1
|
Haddad M, Cherchi F, Alsalem M, Al-saraireh YM, Madae’en S. Adenosine Receptors as Potential Therapeutic Analgesic Targets. Int J Mol Sci 2023; 24:13160. [PMID: 37685963 PMCID: PMC10487796 DOI: 10.3390/ijms241713160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Pain represents an international burden and a major socio-economic public health problem. New findings, detailed in this review, suggest that adenosine plays a significant role in neuropathic and inflammatory pain, by acting on its metabotropic adenosine receptors (A1AR, A2AAR, A2BAR, A3AR). Adenosine receptor ligands have a practical translational potential based on the favorable efficacy and safety profiles that emerged from clinical research on various agonists and antagonists for different pathologies. The present review collects the latest studies on selected adenosine receptor ligands in different pain models. Here, we also covered the many hypothesized pathways and the role of newly synthesized allosteric adenosine receptor modulators. This review aims to present a summary of recent research on adenosine receptors as prospective therapeutic targets for a range of pain-related disorders.
Collapse
Affiliation(s)
- Mansour Haddad
- Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy;
| | - Mohammad Alsalem
- School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Yousef M. Al-saraireh
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan;
| | - Saba Madae’en
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| |
Collapse
|
2
|
Jung SM, Peyton L, Essa H, Choi DS. Adenosine receptors: Emerging non-opioids targets for pain medications. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 11:100087. [PMID: 35372716 PMCID: PMC8971635 DOI: 10.1016/j.ynpai.2022.100087] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
Physical and emotional pain deteriorates the quality of well-being. Also, numerous non-invasive and invasive treatments for diagnosed diseases such as cancer medications and surgical procedures cause various types of pain. Despite the multidisciplinary approaches available to manage pain, the unmet needs for medication with minimal side effects are substantial. Especially with the surge of opioid crisis during the last decades, non-opioid analgesics may reduce life-threatening overdosing and addictive liability. Although many clinical trials supported the potential potency of cannabis and cannabidiol (CBD) in pain management or treatment, the long-term benefits of cannabis or CBD are still not evident. At the same time, growing evidence shows the risk of overusing cannabis and CBD. Therefore, it is urgent to develop novel analgesic medications that minimize side effects. All four well-identified adenosine receptors, A1, A2A, A2B, and A3, are implicated in pain. Recently, a report demonstrated that an adenosine A1R-specific positive allosteric modulator (PAM) is a potent analgesic without noticeable side effects. Also, several A3R agonists are being considered as promising analgesic agent. However, the importance of adenosine in pain is relatively underestimated. To help readers understand, first, we will summarize the historical perspective of the adenosine system in preclinical and clinical studies. Then, we will discuss possible interactions of adenosine and opioids or the cannabis system focusing on pain. Overall, this review will provide the potential role of adenosine and adenosine receptors in pain treatment.
Collapse
Affiliation(s)
- Soo-Min Jung
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Hesham Essa
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States.,Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, United States.,Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
3
|
Betti M, Catarzi D, Varano F, Falsini M, Varani K, Vincenzi F, Pasquini S, di Cesare Mannelli L, Ghelardini C, Lucarini E, Dal Ben D, Spinaci A, Bartolucci G, Menicatti M, Colotta V. Modifications on the Amino-3,5-dicyanopyridine Core To Obtain Multifaceted Adenosine Receptor Ligands with Antineuropathic Activity. J Med Chem 2019; 62:6894-6912. [PMID: 31306001 DOI: 10.1021/acs.jmedchem.9b00106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new series of amino-3,5-dicyanopyridines (1-31) was synthesized and biologically evaluated in order to further investigate the potential of this scaffold to obtain adenosine receptor (AR) ligands. In general, the modifications performed have led to compounds having high to good human (h) A1AR affinity and an inverse agonist profile. While most of the compounds are hA1AR-selective, some derivatives behave as mixed hA1AR inverse agonists/A2A and A2B AR antagonists. The latter compounds (9-12) showed that they reduce oxaliplatin-induced neuropathic pain by a mechanism involving the alpha7 subtype of nAchRs, similar to the nonselective AR antagonist caffeine, taken as the reference compound. Along with the pharmacological evaluation, chemical stability of methyl 3-(((6-amino-3,5-dicyano-4-(furan-2-yl)pyridin-2-yl)sulfanyl)methyl)benzoate 10 was assessed in plasma matrices (rat and human), and molecular modeling studies were carried out to better rationalize the available structure-activity relationships.
