1
|
Fan Z, Lin Z, Zhai H, Cao Y, Wang H, Maiga A, Frejat FOA, Ren C, Wu CL. Design, Synthesis, and Activity Evaluation of C-23-Modified 5- O-Mycaminosyltylonolide Derivatives. ACS Med Chem Lett 2024; 15:2171-2180. [PMID: 39691534 PMCID: PMC11647724 DOI: 10.1021/acsmedchemlett.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
The widespread use of tylosin family drugs in clinical practice has led to bacterial resistance and reduced therapeutic efficacy. We designed and synthesized a series of new semisynthetic derivatives of tylosin with 5-O-mycaminosyltylonolide as the mother nucleus, mainly by introducing a variety of amino groups at its C-23 position. Some of the compounds showed high antibacterial activity against Gram-negative and Gram-positive bacteria. These findings indicate that the best compound, c9, possessed significant antibacterial activity (MIC = 0.5 ug/mL), excellent bactericidal efficacy, and a low induction rate of drug resistance against Staphylococcus aureus and Escherichia coli; it also showed good antibacterial activity against drug-resistant bacteria. In addition, compound c9 has a low toxicity in vitro and in vivo. In conclusion, compound c9 could be a potential antimicrobial lead compound that could also contribute to the development of macrolide antibiotics.
Collapse
Affiliation(s)
- Zhengmin Fan
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key
Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, PR China
- Key
Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, PR China
| | - Ziwei Lin
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key
Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, PR China
- Key
Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, PR China
| | - Hongjin Zhai
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key
Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, PR China
- Key
Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, PR China
- Institute
of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yaquan Cao
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key
Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, PR China
- Key
Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, PR China
- Henan University
of Science and Technology, Luoyang 471000, PR China
| | - Huanhuan Wang
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key
Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, PR China
- Key
Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, PR China
| | - Aichata Maiga
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key
Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, PR China
- Key
Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, PR China
| | - Firas Obald Arhema Frejat
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key
Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, PR China
- Key
Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, PR China
| | - Changzhong Ren
- Henan
Qunbo Pharmaceutical Research Institute Co. LTD, Zhengzhou 450001, PR China
| | - Chun-Li Wu
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key
Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, PR China
- Key
Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, PR China
- Henan
Qunbo Pharmaceutical Research Institute Co. LTD, Zhengzhou 450001, PR China
| |
Collapse
|
2
|
Belina D, Gobena T, Kebede A, Chimdessa M, Hald T. Genotypic Antimicrobial Resistance Profiles of Diarrheagenic Escherichia coli and Nontyphoidal Salmonella Strains Isolated from Children with Diarrhea and Their Exposure Environments in Ethiopia. Infect Drug Resist 2024; 17:4955-4972. [PMID: 39539744 PMCID: PMC11559196 DOI: 10.2147/idr.s480395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Background Antimicrobial resistance (AMR) poses a significant global threat, particularly in low- and middle-income countries, such as Ethiopia, where surveillance is limited. This study aimed to predict and characterize the AMR profiles of diarrheagenic Escherichia coli (DEC) and nontyphoidal Salmonella (NTS) strains isolated from human, animal, food, and environmental samples using whole genome sequencing. Methods A total of 57 NTS and 50 DEC isolates were sequenced on an Illumina NextSeq 550. The ResFinder and PointFinder tools were employed to identify antimicrobial resistance genes (ARGs) and point mutations. Salmonella serotypes were determined using SeqSero. Results The analysis identified at least one ARG in every NTS sample and 78% of the DEC isolates, with 22 distinct ARGs in the NTS samples and 40 in the DEC samples. The most prevalent ARGs were aac(6')-Iaa and aph(3')-Ib, which predict aminoglycoside resistance in 100% of NTS and 54% of DEC isolates, respectively. Other commonly identified ARGs include sul2, aph(6)-Id, blaTEM-1B , and tet(A), which confer resistance to folate inhibitors, aminoglycosides, β-lactams, and tetracycline. Some ARGs predicted phenotypic multidrug resistance in both DEC and NTS isolates. All identified β-lactam ARGs, except for blaTEM -1D, conferred resistance to more than three antibiotics. Interestingly, blaCTX- M-15 was found to confer resistance to nine antibiotics, including third-generation cephalosporins, in 18% of DEC and 3.5% of NTS isolates. DEC isolates from children exhibited the highest ARG diversity. Notably, genes such as aph(3″)-Ib, aph(6)-Id, sul2, and tet(A) were detected across all sample types, including water sources, although some ARGs were exclusive to specific sample types. Point mutations mediating AMR were detected in several genes, with mutations associated with nucleotide substitution being the most frequent. Conclusion This genotypic AMR profiling revealed the presence of widespread drug-resistant NTS and DEC strains in Ethiopia. Robust and sustained AMR surveillance is essential for monitoring the emergence and spread of these resistant pathogens.
