1
|
Manzanera Esteve IV, Wang F, Reed JL, Qi HX, Thayer W, Gore JC, Chen LM. Model-based parcellation of diffusion MRI of injured spinal cord predicts hand use impairment and recovery in squirrel monkeys. Behav Brain Res 2024; 459:114808. [PMID: 38081518 PMCID: PMC10865381 DOI: 10.1016/j.bbr.2023.114808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
A mathematical model-based parcellation of magnetic resonance diffusion tensor images (DTI) has been developed to quantify progressive changes in three types of tissues - grey (GM), white matter (WM), and damaged spinal cord tissue, along with behavioral assessments over a 6 month period following targeted spinal cord injuries (SCI) in monkeys. Sigmoid Gompertz function based fittings of DTI metrics provide early indicators that correlate with, and predict, recovery of hand grasping behavior. Our three tissue pool model provided unbiased, data-driven segmentation of spinal cord images and identified DTI metrics that can serve as reliable biomarkers of severity of spinal cord injuries and predictors of behavioral outcomes.
Collapse
Affiliation(s)
- Isaac V Manzanera Esteve
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hui Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Wesley Thayer
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Quddusi A, Pedro KM, Alvi MA, Hejrati N, Fehlings MG. Early surgical intervention for acute spinal cord injury: time is spine. Acta Neurochir (Wien) 2023; 165:2665-2674. [PMID: 37468659 DOI: 10.1007/s00701-023-05698-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023]
Abstract
Acute traumatic spinal cord injury (tSCI) is a devastating occurrence that significantly contributes to global morbidity and mortality. Surgical decompression with stabilization is the most effective way to minimize the damaging sequelae that follow acute tSCI. In recent years, strong evidence has emerged that supports the rationale that early surgical intervention, within 24 h following the initial injury, is associated with a better prognosis and functional outcomes. In this review, we have summarized the evidence and elaborated on the nuances of this concept. Additionally, we have reviewed further concepts that stem from "time is spine," including earlier cutoffs less than 24 h and the challenging entity of central cord syndrome, as well as the emerging concept of adequate surgical decompression. Lastly, we identify barriers to early surgical care for acute tSCI, a key aspect of spine care that needs to be globally addressed via research and policy on an urgent basis.
Collapse
Affiliation(s)
- Ayesha Quddusi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Karlo M Pedro
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mohammed Ali Alvi
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Nader Hejrati
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Michael G Fehlings
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Toronto Western Hospital, 399 Bathurst Street, Suite 4WW-449, Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
3
|
Malomo T, Allard Brown A, Bale K, Yung A, Kozlowski P, Heran M, Streijger F, Kwon BK. Quantifying Intraparenchymal Hemorrhage after Traumatic Spinal Cord Injury: A Review of Methodology. J Neurotrauma 2022; 39:1603-1635. [PMID: 35538847 DOI: 10.1089/neu.2021.0317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Intraparenchymal hemorrhage (IPH) after a traumatic injury has been associated with poor neurological outcomes. Although IPH may result from the initial mechanical trauma, the blood and its breakdown products have potentially deleterious effects. Further, the degree of IPH has been correlated with injury severity and the extent of subsequent recovery. Therefore, accurate evaluation and quantification of IPH following traumatic spinal cord injury (SCI) is important to define treatments' effects on IPH progression and secondary neuronal injury. Imaging modalities, such as magnetic resonance imaging (MRI) and ultrasound (US), have been explored by researchers for the detection and quantification of IPH following SCI. Both quantitative and semiquantitative MRI and US measurements have been applied to objectively assess IPH following SCI, but the optimal methods for doing so are not well established. Studies in animal SCI models (rodent and porcine) have explored US and histological techniques in evaluating SCI and have demonstrated the potential to detect and quantify IPH. Newer techniques using machine learning algorithms (such as convolutional neural networks [CNN]) have also been studied to calculate IPH volume and have yielded promising results. Despite long-standing recognition of the potential pathological significance of IPH within the spinal cord, quantifying IPH with MRI or US is a relatively new area of research. Further studies are warranted to investigate their potential use. Here, we review the different and emerging quantitative MRI, US, and histological approaches used to detect and quantify IPH following SCI.
