1
|
Lambert J, Jørgensen HF. Epigenetic regulation of vascular smooth muscle cell phenotypes in atherosclerosis. Atherosclerosis 2024:119085. [PMID: 39709233 DOI: 10.1016/j.atherosclerosis.2024.119085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
Vascular smooth muscle cells (VSMCs) in adult arteries maintain substantial phenotypic plasticity, which allows for the reversible cell state changes that enable vascular remodelling and homeostasis. In atherosclerosis, VSMCs dedifferentiate in response to lipid accumulation and inflammation, resulting in loss of their characteristic contractile state. Recent studies showed that individual, pre-existing VSMCs expand clonally and can acquire many different phenotypes in atherosclerotic lesions. The changes in gene expression underlying this phenotypic diversity are mediated by epigenetic modifications which affect transcription factor access and thereby gene expression dynamics. Additionally, epigenetic mechanisms can maintain cellular memory, potentially facilitating reversion to the contractile state. While technological advances have provided some insight, a comprehensive understanding of how VSMC phenotypes are governed in disease remains elusive. Here we review current literature in light of novel insight from studies at single-cell resolution. We also discuss how lessons from epigenetic studies of cellular regulation in other fields could help in translating the potential of targeting VSMC phenotype conversion into novel therapies in cardiovascular disease.
Collapse
Affiliation(s)
- Jordi Lambert
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart and Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK.
| | - Helle F Jørgensen
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart and Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK.
| |
Collapse
|
2
|
Lin A, Miano JM, Fisher EA, Misra A. Chronic inflammation and vascular cell plasticity in atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1408-1423. [PMID: 39653823 DOI: 10.1038/s44161-024-00569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/10/2024] [Indexed: 12/13/2024]
Abstract
Vascular smooth muscle cells, endothelial cells and macrophages undergo phenotypic conversions throughout atherosclerosis progression, both as a consequence of chronic inflammation and as subsequent drivers of it. The inflammatory hypothesis of atherosclerosis has been catapulted to the forefront of cardiovascular research as clinical trials have shown that anti-inflammatory therapy reduces adverse cardiovascular events. However, no current therapies have been specifically designed to target the phenotype of plaque cells. Fate mapping has revealed that plaque cells convert to detrimental and beneficial cell phenotypes during atherosclerosis, with cumulative evidence highlighting that vascular cell plasticity is intimately linked with plaque inflammation, ultimately impacting lesion stability. Here we review vascular cell plasticity during atherosclerosis in the context of the chronic inflammatory plaque microenvironment. We highlight the need to better understand how plaque cells behave during therapeutic intervention. We then propose modulating plaque cell phenotype as an unexplored therapeutic paradigm in the clinical setting.
Collapse
Affiliation(s)
- Alexander Lin
- Atherosclerosis and Vascular Remodelling Group, Heart Research Institute, Sydney, New South Wales, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Joseph M Miano
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Ashish Misra
- Atherosclerosis and Vascular Remodelling Group, Heart Research Institute, Sydney, New South Wales, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
3
|
