID: 39002809 DOI: 10.1016/j.nbd.2024.106598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
Myocardial infarction (MI) and depression are leading causes of mortality and morbidity globally, and these conditions are increasing recognized as being fundamentally interconnected. The recently recognized gut-heart-brain axis offers insights into depression following MI, but effective treatments for this comorbidity remain lacking. To address this medical need, we employed an animal model of MI to investigate the potential repurposing of sotagliflozin (SOTA), an approved sodium-glucose cotransporter 1 and 2 (SGLT1/2) inhibitor for diabetes, for managing depression following MI and identifying potential SOTA-associated microbial mechanisms. SOTA treatment improved cardiac dysfunction and alleviated depression-like behaviors induced by MI, accompanied by alterations in gut microbiota composition, such as changes in the Prevotellaceae NK3B31 group, Alloprevotella, and Prevotellaceae UCG-001. Moreover, fecal microbiota transplantation (FMT) using fecal samples from SOTA-treated MI mice demonstrated that gut microbiota contributed to the beneficial effects of SOTA on cardiac dysfunction and depression-like behaviors in MI mice. Intriguingly, FMT-based intervention and concordance analysis of gut microbiota before and after FMT suggested that Prevotellaceae NK3B31 group, Alloprevotella, and Prevotellaceae UCG-001 were associated with the beneficial effects of SOTA. Furthermore, functional prediction of gut microbiota and correlation analysis support the significance of these dynamic microbial communities. In conclusion, these findings suggest that SOTA could serve as a potential drug to ameliorate cardiac dysfunction and depressive symptoms in MI patients via through the gut-heart-brain axis.
Collapse
Affiliation(s)
- Lei Liao
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological, Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Luzhou 646000, Sichuan, China
| | - Lu Zhang
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological, Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Luzhou 646000, Sichuan, China
| | - Chengying Yang
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological, Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Luzhou 646000, Sichuan, China
| | - Tong Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ling Feng
- School of Nursing, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Chendong Peng
- Department of Cardiology, The People's Hospital of Leshan, Leshan 614000, Sichuan, China
| | - Yang Long
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Guangming Dai
- Department of Geriatrics, First People's Hospital of Suining City, Suining 629000, Sichuan, China
| | - Lijia Chang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Key Laboratory of Maternal and Fetal Medicine of Hebei Province, 16 Tangu-North Street, Shijiazhuang 050000, Hebei, China.
| | - Yan Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Xinrong Fan
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological, Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Luzhou 646000, Sichuan, China.
| |
Collapse
|
5
|
Saldívar-González FI, Navarrete-Vázquez G, Medina-Franco JL. Design of a multi-target focused library for antidiabetic targets using a comprehensive set of chemical transformation rules. Front Pharmacol 2023; 14:1276444. [PMID: 38027021 PMCID: PMC10651762 DOI: 10.3389/fphar.2023.1276444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Virtual small molecule libraries are valuable resources for identifying bioactive compounds in virtual screening campaigns and improving the quality of libraries in terms of physicochemical properties, complexity, and structural diversity. In this context, the computational-aided design of libraries focused against antidiabetic targets can provide novel alternatives for treating type II diabetes mellitus (T2DM). In this work, we integrated the information generated to date on compounds with antidiabetic activity, advances in computational methods, and knowledge of chemical transformations available in the literature to design multi-target compound libraries focused on T2DM. We evaluated the novelty and diversity of the newly generated library by comparing it with antidiabetic compounds approved for clinical use, natural products, and multi-target compounds tested in vivo in experimental antidiabetic models. The designed libraries are freely available and are a valuable starting point for drug design, chemical synthesis, and biological evaluation or further computational filtering. Also, the compendium of 280 transformation rules identified in a medicinal chemistry context is made available in the linear notation SMIRKS for use in other chemical library enumeration or hit optimization approaches.
Collapse
Affiliation(s)
- Fernanda I. Saldívar-González
- Department of Pharmacy, DIFACQUIM Research Group, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - José L. Medina-Franco
- Department of Pharmacy, DIFACQUIM Research Group, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
6
|
Kreiner FF, Schytz PA, Heerspink HJL, von Scholten BJ, Idorn T. Obesity-Related Kidney Disease: Current Understanding and Future Perspectives. Biomedicines 2023; 11:2498. [PMID: 37760939 PMCID: PMC10526045 DOI: 10.3390/biomedicines11092498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Obesity is a serious chronic disease and an independent risk factor for the new onset and progression of chronic kidney disease (CKD). CKD prevalence is expected to increase, at least partly due to the continuous rise in the prevalence of obesity. The concept of obesity-related kidney disease (OKD) has been introduced to describe the still incompletely understood interplay between obesity, CKD, and other cardiometabolic conditions, including risk factors for OKD and cardiovascular disease, such as diabetes and hypertension. Current therapeutics target obesity and CKD individually. Non-pharmacological interventions play a major part, but the efficacy and clinical applicability of lifestyle changes and metabolic surgery remain debatable, because the strategies do not benefit everyone, and it remains questionable whether lifestyle changes can be sustained in the long term. Pharmacological interventions, such as sodium-glucose co-transporter 2 inhibitors and the non-steroidal mineralocorticoid receptor antagonist finerenone, provide kidney protection but have limited or no impact on body weight. Medicines based on glucagon-like peptide-1 (GLP-1) induce clinically relevant weight loss and may also offer kidney benefits. An urgent medical need remains for investigations to better understand the intertwined pathophysiologies in OKD, paving the way for the best possible therapeutic strategies in this increasingly prevalent disease complex.
Collapse
Affiliation(s)
| | | | - Hiddo J. L. Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, 9700 RB Groningen, The Netherlands;
| | | | - Thomas Idorn
- Novo Nordisk A/S, DK-2860 Søborg, Denmark; (F.F.K.); (P.A.S.); (B.J.v.S.)
| |
Collapse
|