Collapse
Affiliation(s)
- Toluyemi Malomo
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aysha Allard Brown
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kirsten Bale
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Yung
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Piotr Kozlowski
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manraj Heran
- Department of Radiology, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Spine Surgery Institute, Department of Orthopaedics, and Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Konomi T, Suda K, Ozaki M, Harmon SM, Komatsu M, Iimoto S, Tsuji O, Minami A, Takahata M, Iwasaki N, Matsumoto M, Nakamura M. Predictive factors for irreversible motor paralysis following cervical spinal cord injury. Spinal Cord 2021; 59:554-562. [PMID: 32632174 DOI: 10.1038/s41393-020-0513-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN A retrospective observational study. OBJECTIVES To elucidate predictive clinical factors associated with irreversible complete motor paralysis following traumatic cervical spinal cord injury (CSCI). SETTING Hokkaido Spinal Cord Injury Center, Japan. METHODS A consecutive series of 447 traumatic CSCI persons were eligible for this study. Individuals with complete motor paralysis at admission were selected and divided into two groups according to the motor functional outcomes at discharge. Initial findings in magnetic resonance imaging (MRI) and other clinical factors that could affect functional outcomes were compared between two groups of participants: those with and those without motor recovery below the level of injury at the time of discharge. RESULTS Of the 73 consecutive participants with total motor paralysis at initial examination, 28 showed some recovery of motor function, whereas 45 remained complete motor paralysis at discharge, respectively. Multivariate logistic regression analysis showed that the presence of intramedullary hemorrhage manifested as a confined low intensity changes in diffuse high-intensity area and more than 50% of cord compression on MRI were significant predictors of irreversible complete motor paralysis (odds ratio [OR]: 8.4; 95% confidence interval [CI]: 1.2-58.2 and OR: 14.4; 95% CI: 2.5-82.8, respectively). CONCLUSION The presence of intramedullary hemorrhage and/or severe cord compression on initial MRI were closely associated with irreversible paralysis in persons with motor complete paralysis following CSCI. Conversely, subjects with a negligible potential for recovery could be identified by referring to these negative findings.
Collapse
Affiliation(s)
- Tsunehiko Konomi
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, 3-1 Higashi 4 Minami 1, Bibai, Hokkaido, 072-0015, Japan.
- Department of Orthopaedic Surgery, Murayama Medical Center, National Hospital Organization, 2-37-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan.
| | - Kota Suda
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, 3-1 Higashi 4 Minami 1, Bibai, Hokkaido, 072-0015, Japan
| | - Masahiro Ozaki
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, 3-1 Higashi 4 Minami 1, Bibai, Hokkaido, 072-0015, Japan
- Department of Orthopaedic Surgery, Saiseikai Yokohamashi Tobu Hospital, 3-6-1 Shimosueyoshi, Tsurumi, Yokohama, Kanagawa, 230-8765, Japan
| | - Satoko Matsumoto Harmon
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, 3-1 Higashi 4 Minami 1, Bibai, Hokkaido, 072-0015, Japan
| | - Miki Komatsu
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, 3-1 Higashi 4 Minami 1, Bibai, Hokkaido, 072-0015, Japan
| | - Seiji Iimoto
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, 3-1 Higashi 4 Minami 1, Bibai, Hokkaido, 072-0015, Japan
- Department of Orthopaedic Surgery, Ehime Prefectural Central Hospital, 83 Kasugamachi, Matsuyama, Ehime, 790-0024, Japan
| | - Osahiko Tsuji
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, 3-1 Higashi 4 Minami 1, Bibai, Hokkaido, 072-0015, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - Akio Minami
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, 3-1 Higashi 4 Minami 1, Bibai, Hokkaido, 072-0015, Japan
| | - Masahiko Takahata
- Department of Orthopaedic Surgery, Graduate School of Medicine, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-0808, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-0808, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
5
|
Alfin J, Mahmud M, Yusuf A, Binitie O, Joseph S, Bot G, Yiltok S. Acute traumatic spinal cord injury; does a low tesla magnetic resonance imaging features correlates with neurological status and predict early outcome? NIGERIAN JOURNAL OF MEDICINE 2021. [DOI: 10.4103/njm.njm_41_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Boudreau E, Otamendi A, Levine J, Griffin JF, Gilmour L, Jeffery N. Relationship between Machine-Learning Image Classification of T 2-Weighted Intramedullary Hypointensity on 3 Tesla Magnetic Resonance Imaging and Clinical Outcome in Dogs with Severe Spinal Cord Injury. J Neurotrauma 2020; 38:725-733. [PMID: 33054592 DOI: 10.1089/neu.2020.7188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Early prognostic information in cases of severe spinal cord injury can aid treatment planning and stratification for clinical trials. Analysis of intraparenchymal signal change on magnetic resonance imaging has been suggested to inform outcome prediction in traumatic spinal cord injury. We hypothesized that intraparenchymal T2-weighted hypointensity would be associated with a lower potential for functional recovery and a higher risk of progressive neurological deterioration in dogs with acute, severe, naturally occurring spinal cord injury. Our objectives were to: 1) demonstrate capacity for machine-learning criteria to identify clinically relevant regions of hypointensity and 2) compare clinical outcomes for cases with and without such regions. A total of 95 dogs with complete spinal cord injury were evaluated. An image classification system, based on Speeded-Up Robust Features (SURF), was trained to recognize individual axial T2-weighted slices that contained hypointensity. The presence of such slices in a given transverse series was correlated with a lower chance of functional recovery (odds ratio [OR], 0.08; confidence interval [CI], 0.02-0.38; p < 10-3) and with a higher risk of neurological deterioration (OR, 0.14; 95% CI, 0.05-0.42; p < 10-3). Identification of intraparenchymal T2-weighted hypointensity in severe, naturally occurring spinal cord injury may be assisted by an image classification tool and is correlated with functional recovery.