Schäfer S, Gogiraju R, Rösch M, Kerstan Y, Beck L, Garbisch J, Saliba AE, Gisterå A, Hermanns HM, Boon L, Kastenmüller W, Schäfer K, Cochain C, Zernecke A. CD8 + T Cells Drive Plaque Smooth Muscle Cell Dedifferentiation in Experimental Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:1852-1872. [PMID: 38868941 DOI: 10.1161/atvbaha.123.320084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Atherosclerosis is driven by the infiltration of the arterial intima by diverse immune cells and smooth muscle cells (SMCs). CD8+ T cells promote lesion growth during atherosclerotic lesion development, but their role in advanced atherosclerosis is less clear. Here, we studied the role of CD8+ T cells and their effects on SMCs in established atherosclerosis. METHODS CD8+ T cells were depleted in (SMC reporter) low-density lipoprotein receptor-deficient (Ldlr-/-) mice with established atherosclerotic lesions. Atherosclerotic lesion formation was examined, and single-cell RNA sequencing of aortic SMCs and their progeny was performed. Additionally, coculture experiments with primary aortic SMCs and CD8+ T cells were conducted. RESULTS Although we could not detect differences in atherosclerotic lesion size, an increased plaque SMC content was noted in mice after CD8+ T-cell depletion. Single-cell RNA sequencing of aortic lineage-traced SMCs revealed contractile SMCs and a modulated SMC cluster, expressing macrophage- and osteoblast-related genes. CD8+ T-cell depletion was associated with an increased contractile but decreased macrophage and osteoblast-like gene signature in this modulated aortic SMC cluster. Conversely, exposure of isolated aortic SMCs to activated CD8+ T cells decreased the expression of genes indicative of a contractile SMC phenotype and induced a macrophage and osteoblast-like cell state. Notably, CD8+ T cells triggered calcium deposits in SMCs under osteogenic conditions. Mechanistically, we identified transcription factors highly expressed in modulated SMCs, including Runx1, to be induced by CD8+ T cells in cultured SMCs in an IFNγ (interferon-γ)-dependent manner. CONCLUSIONS We here uncovered CD8+ T cells to control the SMC phenotype in atherosclerosis. CD8+ T cells promote SMC dedifferentiation and drive SMCs to adopt features of macrophage-like and osteoblast-like, procalcifying cell phenotypes. Given the critical role of SMCs in atherosclerotic plaque stability, CD8+ T cells could thus be explored as therapeutic target cells during lesion progression.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/immunology
- Cell Dedifferentiation
- Plaque, Atherosclerotic
- Mice
- Disease Models, Animal
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/immunology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/immunology
- Mice, Inbred C57BL
- Mice, Knockout
- Cells, Cultured
- Male
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Phenotype
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Aorta/pathology
- Aorta/immunology
- Aorta/metabolism
- Coculture Techniques
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/immunology
- Aortic Diseases/metabolism
Collapse
Affiliation(s)
- Sarah Schäfer
- Institute of Experimental Biomedicine (S.S., M.R., Y.K., L. Beck, J.G., C.C., A.Z.), University Hospital of Würzburg, Germany
| | - Rajinikanth Gogiraju
- Department of Cardiology, Cardiology I, University Medicine Mainz, Germany (R.G., K.S.)
| | - Melanie Rösch
- Institute of Experimental Biomedicine (S.S., M.R., Y.K., L. Beck, J.G., C.C., A.Z.), University Hospital of Würzburg, Germany
| | - Yvonne Kerstan
- Institute of Experimental Biomedicine (S.S., M.R., Y.K., L. Beck, J.G., C.C., A.Z.), University Hospital of Würzburg, Germany
| | - Lina Beck
- Institute of Experimental Biomedicine (S.S., M.R., Y.K., L. Beck, J.G., C.C., A.Z.), University Hospital of Würzburg, Germany
| | - Janine Garbisch
- Institute of Experimental Biomedicine (S.S., M.R., Y.K., L. Beck, J.G., C.C., A.Z.), University Hospital of Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Institute of Molecular Infection Biology Faculty of Medicine, University of Würzburg, Germany (A.-E.S.)
| | - Anton Gisterå
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden (A.G.)
| | - Heike M Hermanns
- Medical Clinic II, Division of Hepatology (H.M.H.), University Hospital of Würzburg, Germany
| | | | | | - Katrin Schäfer
- Department of Cardiology, Cardiology I, University Medicine Mainz, Germany (R.G., K.S.)
| | - Clément Cochain
- Institute of Experimental Biomedicine (S.S., M.R., Y.K., L. Beck, J.G., C.C., A.Z.), University Hospital of Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine (S.S., M.R., Y.K., L. Beck, J.G., C.C., A.Z.), University Hospital of Würzburg, Germany
| |
Collapse
|