Collapse
Affiliation(s)
- Marco Betti
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Via Ugo Schiff, 6 , 50019 Sesto Fiorentino , Italy
| | - Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Via Ugo Schiff, 6 , 50019 Sesto Fiorentino , Italy
| | - Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Via Ugo Schiff, 6 , 50019 Sesto Fiorentino , Italy
| | - Matteo Falsini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Via Ugo Schiff, 6 , 50019 Sesto Fiorentino , Italy
| | - Katia Varani
- Dipartimento di Scienze Mediche, Sezione di Farmacologia , Università degli Studi di Ferrara , Via Fossato di Mortara 17-19 , 44121 Ferrara , Italy
| | - Fabrizio Vincenzi
- Dipartimento di Scienze Mediche, Sezione di Farmacologia , Università degli Studi di Ferrara , Via Fossato di Mortara 17-19 , 44121 Ferrara , Italy
| | - Silvia Pasquini
- Dipartimento di Scienze Mediche, Sezione di Farmacologia , Università degli Studi di Ferrara , Via Fossato di Mortara 17-19 , 44121 Ferrara , Italy
| | - Lorenzo di Cesare Mannelli
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmacologia e Tossicologia , Università degli Studi di Firenze , Viale Pieraccini, 6 , 50139 Firenze , Italy
| | - Carla Ghelardini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmacologia e Tossicologia , Università degli Studi di Firenze , Viale Pieraccini, 6 , 50139 Firenze , Italy
| | - Elena Lucarini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmacologia e Tossicologia , Università degli Studi di Firenze , Viale Pieraccini, 6 , 50139 Firenze , Italy
| | - Diego Dal Ben
- Scuola di Scienze del Farmaco e dei Prodotti della Salute , Università degli Studi di Camerino , Via S. Agostino 1 , 62032 Camerino , Macerata , Italy
| | - Andrea Spinaci
- Scuola di Scienze del Farmaco e dei Prodotti della Salute , Università degli Studi di Camerino , Via S. Agostino 1 , 62032 Camerino , Macerata , Italy
| | - Gianluca Bartolucci
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Via Ugo Schiff, 6 , 50019 Sesto Fiorentino , Italy
| | - Marta Menicatti
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Via Ugo Schiff, 6 , 50019 Sesto Fiorentino , Italy
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Via Ugo Schiff, 6 , 50019 Sesto Fiorentino , Italy
| |
Collapse
|
4
|
Sustained reversal of central neuropathic pain induced by a single intrathecal injection of adenosine A 2A receptor agonists. Brain Behav Immun 2018; 69:470-479. [PMID: 29366930 DOI: 10.1016/j.bbi.2018.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/19/2023] Open
Abstract
Central neuropathic pain is a debilitating outcome of spinal cord injury (SCI) and current treatments to alleviate this pain condition are ineffective. A growing body of literature suggests that activating adenosine A2A receptors (A2ARs) decreases the production of proinflammatory cytokines and increases the production of anti-inflammatory cytokines. Here, the effect of administering intrathecal A2AR agonists on central neuropathic pain was measured using hindpaw mechanical allodynia in a rat model of SCI termed spinal neuropathic avulsion pain (SNAP). Other models of SCI cause extensive damage to the spinal cord, resulting in paralysis and health problems. SNAP rats with unilateral low thoracic (T13)/high lumbar (L1) dorsal root avulsion develop below-level bilateral allodynia, without concomitant motor or health problems. A single intrathecal injection of the A2AR agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamido adenosine HCl (CGS21680) reversed SCI-induced allodynia for at least 6 weeks. The reversal is likely in part mediated by interleukin (IL)-10, as intrathecally administering neutralizing IL-10 antibodies 1 week after CGS21680 abolished the anti-allodynic effect of CGS21680. Dorsal spinal cord tissue from the ipsilateral site of SCI (T13/L1) was assayed 1 and 6 weeks after CGS21680 for IL-10, CD11b, and tumor necrosis factor (TNF) gene expression. CGS21680 treatment did not change IL-10 gene expression but did significantly decrease CD11b and TNF gene expression at both timepoints. A second A2AR agonist, 4-(3-(6-amino-9-(5-cyclopropylcarbamoyl-3,4-dihydroxytetrahydrofuran-2-yl)-9H-purin-2-yl)prop-2-ynyl)piperidine-1-carboxylic acid methyl ester (ATL313), was also able to significantly prevent and reverse SCI-induced allodynia for several weeks after a single intrathecal injection, providing converging lines of evidence of A2AR involvement. The enduring pain reversal after a single intrathecal injection of A2AR agonists suggests that A2AR agonists could be exciting new candidates for treating SCI-induced central neuropathic pain.