Collapse
Affiliation(s)
- Elizabeth Boudreau
- Texas A&M University College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA
| | - Arturo Otamendi
- VCA San Francisco Veterinary Specialists, San Francisco, California, USA
| | - Jonathan Levine
- Texas A&M University College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA
| | - John F Griffin
- Texas A&M University College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA
| | - Lindsey Gilmour
- Texas A&M University College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA
| | - Nicholas Jeffery
- Texas A&M University College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA
| |
Collapse
|
7
|
Geldschläger O, Bosch D, Avdievich NI, Henning A. Ultrahigh-resolution quantitative spinal cord MRI at 9.4T. Magn Reson Med 2020; 85:1013-1027. [PMID: 32789980 DOI: 10.1002/mrm.28455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 11/08/2022]
Abstract
PURPOSE To present the results of the first human spinal cord in vivo MRI scans at 9.4T. METHODS A human brain coil was used to image the human spinal cord at 9.4T. All anatomical images were acquired with a T2 *-weighted gradient-echo sequence. A comparison of the influence of four different B0 shimming routines on the image quality was performed. Intrinsic signal-to-noise-ratio maps were determined using a pseudo-multiple replica approach. Measurements with different echo times were compared and processed to one multiecho data image combination image. Based on the multiecho acquisitions, T2 *-relaxation time maps were calculated. Algorithmic spinal cord detection and gray matter/white matter segmentation were tested. RESULTS An echo time between 9 and 13.8 ms compromised best between gray matter/white matter contrast and image quality. A maximum in-plane resolution of 0.15 × 0.15 mm2 was achieved for anatomical images. These images offered excellent image quality and made small structures of the spinal cord visible. The scanner vendor implemented B0 shimming routine performed best during this work. Intrinsic signal-to-noise-ratio values of between 6600 and 8060 at the upper cervical spinal cord were achieved. Detection and segmentation worked reliably. An average T2 *-time of 24.88 ms ± 6.68 ms for gray matter and 19.37 ms ± 8.66 ms for white matter was calculated. CONCLUSION The proposed human brain coil can be used to image the spinal cord. The maximum in-plane resolution in this work was higher compared with the 7T results from the literature. The 9.4T acquisitions made the small structures of the spinal cord clearly visible.
Collapse
Affiliation(s)
- Ole Geldschläger
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Dario Bosch
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
| | - Nikolai I Avdievich
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anke Henning
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
George MP, Kim WG, Lee EY. Tales from the Night:: Emergency MR Imaging in Pediatric Patients after Hours. Magn Reson Imaging Clin N Am 2019; 27:409-426. [PMID: 30910105 DOI: 10.1016/j.mric.2019.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Overnight in-house radiology has rapidly become an important part of contemporary practice models, and is increasingly the norm in pediatric radiology. MR imaging is an indispensable first-line and problem-solving tool in the pediatric population. This has led to increasingly complex MR imaging being performed "after hours" on pediatric patients. This article reviews the factors that have led to widespread overnight subspecialty radiology and the associated challenges for overnight radiologists, and provides an overview of up-to-date imaging techniques and imaging findings of the most common indications for emergent MR imaging in the pediatric population.
Collapse
Affiliation(s)
- Michael P George
- Department of Radiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Wendy G Kim
- Department of Radiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Edward Y Lee
- Division of Thoracic Imaging, Department of Radiology, Boston Children's Hospital, Harvard Medical School, 330 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
9
|
Naik BR, Sakalecha AK, Savagave SG. Evaluation of Traumatic Spine by Magnetic Resonance Imaging and Its Correlation with Cliniconeurological Outcome. J Emerg Trauma Shock 2019; 12:101-107. [PMID: 31198276 PMCID: PMC6557048 DOI: 10.4103/jets.jets_110_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Spinal trauma is associated with long-term disability. Early detection can lead to prompt and accurate diagnosis, expeditious management, and avoidance of unnecessary procedures. Magnetic resonance imaging (MRI) helps to accurately depict the presence and extent of spinal cord injury (SCI) in these patients. Purpose: This study was aimed to look for various MRI findings which are predictive of initial neurological deficit in patients with spinal trauma and to correlate the findings with resultant neurological outcome. Materials and Methods: The present study was conducted over a period of 18 months from January 2016 to June 2017 in 57 patients with spinal trauma who underwent MRI spine. Neurological status of patients was assessed at the time of admission and discharge in accordance with the American Spine Injury Association (ASIA) impairment scale. Various MRI parameters were evaluated for correlation with the severity of the spinal injury. Results: Patients with cord transection, cord hemorrhage, and epidural hematoma had initial high-grade ASIA impairment scale. Patients with cord transection and cord hemorrhage did not show any improvement in their neurological status during their hospital stay. Patients with only cord edema and epidural hematoma showed favorable neurological outcome. Cord contusion showed lesser neurological recovery, as compared with cord edema and normal cord. Conclusion: MRI findings in acute SCI correlated well with the initial neurological deficits on admission and at the time of discharge. MRI should be recommended in all patients with suspected spinal trauma both as a diagnostic and prognostic indicator.