Collapse
Affiliation(s)
- Dinaol Belina
- College of Veterinary Medicine, Haramaya University, Dire Dawa, Ethiopia
- School of Biological Sciences and Biotechnology, Haramaya University, Dire Dawa, Ethiopia
| | - Tesfaye Gobena
- College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Ameha Kebede
- School of Biological Sciences and Biotechnology, Haramaya University, Dire Dawa, Ethiopia
| | - Meseret Chimdessa
- School of Biological Sciences and Biotechnology, Haramaya University, Dire Dawa, Ethiopia
| | - Tine Hald
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
3
|
Kavanaugh LG, Dey D, Shafer WM, Conn GL. Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance. Microbiol Mol Biol Rev 2024; 88:e0008923. [PMID: 39235227 PMCID: PMC11426026 DOI: 10.1128/mmbr.00089-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
SUMMARYThe discovery of bacterial efflux pumps significantly advanced our understanding of how bacteria can resist cytotoxic compounds that they encounter. Within the structurally and functionally distinct families of efflux pumps, those of the Resistance-Nodulation-Division (RND) superfamily are noteworthy for their ability to reduce the intracellular concentration of structurally diverse antimicrobials. RND systems are possessed by many Gram-negative bacteria, including those causing serious human disease, and frequently contribute to resistance to multiple antibiotics. Herein, we review the current literature on the structure-function relationships of representative transporter proteins of tripartite RND efflux pumps of clinically important pathogens. We emphasize their contribution to bacterial resistance to clinically used antibiotics, host defense antimicrobials and other biocides, as well as highlighting structural similarities and differences among efflux transporters that help bacteria survive in the face of antimicrobials. Furthermore, we discuss technical advances that have facilitated and advanced efflux pump research and suggest future areas of investigation that will advance antimicrobial development efforts.
Collapse
Affiliation(s)
- Logan G Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Microbial Pathogenesis, VA Medical Research Service, Veterans Affairs Medical Center, Decatur, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Roucairol M, Georgiou A, Cazenave T, Prischi F, Pardo OE. DrugSynthMC: An Atom-Based Generation of Drug-like Molecules with Monte Carlo Search. J Chem Inf Model 2024; 64:7097-7107. [PMID: 39249497 PMCID: PMC11423341 DOI: 10.1021/acs.jcim.4c01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
A growing number of deep learning (DL) methodologies have recently been developed to design novel compounds and expand the chemical space within virtual libraries. Most of these neural network approaches design molecules to specifically bind a target based on its structural information and/or knowledge of previously identified binders. Fewer attempts have been made to develop approaches for de novo design of virtual libraries, as synthesizability of generated molecules remains a challenge. In this work, we developed a new Monte Carlo Search (MCS) algorithm, DrugSynthMC (Drug Synthesis using Monte Carlo), in conjunction with DL and statistical-based priors to generate thousands of interpretable chemical structures and novel drug-like molecules per second. DrugSynthMC produces drug-like compounds using an atom-based search model that builds molecules as SMILES, character by character. Designed molecules follow Lipinski's "rule of 5″, show a high proportion of highly water-soluble nontoxic predicted-to-be synthesizable compounds, and efficiently expand the chemical space within the libraries, without reliance on training data sets, synthesizability metrics, or enforcing during SMILES generation. Our approach can function with or without an underlying neural network and is thus easily explainable and versatile. This ease in drug-like molecule generation allows for future integration of score functions aimed at different target- or job-oriented goals. Thus, DrugSynthMC is expected to enable the functional assessment of large compound libraries covering an extensive novel chemical space, overcoming the limitations of existing drug collections. The software is available at https://github.com/RoucairolMilo/DrugSynthMC.