Collapse
|
5
|
Exploring Nonopioid Analgesic Agents for Intrathecal Use. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00068-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Adenosine receptor targets for pain. Neuroscience 2016; 338:1-18. [DOI: 10.1016/j.neuroscience.2015.10.031] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/29/2015] [Accepted: 10/15/2015] [Indexed: 12/21/2022]
|
7
|
Ma Z, Li Y, Zhang YP, Shields LBE, Xie Q, Yan G, Liu W, Chen G, Zhang Y, Brommer B, Xu XM, Lu Y, Chen X, Shields CB. Thermal nociception using a modified Hargreaves method in primates and humans. FUNCTIONAL NEUROLOGY 2016; 30:229-36. [PMID: 26727701 DOI: 10.11138/fneur/2015.30.4.229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nociception is an important protective mechanism. The Hargreaves method, which involves measuring withdrawal latency following thermal stimulation to Thermal nociception using a modified Hargreaves method in primates and humans the paw, is commonly used to measure pain thresholds in rodents. We modified this technique to measure pain thresholds in monkeys and humans. The modified Hargreaves method was used to quantitate pain sensitivity in eight normal rhesus monkeys, 55 human volunteers, and 12 patients with spinal cord or cauda equina lesions. Thermal stimulation was delivered at 80% of maximum output, and the duration of the stimulation was set at a maximum of 10 seconds to avoid skin injury. The following withdrawal latencies were recorded: 2.7 ± 0.12 seconds in volunteers and 3.4 ± 0.35 seconds in neurologically intact monkeys (p>0.05). Patients with spinal cord or cauda equina lesions showed significantly increased latencies (p<0.001). The modified Hargreaves technique is a safe and reliable method that can provide a validated measure of physiological pain sensation.
Collapse
|
8
|
Adenosine A1 receptors mediate the intracisternal injection of orexin-induced antinociceptive action against colonic distension in conscious rats. J Neurol Sci 2016; 362:106-10. [DOI: 10.1016/j.jns.2016.01.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 12/12/2022]
|
9
|
Caffeine treatment aggravates secondary degeneration after spinal cord injury. Brain Res 2015; 1634:75-82. [PMID: 26746340 DOI: 10.1016/j.brainres.2015.12.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) often results in some form of paralysis. Recently, SCI therapy has been focused on preventing secondary injury to reduce both neuroinflammation and lesion size so that functional outcome after an SCI may be improved. Previous studies have shown that adenosine receptors (AR) are a major regulator of inflammation after an SCI. The current study was performed to examine the effect of caffeine, a pan-AR blocker, on spontaneous functional recovery after an SCI. Animals were assigned into 3 groups randomly, including sham, PBS and caffeine groups. The rat SCI was generated by an NYU impactor with a 10 g rod dropped from a 25 mm height at thoracic 9 spinal cord level. Caffeine and PBS were injected daily during the experiment period. Hind limb motor function was evaluated by the Basso, Beattie, Bresnahan (BBB) locomotor rating scale at 1 week and 4 weeks after the SCI. Spinal cord segments were collected after final behavior evaluation for morphological analysis. The tissue sparing was evaluated by luxol fast blue staining. Immunofluorescence stain was employed to assess astrocyte activation and neurofilament positioning, while microglia activation was examined by immunohistochemistry stain.The results showed that spontaneous functional recovery was blocked after the animals were subjected caffeine daily. Moreover, caffeine administration increased the demyelination area, promoted astrocyte and microglia activation and decreased the quantity of neurofilaments. These findings suggest that the neurotoxicity effect of caffeine may be associated with the inhibition of neural repair and the promotion of neuroinflammation.
