1
|
Dong FL, Yu L, Feng PD, Ren JX, Bai XH, Lin JQ, Cao DL, Deng YT, Zhang Y, Shen HH, Gong H, Sun WX, Chi DQ, Mei Y, Ma L, Yin MZ, Li MN, Zhang PF, Hu N, Zhou BL, Liu Y, Zheng XJ, Chen YF, Zhong D, Tao YX, Yan M, Jiang BC. An atlas of neuropathic pain-associated molecular pathological characteristics in the mouse spinal cord. Commun Biol 2025; 8:70. [PMID: 39820760 PMCID: PMC11739467 DOI: 10.1038/s42003-025-07506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
Peripheral nerve injury (PNI)-induced neuropathic pain (NP) is a severe disease with high prevalence in clinics. Gene reprogramming and tissue remodeling in the dorsal root ganglia (DRG) and spinal cord (SC) drive the development and maintenance of neuropathic pain (NP). However, our understanding of the NP-associated spatial molecular processing landscape of SC and the non-synaptic interactions between DRG neurons and SC cells remains limited. We here integrate spatial transcriptomics (ST) with single-nucleus RNA-sequencing (snRNA-seq) and bulk RNA-sequencing (bulk RNA-seq) to characterize regional pathological heterogeneity of the SC under NP conditions. First, the SC of NP mice manifests unique spatial atlases of genes, cell populations, cell-cell cross-talks, signaling pathways, and transcriptional regulatory networks compared to sham mice. We further report that injured DRG sensory neurons and the corresponding ventral horn of the SC show similar expression patterns after PNI. In addition, for the first time, we systematically exhibit "cross-talk omics" between the DRG neurons and SC dorsal horn neurons and glial cells, indicating an altered communication profile under NP conditions. Together, our findings decode the spatial and cellular heterogeneity of molecular pathological mechanisms underlying NP, providing a foundation for designing therapeutic targets for this disorder.
Collapse
Affiliation(s)
- Fu-Lu Dong
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology, Medical School, Nantong University, Nantong, China
| | - Lina Yu
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Pain Perception and Neuromodulation, Hangzhou, China
| | - Pei-Da Feng
- Department of Pathology, Medical School, Nantong University, Nantong, China
| | - Jin-Xuan Ren
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue-Hui Bai
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Qi Lin
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - De-Li Cao
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yu-Tao Deng
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Zhang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui-Hui Shen
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Gong
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Wen-Xing Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Dong-Qiu Chi
- Medical Service Center, Nantong University, Nantong, China
| | - Yixiao Mei
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Longfei Ma
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Pain Perception and Neuromodulation, Hangzhou, China
| | - Ming-Zhe Yin
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng-Na Li
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Peng-Fei Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Nan Hu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Bing-Lin Zhou
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Liu
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuan-Jie Zheng
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi-Fan Chen
- Department of Pathology, Medical School, Nantong University, Nantong, China
| | - Da Zhong
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Min Yan
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Key Laboratory of Pain Perception and Neuromodulation, Hangzhou, China.
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.
| | - Bao-Chun Jiang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Key Laboratory of Pain Perception and Neuromodulation, Hangzhou, China.