Collapse
Affiliation(s)
- Milo Roucairol
- LAMSADE, Université Paris-Dauphine, Pl. du Maréchal de Lattre de Tassigny, 75016 Paris, France
| | - Alexios Georgiou
- LAMSADE, Université Paris-Dauphine, Pl. du Maréchal de Lattre de Tassigny, 75016 Paris, France
| | - Tristan Cazenave
- LAMSADE, Université Paris-Dauphine, Pl. du Maréchal de Lattre de Tassigny, 75016 Paris, France
| | - Filippo Prischi
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom
| | - Olivier E Pardo
- Division of Cancer, Department of Surgery and Cancer, Imperial College, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
5
|
Gil-Gil T, Berryhill BA, Manuel JA, Smith AP, McCall IC, Baquero F, Levin BR. The evolution of heteroresistance via small colony variants in Escherichia coli following long term exposure to bacteriostatic antibiotics. Nat Commun 2024; 15:7936. [PMID: 39261449 PMCID: PMC11391013 DOI: 10.1038/s41467-024-52166-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Traditionally, bacteriostatic antibiotics are agents able to arrest bacterial growth. Despite being traditionally viewed as unable to kill bacterial cells, when they are used clinically the outcome of these drugs is frequently as effective as when a bactericidal drug is used. We explore the dynamics of Escherichia coli after exposure to two ribosome-targeting bacteriostatic antibiotics, chloramphenicol and azithromycin, for thirty days. The results of our experiments provide evidence that bacteria exposed to these drugs replicate, evolve, and generate a sub-population of small colony variants (SCVs) which are resistant to multiple drugs. These SCVs contribute to the evolution of heteroresistance and rapidly revert to a susceptible state once the antibiotic is removed. Stated another way, exposure to bacteriostatic drugs selects for the evolution of heteroresistance in populations previously lacking this trait. More generally, our results question the definition of bacteriostasis as populations exposed to bacteriostatic drugs are replicating despite the lack of net growth.
Collapse
Affiliation(s)
- Teresa Gil-Gil
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Brandon A Berryhill
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
- Program in Microbiology and Molecular Genetics, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, 30322, USA
| | - Joshua A Manuel
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Andrew P Smith
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Ingrid C McCall
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Fernando Baquero
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, and Centro de Investigación Médica en Red, Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Bruce R Levin
- Department of Biology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
6
|
Gil-Gil T, Berryhill BA, Manuel JA, Smith AP, McCall IC, Baquero F, Levin BR. The Evolution of Heteroresistance via Small Colony Variants in Escherichia coli Following Long Term Exposure to Bacteriostatic Antibiotics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564761. [PMID: 37961139 PMCID: PMC10634941 DOI: 10.1101/2023.10.30.564761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Traditionally, bacteriostatic antibiotics are agents able to arrest bacterial growth. Despite being traditionally viewed as unable to kill bacterial cells, when they are used clinically the outcome of these drugs is frequently as effective as when a bactericidal drug is used. We explore the dynamics of Escherichia coli after exposure to two ribosome-targeting bacteriostatic antibiotics, chloramphenicol and azithromycin, for thirty days. The results of our experiments provide evidence that bacteria exposed to these drugs replicate, evolve, and generate a sub-population of small colony variants (SCVs) which are resistant to multiple drugs. These SCVs contribute to the evolution of heteroresistance and rapidly revert to a susceptible state once the antibiotic is removed. Stated another way, exposure to bacteriostatic drugs selects for the evolution of heteroresistance in populations previously lacking this trait. More generally, our results question the definition of bacteriostasis as populations exposed to bacteriostatic drugs are replicating despite the lack of net growth.
Collapse
Affiliation(s)
- Teresa Gil-Gil
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | - Brandon A. Berryhill
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
- Program in Microbiology and Molecular Genetics, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University; Atlanta, GA, 30322, USA
| | - Joshua A. Manuel
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | - Andrew P. Smith
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | - Ingrid C. McCall
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | - Fernando Baquero
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, and Centro de Investigación Médica en Red, Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| | - Bruce R. Levin
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| |
Collapse
|
7
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
8
|
Hasan M, Wang J, Ahn J. Ciprofloxacin and Tetracycline Resistance Cause Collateral Sensitivity to Aminoglycosides in Salmonella Typhimurium. Antibiotics (Basel) 2023; 12:1335. [PMID: 37627755 PMCID: PMC10451331 DOI: 10.3390/antibiotics12081335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The objective of this study was to evaluate collateral sensitivity and cross-resistance of antibiotic-induced resistant Salmonella Typhimurium to various antibiotics. S. Typhimurium ATCC 19585 (STWT) was exposed to ciprofloxacin, gentamicin, kanamycin, and tetracycline to induce antibiotic resistance, respectively, assigned as STCIP, STGEN, STKAN, and STTET. The susceptibilities of the antibiotic-induced resistant mutants to cefotaxime, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, polymyxin B, streptomycin, tetracycline, and tobramycin were determined in the absence and presence of CCCP and PAβN. STCIP showed the cross-resistance to tetracycline and collateral sensitivity to gentamicin (1/2 fold) and kanamycin (1/4 fold). STTET was also cross-resistant to ciprofloxacin (128-fold) and collateral sensitive to gentamicin (1/4-fold) and kanamycin (1/8-fold). The cross-resistance and collateral sensitivity of STCIP and STTET were associated with the AcrAB-TolC efflux pump and outer membrane porin proteins (OmpC). This study provides new insight into the collateral sensitivity phenomenon, which can be used for designing effective antibiotic treatment regimens to control antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Mahadi Hasan
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea;
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea;
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
| |
Collapse
|