Collapse
|
10
|
Central or peripheral delivery of an adenosine A1 receptor agonist improves mechanical allodynia in a mouse model of painful diabetic neuropathy. Neuroscience 2014; 285:312-23. [PMID: 25451280 DOI: 10.1016/j.neuroscience.2014.10.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 10/28/2014] [Accepted: 10/31/2014] [Indexed: 02/07/2023]
Abstract
Diabetic peripheral neuropathy is a common complication of diabetes mellitus, and a significant proportion of individuals suffer debilitating pain that significantly affects their quality of life. Unfortunately, symptomatic treatment options have limited efficacy, and often carry significant risk of systemic adverse effects. Activation of the adenosine A1 receptor (A1R) by the analgesic small molecule adenosine has been shown to have antinociceptive benefits in models of inflammatory and neuropathic pain. The current study used a mouse model of painful diabetic neuropathy to determine the effect of diabetes on endogenous adenosine production, and if central or peripheral delivery of adenosine receptor agonists could alleviate signs of mechanical allodynia in diabetic mice. Diabetes was induced using streptozocin in male A/J mice. Mechanical withdrawal thresholds were measured weekly to characterize neuropathy phenotype. Hydrolysis of AMP into adenosine by ectonucleotidases was determined in the dorsal root ganglia (DRG) and spinal cord at 8 weeks post-induction of diabetes. AMP, adenosine and the specific A1R agonist, N(6)-cyclopentyladenosine (CPA), were administered both centrally (intrathecal) and peripherally (intraplantar) to determine the effect of activation of adenosine receptors on mechanical allodynia in diabetic mice. Eight weeks post-induction, diabetic mice displayed significantly decreased hydrolysis of extracellular AMP in the DRG; at this same time, diabetic mice displayed significantly decreased mechanical withdrawal thresholds compared to nondiabetic controls. Central delivery AMP, adenosine and CPA significantly improved mechanical withdrawal thresholds in diabetic mice. Surprisingly, peripheral delivery of CPA also improved mechanical allodynia in diabetic mice. This study provides new evidence that diabetes significantly affects endogenous AMP hydrolysis, suggesting that altered adenosine production could contribute to the development of painful diabetic neuropathy. Moreover, central and peripheral activation of A1R significantly improved mechanical sensitivity, warranting further investigation into this important antinociceptive pathway as a novel therapeutic option for the treatment of painful diabetic neuropathy.
Collapse
|
11
|
Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: a review. Life Sci 2014; 101:1-9. [PMID: 24530739 DOI: 10.1016/j.lfs.2014.01.083] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 01/22/2014] [Accepted: 01/29/2014] [Indexed: 12/22/2022]
Abstract
Caffeine is the most consumed pychostimulant in the world, and it is known to affect basic and fundamental human processes such as sleep, arousal, cognition and learning and memory. It works as a nonselective blocker of adenosine receptors (A1, A2a, A2b and A3) and has been related to the regulation of heart rate, the contraction/relaxation of cardiac and smooth muscles, and the neural signaling in the central nervous system (CNS). Since the late 1990s, studies using adenosine receptor antagonists, such as Caffeine, to block the A1 and A2a adenosine receptor subtypes have shown to reduce the physical, cellular and molecular damages caused by a spinal cord injury (SCI) or a stroke (cerebral infarction) and by other neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Interestingly, other studies using adenosine receptor agonists have also shown to provide a neuroprotective effect on various models of neurodegenerative diseases through the reduction of excitatory neurotransmitter release, apoptosis and inflammatory responses, among others. The seemingly paradoxical use of both adenosine receptor agonists and antagonists as neuroprotective agents has been attributed to differences in dosage levels, drug delivery method, extracellular concentration of excitatory neurotransmitters and stage of disease progression. We discuss and compare recent findings using both antagonists and agonists of adenosine receptors in animal models and patients that have suffered spinal cord injuries, brain strokes, and Parkinson's and Alzheimer's diseases. Additionally, we propose alternative interpretations on the seemingly paradoxical use of these drugs as potential pharmacological tools to treat these various types of neurodegenerative diseases.