Collapse
Affiliation(s)
- Bukke Ravindra Naik
- Department of Radiodiagnosis, Sri Devaraj Urs Medical College, SDUAHER, Kolar, Karnataka, India
| | - Anil Kumar Sakalecha
- Department of Radiodiagnosis, Sri Devaraj Urs Medical College, SDUAHER, Kolar, Karnataka, India
| | | |
Collapse
|
10
|
Jeong TS, Lee SG, Kim WK, Ahn Y, Son S. Predictive Values of Magnetic Resonance Imaging Features for Tracheostomy in Traumatic Cervical Spinal Cord Injury. J Korean Neurosurg Soc 2018; 61:582-591. [PMID: 30196655 PMCID: PMC6129756 DOI: 10.3340/jkns.2017.0222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/23/2017] [Indexed: 11/27/2022] Open
Abstract
Objective To evaluate the magnetic resonance (MR) imaging features that have a statistically significant association with the need for a tracheostomy in patients with cervical spinal cord injury (SCI) during the acute stage of injury.
Methods This study retrospectively reviewed the clinical data of 130 patients with cervical SCI. We analyzed the factors believed to increase the risk of requiring a tracheostomy, including the severity of SCI, the level of injury as determined by radiological assessment, three quantitative MR imaging parameters, and eleven qualitative MR imaging parameters.
Results Significant differences between the non-tracheostomy and tracheostomy groups were determined by the following five factors on multivariate analysis : complete SCI (p=0.007), the radiological level of C5 and above (p=0.038), maximum canal compromise (MCC) (p=0.010), lesion length (p=0.022), and osteophyte formation (p=0.015). For the MCC, the cut-off value was 46%, and the risk of requiring a tracheostomy was three times higher at an interval between 50–60% and ten times higher between 60–70%. For lesion length, the cut-off value was 20 mm, and the risk of requiring a tracheostomy was two times higher at an interval between 20–30 mm and fourteen times higher between 40–50 mm.
Conclusion The American Spinal Injury Association grade A, a radiological injury level of C5 and above, an MCC ≥50%, a lesion length ≥20 mm, and osteophyte formation at the level of injury were considered to be predictive values for requiring tracheostomy intervention in patients with cervical SCI.
Collapse
Affiliation(s)
- Tae Seok Jeong
- Department of Neurosurgery, Gil Medical Center, Gachon University College of Medicine, Incheon
| | - Sang Gu Lee
- Department of Neurosurgery, Gil Medical Center, Gachon University College of Medicine, Incheon
| | - Woo Kyung Kim
- Department of Neurosurgery, Gil Medical Center, Gachon University College of Medicine, Incheon
| | - Yong Ahn
- Department of Neurosurgery, Gil Medical Center, Gachon University College of Medicine, Incheon
| | - Seong Son
- Department of Neurosurgery, Gil Medical Center, Gachon University College of Medicine, Incheon
| |
Collapse
|
11
|
Aarabi B, Sansur CA, Ibrahimi DM, Simard JM, Hersh DS, Le E, Diaz C, Massetti J, Akhtar-Danesh N. Intramedullary Lesion Length on Postoperative Magnetic Resonance Imaging is a Strong Predictor of ASIA Impairment Scale Grade Conversion Following Decompressive Surgery in Cervical Spinal Cord Injury. Neurosurgery 2017; 80:610-620. [PMID: 28362913 DOI: 10.1093/neuros/nyw053] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 11/14/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Evidence indicates that, over time, patients with spinal cord injury (SCI) improve neurologically in various degrees. We sought to further investigate indicators of grade conversion in cervical SCI. OBJECTIVE To detect predictors of ASIA impairment scale (AIS) grade conversion in SCI following surgical decompression. METHODS In a retrospective study, demographics, clinical, imaging, and surgical data from 100 consecutive patients were assessed for predictors of AIS grade conversion. RESULTS American Spinal Injury Association motor score was 17.1. AIS grade was A in 52%, B in 29%, and C in 19% of patients. Surgical decompression took place on an average of 17.6 h following trauma (≤12 h in 51 and >12 h in 49). Complete decompression was verified by magnetic resonance imaging (MRI) in 73 patients. Intramedullary lesion length (IMLL) on postoperative MRI measured 72.8 mm, and hemorrhage at the injury epicenter was noted in 71 patients. Grade conversion took place in 26.9% of AIS grade A patients, 65.5% of AIS grade B, and 78.9% of AIS grade C. AIS grade conversion had statistical relationship with injury severity score, admission AIS grade, extent of decompression, presence of intramedullary hemorrhage, American Spinal Injury Association motor score, and IMLL. A stepwise multiple logistic regression analysis indicated IMLL was the sole and strongest indicator of AIS grade conversion (odds ratio 0.950, 95% CI 0.931-0.969). For 1- and 10-mm increases in IMLL, the model indicates 4% and 40% decreases, respectively, in the odds of AIS grade conversion. CONCLUSION Compared with other surrogates, IMLL remained as the only predictor of AIS grade conversion.