| |
Collapse
|
2
|
Castro J, Maddern J, Erickson A, Harrington AM, Brierley SM. Peripheral and central neuroplasticity in a mouse model of endometriosis. J Neurochem 2024; 168:3777-3800. [PMID: 37165846 DOI: 10.1111/jnc.15843] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Chronic pelvic pain (CPP) is the most debilitating symptom of gynaecological disorders such as endometriosis. However, it remains unclear how sensory neurons from pelvic organs affected by endometriosis, such as the female reproductive tract, detect and transmit nociceptive events and how these signals are processed within the central nervous system (CNS). Using a previously characterized mouse model of endometriosis, we investigated whether the increased pain sensitivity occurring in endometriosis could be attributed to (i) changes in mechanosensory properties of sensory afferents innervating the reproductive tract, (ii) alterations in sensory input from reproductive organs to the spinal cord or (iii) neuroinflammation and sensitization of spinal neural circuits. Mechanosensitivity of vagina-innervating primary afferents was examined using an ex vivo single-unit extracellular recording preparation. Nociceptive signalling from the vagina to the spinal cord was quantified by phosphorylated MAP kinase ERK1/2 immunoreactivity. Immunohistochemistry was used to determine glial and neuronal circuit alterations within the spinal cord. We found that sensory afferents innervating the rostral, but not caudal portions of the mouse vagina, developed mechanical hypersensitivity in endometriosis. Nociceptive signalling from the vagina to the spinal cord was significantly enhanced in mice with endometriosis. Moreover, mice with endometriosis developed microgliosis, astrogliosis and enhanced substance P neurokinin-1 receptor immunoreactivity within the spinal cord, suggesting the development of neuroinflammation and sensitization of spinal circuitry in endometriosis. These results demonstrate endometriosis-induced neuroplasticity occurring at both peripheral and central sites of sensory afferent pathways. These findings may help to explain the altered sensitivity to pain in endometriosis and provide a novel platform for targeted pain relief treatments for this debilitating disorder.
Collapse
Affiliation(s)
- Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Jessica Maddern
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Andelain Erickson
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Andrea M Harrington
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Bom ADOP, Dias-Soares M, Corrêa RCD, Neves CL, Hosch NG, de Lucena GG, Oliveira CG, Pagano RL, Chacur M, Giorgi R. Molecular Aspects Involved in the Mechanisms of Bothrops jararaca Venom-Induced Hyperalgesia: Participation of NK1 Receptor and Glial Cells. Toxins (Basel) 2024; 16:187. [PMID: 38668612 PMCID: PMC11053884 DOI: 10.3390/toxins16040187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Accidents caused by Bothrops jararaca (Bj) snakes result in several local and systemic manifestations, with pain being a fundamental characteristic. The inflammatory process responsible for hyperalgesia induced by Bj venom (Bjv) has been studied; however, the specific roles played by the peripheral and central nervous systems in this phenomenon remain unclear. To clarify this, we induced hyperalgesia in rats using Bjv and collected tissues from dorsal root ganglia (DRGs) and spinal cord (SC) at 2 and 4 h post-induction. Samples were labeled for Iba-1 (macrophage and microglia), GFAP (satellite cells and astrocytes), EGR1 (neurons), and NK1 receptors. Additionally, we investigated the impact of minocycline, an inhibitor of microglia, and GR82334 antagonist on Bjv-induced hyperalgesia. Our findings reveal an increase in Iba1 in DRG at 2 h and EGR1 at 4 h. In the SC, markers for microglia, astrocytes, neurons, and NK1 receptors exhibited increased expression after 2 h, with EGR1 continuing to rise at 4 h. Minocycline and GR82334 inhibited venom-induced hyperalgesia, highlighting the crucial roles of microglia and NK1 receptors in this phenomenon. Our results suggest that the hyperalgesic effects of Bjv involve the participation of microglial and astrocytic cells, in addition to the activation of NK1 receptors.
Collapse
Affiliation(s)
- Ariela de Oliveira Pedro Bom
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, SP, Brazil; (A.d.O.P.B.); (M.D.-S.); (R.C.D.C.); (C.L.N.); (G.G.d.L.)
- Postgraduate Program in Toxinology, Butantan Institute, São Paulo 05503-900, SP, Brazil
| | - Monique Dias-Soares
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, SP, Brazil; (A.d.O.P.B.); (M.D.-S.); (R.C.D.C.); (C.L.N.); (G.G.d.L.)
| | - Raíssa Cristina Darroz Corrêa
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, SP, Brazil; (A.d.O.P.B.); (M.D.-S.); (R.C.D.C.); (C.L.N.); (G.G.d.L.)