Collapse
|
12
|
Piltti KM, Salazar DL, Uchida N, Cummings BJ, Anderson AJ. Safety of human neural stem cell transplantation in chronic spinal cord injury. Stem Cells Transl Med 2013; 2:961-74. [PMID: 24191264 DOI: 10.5966/sctm.2013-0064] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spinal cord injury (SCI) microenvironment undergoes dynamic changes over time, which could potentially affect survival or differentiation of cells in early versus delayed transplantation study designs. Accordingly, assessment of safety parameters, including cell survival, migration, fate, sensory fiber sprouting, and behavioral measures of pain sensitivity in animals receiving transplants during the chronic postinjury period is required for establishing a potential therapeutic window. The goal of the study was assessment of safety parameters for delayed transplantation of human central nervous system-derived neural stem cells (hCNS-SCns) by comparing hCNS-SCns transplantation in the subacute period, 9 days postinjury (DPI), versus the chronic period, 60 DPI, in contusion-injured athymic nude rats. Although the number of surviving human cells after chronic transplantation was lower, no changes in cell migration were detected between the 9 and 60 DPI cohorts; however, the data suggest chronic transplantation may have enhanced the generation of mature oligodendrocytes. The timing of transplantation did not induce changes in allodynia or hyperalgesia measures. Together, these data support the safety of hCNS-SCns transplantation in the chronic period post-SCI.
Collapse
|
13
|
Piltti KM, Salazar DL, Uchida N, Cummings BJ, Anderson AJ. Safety of epicenter versus intact parenchyma as a transplantation site for human neural stem cells for spinal cord injury therapy. Stem Cells Transl Med 2013; 2:204-16. [PMID: 23413374 DOI: 10.5966/sctm.2012-0110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neural stem cell transplantation may have the potential to yield repair and recovery of function in central nervous system injury and disease, including spinal cord injury (SCI). Multiple pathological processes are initiated at the epicenter of a traumatic spinal cord injury; these are generally thought to make the epicenter a particularly hostile microenvironment. Conversely, the injury epicenter is an appealing potential site of therapeutic human central nervous system-derived neural stem cell (hCNS-SCns) transplantation because of both its surgical accessibility and the avoidance of spared spinal cord tissue. In this study, we compared hCNS-SCns transplantation into the SCI epicenter (EPI) versus intact rostral/caudal (R/C) parenchyma in contusion-injured athymic nude rats, and assessed the cell survival, differentiation, and migration. Regardless of transplantation site, hCNS-SCns survived and proliferated; however, the total number of hCNS-SCns quantified in the R/C transplant animals was twice that in the EPI animals, demonstrating increased overall engraftment. Migration and fate profile were unaffected by transplantation site. However, although transplantation site did not alter the proportion of human astrocytes, EPI transplantation shifted the localization of these cells and exhibited a correlation with calcitonin gene-related peptide fiber sprouting. Critically, no changes in mechanical allodynia or thermal hyperalgesia were observed. Taken together, these data suggest that the intact parenchyma may be a more favorable transplantation site than the injury epicenter in the subacute period post-SCI.
Collapse
Affiliation(s)
- Katja M Piltti
- Sue and Bill Gross Stem Cell Research Center, Uiversity of California, Irvine, CA, USA
| | | | | | | | | |
Collapse
|
14
|
Yamaoka G, Horiuchi H, Morino T, Miura H, Ogata T. Different analgesic effects of adenosine between postoperative and neuropathic pain. J Orthop Sci 2013; 18:130-6. [PMID: 22996813 PMCID: PMC3553403 DOI: 10.1007/s00776-012-0302-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/16/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND Adenosine is an endogenous neuromodulator in both the peripheral and central nervous systems. Adenosine inhibits pain signals by hyperpolarizing neuronal membrane. METHODS To clarify the effects of adenosine on pain signals, we tested intrathecal adenosine injection in two neuropathic pains (spinal cord compression and chronic constriction of sciatic nerve) and postoperative pain (plantar incision). RESULTS In all three kinds of pain models, significant shortening of withdrawal latencies to thermal stimulation were detected from 24 h to 1 week after the surgery. Significant improvements of pain sensation were observed in all three models after intrathecal injection of Cl-adenosine 24 h after surgery. At 72 h after surgery, intrathecal Cl-adenosine injection inhibited hyperalgesia in the two neuropathic pain models but not in the postoperative pain model. Adenosine A1R messenger RNA (mRNA) expression significantly decreased in the plantar incision model. Adenosine A1R protein levels also decreased compared with the other two models and normal control. CONCLUSIONS These results suggest that adenosine effectively inhibits pain signals in neuropathic pain but is less effective in postoperative pain because of the decrease in adenosine A1 receptors.