Collapse
Affiliation(s)
- Bizhan Aarabi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland.,R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Charles A Sansur
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - David M Ibrahimi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - David S Hersh
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Elizabeth Le
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Cara Diaz
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jennifer Massetti
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Noori Akhtar-Danesh
- School of Nursing and Depart-ment of Clinical Epidemiology and Bio-statistics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
|
13
|
Salegio EA, Bresnahan JC, Sparrey CJ, Camisa W, Fischer J, Leasure J, Buckley J, Nout-Lomas YS, Rosenzweig ES, Moseanko R, Strand S, Hawbecker S, Lemoy MJ, Haefeli J, Ma X, Nielson JL, Edgerton VR, Ferguson AR, Tuszynski MH, Beattie MS. A Unilateral Cervical Spinal Cord Contusion Injury Model in Non-Human Primates (Macaca mulatta). J Neurotrauma 2016; 33:439-59. [PMID: 26788611 PMCID: PMC4799702 DOI: 10.1089/neu.2015.3956] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of a non-human primate (NHP) model of spinal cord injury (SCI) based on mechanical and computational modeling is described. We scaled up from a rodent model to a larger primate model using a highly controllable, friction-free, electronically-driven actuator to generate unilateral C6-C7 spinal cord injuries. Graded contusion lesions with varying degrees of functional recovery, depending upon pre-set impact parameters, were produced in nine NHPs. Protocols and pre-operative magnetic resonance imaging (MRI) were used to optimize the predictability of outcomes by matching impact protocols to the size of each animal's spinal canal, cord, and cerebrospinal fluid space. Post-operative MRI confirmed lesion placement and provided information on lesion volume and spread for comparison with histological measures. We evaluated the relationships between impact parameters, lesion measures, and behavioral outcomes, and confirmed that these relationships were consistent with our previous studies in the rat. In addition to providing multiple univariate outcome measures, we also developed an integrated outcome metric describing the multivariate cervical SCI syndrome. Impacts at the higher ranges of peak force produced highly lateralized and enduring deficits in multiple measures of forelimb and hand function, while lower energy impacts produced early weakness followed by substantial recovery but enduring deficits in fine digital control (e.g., pincer grasp). This model provides a clinically relevant system in which to evaluate the safety and, potentially, the efficacy of candidate translational therapies.
Collapse
Affiliation(s)
- Ernesto A Salegio
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco , San Francisco, California
| | - Jacqueline C Bresnahan
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco , San Francisco, California
| | - Carolyn J Sparrey
- 2 School of Engineering Science, Simon Fraser University , Surrey, British Columbia, Canada
| | - William Camisa
- 3 Taylor Collaboration, St. Mary's Medical Center , San Francisco, California
| | - Jason Fischer
- 3 Taylor Collaboration, St. Mary's Medical Center , San Francisco, California
| | - Jeremi Leasure
- 3 Taylor Collaboration, St. Mary's Medical Center , San Francisco, California
| | - Jennifer Buckley
- 4 Department of Mechanical Engineering, University of Delaware , Newark, Delaware
| | - Yvette S Nout-Lomas
- 5 College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| | - Ephron S Rosenzweig
- 6 Department of Neurosciences, University of California at San Diego , San Diego, California; Veterans Administration Medical Center, La Jolla, California
| | - Rod Moseanko
- 7 California National Primate Research Center, University of California at Davis , Davis, California
| | - Sarah Strand
- 7 California National Primate Research Center, University of California at Davis , Davis, California
| | - Stephanie Hawbecker
- 7 California National Primate Research Center, University of California at Davis , Davis, California
| | - Marie-Josee Lemoy
- 7 California National Primate Research Center, University of California at Davis , Davis, California
| | - Jenny Haefeli
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco , San Francisco, California
| | - Xiaokui Ma
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco , San Francisco, California
| | - Jessica L Nielson
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco , San Francisco, California
| | - V R Edgerton
- 8 Departments of Physiological Science and Neurology, University of California at Los Angeles , Los Angeles, California
| | - Adam R Ferguson
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco , San Francisco, California
| | - Mark H Tuszynski
- 6 Department of Neurosciences, University of California at San Diego , San Diego, California; Veterans Administration Medical Center, La Jolla, California
| | - Michael S Beattie
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco , San Francisco, California
| |
Collapse
|
14
|
Evaluation of Traumatic Spine by Magnetic Resonance Imaging and Correlation with Neurological Recovery. Asian Spine J 2015; 9:748-56. [PMID: 26435794 PMCID: PMC4591447 DOI: 10.4184/asj.2015.9.5.748] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/21/2015] [Accepted: 02/21/2015] [Indexed: 01/28/2023] Open
Abstract
Study Design Prospective study. Purpose To compare magnetic resonance imaging (MRI) findings with clinical profile and neurological status of the patient and to correlate the MRI findings with neurological recovery of the patients and predict the outcome. Overview of Literature Previous studies have reported poor neurological recovery in patients with cord hemorrhage, as compared to cord edema in spine injury patients. High canal compromise, cord compression along with higher extent of cord injury also carries poor prognostic value. Methods Neurological status of patients was assessed at the time of admission and discharge in as accordance with the American Spine Injury Association (ASIA) impairment scale. Mean stay in hospital was 14.11±5.74 days. Neurological status at admission and neurological recovery at discharge was compared with various qualitative cord findings and quantitative parameters on MRI. In 27 patients, long-term follow-up was done at mean time of 285.9±43.94 days comparing same parameters. Results Cord edema and normal cord was associated with favorable neurological outcome. Cord contusion showed lesser neurological recovery, as compared to cord edema. Cord hemorrhage was associated with worst neurological status at admission and poor neurological recovery. Mean canal compromise (MCC), mean spinal cord compression (MSCC) and lesion length values were higher in patients presenting with ASIA A impairment scale injury and showed decreasing trends towards ASIA E impairment scale injury. Patients showing neurological recovery had lower mean MCC, MSCC, and lesion length, as compared to patients showing no neurological recovery (p<0.05). Conclusions Cord hemorrhage, higher MCC, MSCC, and lesion length values have poor prognostic value in spine injury patients.