Collapse
Affiliation(s)
- Gotaro Yamaoka
- Spine Center, Ehime University Hospital, Tohon, Ehime 791-0295 Japan
| | - Hideki Horiuchi
- Spine Center, Ehime University Hospital, Tohon, Ehime 791-0295 Japan
| | - Tadao Morino
- Spine Center, Ehime University Hospital, Tohon, Ehime 791-0295 Japan
| | - Hiromasa Miura
- Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295 Japan
| | - Tadanori Ogata
- Spine Center, Ehime University Hospital, Tohon, Ehime 791-0295 Japan
| |
Collapse
|
15
|
Itoh K, Chiang CY, Li Z, Lee JC, Dostrovsky JO, Sessle BJ. Central sensitization of nociceptive neurons in rat medullary dorsal horn involves purinergic P2X7 receptors. Neuroscience 2011; 192:721-31. [PMID: 21763757 PMCID: PMC3172718 DOI: 10.1016/j.neuroscience.2011.06.083] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/13/2011] [Accepted: 06/28/2011] [Indexed: 12/22/2022]
Abstract
Central sensitization is a crucial process underlying the increased neuronal excitability of nociceptive pathways following peripheral tissue injury and inflammation. Our previous findings have suggested that extracellular adenosine 5'-triphosphate (ATP) molecules acting at purinergic receptors located on presynaptic terminals (e.g., P2X2/3, P2X3 subunits) and glial cells are involved in the glutamatergic-dependent central sensitization induced in medullary dorsal horn (MDH) nociceptive neurons by application to the tooth pulp of the inflammatory irritant mustard oil (MO). Since growing evidence indicates that activation of P2X7 receptors located on glia is involved in chronic inflammatory and neuropathic pain, the aim of the present study was to test in vivo for P2X7 receptor involvement in this acute inflammatory pain model. Experiments were carried out in anesthetized Sprague-Dawley male rats. Single unit recordings were made in MDH functionally identified nociceptive neurons for which mechanoreceptive field, mechanical activation threshold and responses to noxious stimuli were tested. We found that continuous intrathecal (i.t.) superfusion over MDH of the potent P2X7 receptor antagonists brilliant blue G and periodated oxidized ATP could each significantly attenuate the MO-induced MDH central sensitization. MDH central sensitization could also be produced by i.t. superfusion of ATP and even more effectively by the P2X7 receptor agonist benzoylbenzoyl ATP. Superfusion of the microglial blocker minocycline abolished the MO-induced MDH central sensitization, consistent with reports that dorsal horn P2X7 receptors are mostly expressed on microglia. In control experiments, superfusion over MDH of vehicle did not produce any significant changes. These novel findings suggest that activation of P2X7 receptors in vivo may be involved in the development of central sensitization in an acute inflammatory pain model.
Collapse
Affiliation(s)
- Kazunori Itoh
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada M5G 1G6
| | - Chen-Yu Chiang
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada M5G 1G6
| | - Zhaohui Li
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada M5G 1G6
| | - Jye-Chang Lee
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada M5G 1G6
| | - Jonathan O. Dostrovsky
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada M5G 1G6
- Department of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada M5S 1A8
| | - Barry J. Sessle
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada M5G 1G6
- Department of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
16
|
Thorpe AJ, Clair A, Hochman S, Clemens S. Possible Sites of Therapeutic Action in Restless Legs Syndrome: Focus on Dopamine and α 2δ Ligands. Eur Neurol 2011; 66:18-29. [DOI: 10.1159/000328431] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 04/11/2011] [Indexed: 01/01/2023]
|