Collapse
|
15
|
Hammond LJ, Hecht S. SUSCEPTIBILITY ARTIFACTS ON T2*-WEIGHTED MAGNETIC RESONANCE IMAGING OF THE CANINE AND FELINE SPINE. Vet Radiol Ultrasound 2015; 56:398-406. [DOI: 10.1111/vru.12245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/03/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Laura J. Hammond
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine; C247 Veterinary Medical Center; Knoxville TN 37996-4544
| | - Silke Hecht
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine; C247 Veterinary Medical Center; Knoxville TN 37996-4544
| |
Collapse
|
16
|
Ouyang HQ, Gong ZJ, Zha YF, Liu CS, Yang ZH. Splenic siderotic nodules in patients with liver cirrhosis. Exp Ther Med 2013; 6:445-450. [PMID: 24137205 PMCID: PMC3786845 DOI: 10.3892/etm.2013.1135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/14/2013] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to investigate the interrelation between splenic siderotic nodules, hypersplenism and liver function in patients with liver cirrhosis. The splenic enhanced susceptibility-weighted angiography (ESWAN) and conventional magnetic resonance images of 33 patients with liver cirrhosis were retrospectively studied and the ESWAN images were graded. The distribution and prevalence of the image grades for patients with and without hypersplenism were evaluated. In addition, the splenic volume and the distribution of Child-Pugh and albumin scores were compared between patients with and without siderotic nodules, and the correlation between splenic volume and the ESWAN image grades were evaluated in the patients with siderotic nodules. The ESWAN images revealed splenic siderotic nodules in 24 patients. The distribution and prevalence of the ESWAN image grades were demonstrated to be significantly different (P<0.001) between patients with and without hypersplenism. Furthermore, significant differences were observed between patients with and without siderotic nodules with regard to splenic volume and the distribution of Child-Pugh and serum albumin scores (P<0.001). No significant correlation was demonstrated between splenic volume and the ESWAN image grades (P>0.05). In conclusion, a higher prevalence of splenic siderotic nodules (72.7%) was observed using the ESWAN sequence, in comparison with results from previous studies, obtained using the T1-spoiled gradient echo sequence. The presence of splenic siderotic nodules was consistent with the occurrence of hypersplenism and was interrelated with reserved liver function.
Collapse
Affiliation(s)
- Huang-Qing Ouyang
- Departments of Radiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | | | | | | | | |
Collapse
|
17
|
Abstract
Spinal cord injuries often occur in cases of multiple trauma, can occur alone or in combination with concomitant injuries and are mostly associated with high morbidity and mortality. They often result in lifelong impairment and need for medical care. Radiologic diagnostics are crucial in the acute setting as well as in the long-term treatment of spinal cord injuries. Besides an overview of diagnostic and therapeutic management, typical magnetic resonance imaging (MRI) findings in the acute and chronic stages of spinal cord injuries are presented in this article. Post-traumatic syringomyelia can even develop years after the initial injury of the spine or spinal cord. As syringomyelia can also occur in association with tumors, developmental anomalies and also idiopathically, a thorough MRI diagnostic is essential especially in any case of newly diagnosed syringomyelia.
Collapse
|
18
|
Aarabi B, Simard JM, Kufera JA, Alexander M, Zacherl KM, Mirvis SE, Shanmuganathan K, Schwartzbauer G, Maulucci CM, Slavin J, Ali K, Massetti J, Eisenberg HM. Intramedullary lesion expansion on magnetic resonance imaging in patients with motor complete cervical spinal cord injury. J Neurosurg Spine 2012; 17:243-50. [PMID: 22794535 PMCID: PMC3534760 DOI: 10.3171/2012.6.spine12122] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECT The authors performed a study to determine if lesion expansion occurs in humans during the early hours after spinal cord injury (SCI), as has been established in rodent models of SCI, and to identify factors that might predict lesion expansion. METHODS The authors studied 42 patients with acute cervical SCI and admission American Spinal Injury Association Impairment Scale Grades A (35 patients) and B (7 patients) in whom 2 consecutive MRI scans were obtained 3-134 hours after trauma. They recorded demographic data, clinical information, Injury Severity Score (ISS), admission MRI-documented spinal canal and cord characteristics, and management strategies. RESULTS The characteristics of the cohort were as follows: male/female ratio 37:5; mean age, 34.6 years; and cause of injury, motor vehicle collision, falls, and sport injuries in 40 of 42 cases. The first MRI study was performed 6.8 ±2.7 hours (mean ± SD) after injury, and the second was performed 54.5 ± 32.3 hours after injury. The rostrocaudal intramedullary length of the lesion on the first MRI scan was 59.2 ± 16.1 mm, whereas its length on the second was 88.5 ± 31.9 mm. The principal factors associated with lesion length on the first MRI study were the time between injury and imaging (p = 0.05) and the time to decompression (p = 0.03). The lesion's rate of rostrocaudal intramedullary expansion in the interval between the first and second MRI was 0.9 ± 0.8 mm/hour. The principal factors associated with the rate of expansion were the maximum spinal cord compression (p = 0.03) and the mechanism of injury (p = 0.05). CONCLUSIONS Spinal cord injury in humans is characterized by lesion expansion during the hours following trauma. Lesion expansion has a positive relationship with spinal cord compression and may be mitigated by early surgical decompression. Lesion expansion may be a novel surrogate measure by which to assess therapeutic effects in surgical or drug trials.
Collapse
Affiliation(s)
- Bizhan Aarabi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sigmund EE, Suero GA, Hu C, McGorty K, Sodickson DK, Wiggins GC, Helpern JA. High-resolution human cervical spinal cord imaging at 7 T. NMR IN BIOMEDICINE 2012; 25:891-899. [PMID: 22183956 PMCID: PMC3377161 DOI: 10.1002/nbm.1809] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 09/30/2011] [Accepted: 10/03/2011] [Indexed: 05/31/2023]
Abstract
We present high-resolution anatomical imaging of the cervical spinal cord in healthy volunteers at the ultrahigh field of 7 T with a prototype four-channel radiofrequency coil array, in comparison with 3-T imaging of the same subjects. Signal-to-noise ratios at both field strengths were estimated using the rigorous Kellman method. Spinal cord cross-sectional area measurements were performed, including whole-cord measurements at both fields and gray matter segmentation at 7 T. The 7-T array coil showed reduced sagittal coverage, comparable axial coverage and the expected significantly higher signal-to-noise ratio compared with equivalent 3-T protocols. In the cervical spinal cord, the signal-to-noise ratio was found by the Kellman method to be higher by a factor of 3.5 with the 7-T coil than with standard 3-T coils. Cervical spine imaging in healthy volunteers at 7 T revealed not only detailed white/gray matter differentiation, but also structures not visualized at lower fields, such as denticulate ligaments, nerve roots and rostral-caudal blood vessels. Whole-cord cross-sectional area measurements showed good agreement at both field strengths. The measurable gray/white matter cross-sectional areas at 7 T were found to be comparable with reports from histology. These pilot data demonstrate the use of higher signal-to-noise ratios at the ultrahigh field of 7 T for significant improvement in anatomical resolution of the cervical spinal cord, allowing the visualization of structures not seen at lower field strength, particularly for axial imaging.
Collapse
Affiliation(s)
- E E Sigmund
- Department of Radiology, New York University Langone Medical Center, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Joo NY, Knowles JC, Lee GS, Kim JW, Kim HW, Son YJ, Hyun JK. Effects of phosphate glass fiber-collagen scaffolds on functional recovery of completely transected rat spinal cords. Acta Biomater 2012; 8:1802-12. [PMID: 22326790 DOI: 10.1016/j.actbio.2012.01.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 01/20/2012] [Accepted: 01/22/2012] [Indexed: 12/12/2022]
Abstract
Phosphate-based glass fibers (PGFs), due to characteristics such as biodegradability and directionality, could be effective as spatial cues for axonal outgrowth following nerve injury. In the present study, PGF-containing cylindrical scaffolds of 1.8mm diameter and 3mm length were developed and implanted into the gap between the proximal and distal stumps following complete transection of rat spinal cords at T9. The PGF-free collagen scaffolds were implanted into the transected spinal cords of the control group. The open-field Basso, Beattie and Bresnahan locomotor scale revealed that the locomotor function of the experimental group was better than in the control group from 8 to 12 weeks after implantation, and urodynamic analysis revealed additional improvements in the experimental group in some parameters. Twelve weeks after implantation, some axon growth from the proximal and distal stumps to the scaffold was observed in the experimental group but not in the control group. Macrophages surrounded the injured thoracic spinal cord at 1 and 4 weeks after implantation; however, 6h after implantation, the pro-inflammatory cytokines did not differ between the control and experimental groups. Anterograde corticospinal tract (CST) tracing with biotinylated dextran amine showed that, in the experimental group, some CST outgrowths could reach the lumbar enlargement. By 12 weeks, the mRNA levels of brain-derived neurotrophic factor in the bladder had increased more in the experimental group than in the controls. We conclude that PGFs can have a beneficial effect on functional recovery following complete transection of the thoracic spinal cord in rats.
Collapse
|
21
|
van Middendorp JJ, Goss B, Urquhart S, Atresh S, Williams RP, Schuetz M. Diagnosis and prognosis of traumatic spinal cord injury. Global Spine J 2011; 1:1-8. [PMID: 24353930 PMCID: PMC3864437 DOI: 10.1055/s-0031-1296049] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 10/13/2011] [Indexed: 11/19/2022] Open
Abstract
Despite promising advances in basic spinal cord repair research, no effective therapy resulting in major neurological or functional recovery after traumatic spinal cord injury (tSCI) is available to date. The neurological examination according to the International Standards for Neurological and Functional Classification of Spinal Cord Injury Patients (International Standards) has become the cornerstone in the assessment of the severity and level of the injury. Based on parameters from the International Standards, physicians are able to inform patients about the predicted long-term outcomes, including the ability to walk, with high accuracy. In those patients who cannot participate in a reliable physical neurological examination, magnetic resonance imaging and electrophysiological examinations may provide useful diagnostic and prognostic information. As clinical research on this topic continues, the prognostic value of the reviewed diagnostic assessments will become more accurate in the near future. These advances will provide useful information for physicians to counsel tSCI patients and their families during the catastrophic initial phase after the injury.
Collapse
Affiliation(s)
- Joost J. van Middendorp
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia,Trauma Service, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Ben Goss
- AOSpine Reference Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Susan Urquhart
- Spinal Injuries Unit, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Sridhar Atresh
- Spinal Injuries Unit, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Richard P. Williams
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia,AOSpine Reference Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Michael Schuetz
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia,Trauma Service, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
Cadotte DW, Wilson JR, Mikulis D, Stroman PW, Brady S, Fehlings MG. Conventional MRI as a diagnostic and prognostic tool in spinal cord injury: a systemic review of its application to date and an overview on emerging MRI methods. ACTA ACUST UNITED AC 2011; 5:121-33. [DOI: 10.1517/17530059.2011.556111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Wang M, Dai Y, Han Y, Haacke EM, Dai J, Shi D. Susceptibility weighted imaging in detecting hemorrhage in acute cervical spinal cord injury. Magn Reson Imaging 2011; 29:365-73. [PMID: 21232894 DOI: 10.1016/j.mri.2010.10.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 08/12/2010] [Accepted: 10/28/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Susceptibility weighted imaging (SWI) is sensitive to deoxyhemoglobin and blood products such as hemosiderin in detecting microbleeds in the brain. However, there are no studies on SWI in the spine cord injury so far. The purpose of this study was to evaluate the role of SWI in detecting hemorrhage in acute cervical spinal cord injury (SCI). MATERIALS AND METHODS Twenty-three patients with a history of acute cervical spine trauma were studied. High-resolution SWI, gradient-echo (GRE) T2* weighted-image (T2*WI) and conventional magnetic resonance imaging (MRI) were performed on all patients within 15 days of the onset of injury. On the basis of the MRI findings, the patients were classified into four patterns: normal cord, spinal cord edema, spinal cord contusion and spinal cord hemorrhage. Quantitative analysis was performed by calculating and comparing the signal ratio of the hemorrhage to normal spinal cord on the same slice of T2*WI and SWI. All patients were clinically evaluated in follow-up. Twenty volunteers were also scanned as a control group. RESULTS Out of 23 patients with a history of acute cervical spine trauma, 4 patients showed normal spinal cord on both conventional MRI and SWI, 8 had only spinal cord edema and 5 had contusion on conventional MRI, but SWI showed hemorrhage in 2 of the 5 patients with spinal contusion on conventional MRI; the other 6 patients had intraspinal hemorrhage on conventional MRI, and SWI proved hemorrhage in all these 6 patients. There was a significant difference between the signal ratios of hemorrhage to normal tissue on T2*WI and SWI (Z=2.34, P=.02). CONCLUSION Susceptibility weighted imaging is more sensitive than conventional MRI in detecting hemorrhage in acute cervical SCI. This technique could prove to be a useful tool in the routine evaluation of cervical SCI patients.
Collapse
Affiliation(s)
- Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | | | | | | | | | | |
Collapse
|
24
|
Diagnostic criteria of traumatic central cord syndrome. Part 2: A Questionnaire Survey among Spine Specialists. Spinal Cord 2010; 48:657-63. [DOI: 10.1038/sc.2010.72] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Ijiri K, Hida K, Yano S, Iwasaki Y. Transient focal spinal cord hyperemia after resection of spinal meningioma: case report. Neurosurgery 2009; 64:E1198-9; discussion E1199. [PMID: 19487865 DOI: 10.1227/01.neu.0000345950.73998.7b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Transient postoperative focal hyperemia in the spinal cord is rare. We report 2 patients with transient focal hyperemia after the resection of a spinal meningioma that led to temporal neurological deterioration followed by complete recovery. CLINICAL PRESENTATION Two patients presented with cervical meningiomas at the C7 and C1-C2 levels. Preoperatively, both patients experienced gradual exacerbation of spastic tetraparesis. Magnetic resonance imaging revealed isointensity on T1-weighted images and high intensity on T2-weighted images with homogeneous enhancement. INTERVENTION Both patients underwent complete tumor removal. A histopathological examination revealed a meningothelial meningioma in both patients. Postoperative magnetic resonance imaging revealed transient focal hyperemia of the cervical cord. CONCLUSION Both patients manifested transient focal hyperemia of the spinal cord after acute decompression by resection of a spinal meningioma.
Collapse
Affiliation(s)
- Kosei Ijiri
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | |
Collapse
|