- Postgraduate Program in Toxinology, Butantan Institute, São Paulo 05503-900, SP, Brazil
| | - Camila Lima Neves
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, SP, Brazil; (A.d.O.P.B.); (M.D.-S.); (R.C.D.C.); (C.L.N.); (G.G.d.L.)
| | | | - Gabriela Gomes de Lucena
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, SP, Brazil; (A.d.O.P.B.); (M.D.-S.); (R.C.D.C.); (C.L.N.); (G.G.d.L.)
| | - Camilla Garcia Oliveira
- Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508-900, SP, Brazil; (C.G.O.); (M.C.)
| | - Rosana Lima Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-060, SP, Brazil;
| | - Marucia Chacur
- Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508-900, SP, Brazil; (C.G.O.); (M.C.)
| | - Renata Giorgi
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, SP, Brazil; (A.d.O.P.B.); (M.D.-S.); (R.C.D.C.); (C.L.N.); (G.G.d.L.)
| |
Collapse
|
4
|
Ambite I, Tran TH, Butler DSC, Cavalera M, Wan MLY, Ahmadi S, Svanborg C. Therapeutic Effects of IL-1RA against Acute Bacterial Infections, including Antibiotic-Resistant Strains. Pathogens 2023; 13:42. [PMID: 38251349 PMCID: PMC10820880 DOI: 10.3390/pathogens13010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Innate immunity is essential for the anti-microbial defense, but excessive immune activation may cause severe disease. In this study, immunotherapy was shown to prevent excessive innate immune activation and restore the anti-bacterial defense. E. coli-infected Asc-/- mice develop severe acute cystitis, defined by IL-1 hyper-activation, high bacterial counts, and extensive tissue pathology. Here, the interleukin-1 receptor antagonist (IL-1RA), which inhibits IL-1 hyper-activation in acute cystitis, was identified as a more potent inhibitor of inflammation and NK1R- and substance P-dependent pain than cefotaxime. Furthermore, IL-1RA treatment inhibited the excessive innate immune activation in the kidneys of infected Irf3-/- mice and restored tissue integrity. Unexpectedly, IL-1RA also accelerated bacterial clearance from infected bladders and kidneys, including antibiotic-resistant E. coli, where cefotaxime treatment was inefficient. The results suggest that by targeting the IL-1 response, control of the innate immune response to infection may be regained, with highly favorable treatment outcomes, including infections caused by antibiotic-resistant strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Catharina Svanborg
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, 221 84 Lund, Sweden; (I.A.); (T.H.T.); (D.S.C.B.); (M.C.); (M.L.Y.W.); (S.A.)
| |
Collapse
|
5
|
Bonelli F, Demirsoy I, Lasagni Vitar RM, Fonteyne P, Ferrari G. Topical formulations of Aprepitant are safe and effective in relieving pain and inflammation, and drive neural regeneration. Ocul Surf 2023; 30:92-103. [PMID: 37690516 DOI: 10.1016/j.jtos.2023.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
PURPOSE To test long-term ocular toxicity and analgesic/anti-inflammatory efficacy of two novel ocular formulations of neurokinin 1 receptor (NK1R) antagonist Aprepitant. METHODS for toxicity studies, two Aprepitant formulations (X and Y) were tested on C57BL/6 N mice. Gold standards were 0.4% Oxybuprocaine, 0.1% Diclofenac, or saline. For efficacy studies, C57BL/6 N mice underwent corneal alkali burn, and then received Aprepitant formulation X, Dexamethasone or saline. Eye-drops were applied 3 times/day for 90 days (toxicity) and 14 days (efficacy). Stromal opacity, corneal epithelial damage, nociception and sensitivity were assessed in vivo. The eye-wiping test and corneal sensitivity were assessed to evaluate analgesic efficacy and nerve function. At the end of the experiments mice were euthanized, and corneas were dissected for immunohistochemistry and RT-PCR analyses. RESULTS In normal mice, formulation X was not toxic when topically administered for 90 days. Formulation Y was associated with increased leukocyte infiltration in the cornea (p < 0.001). X1 and X2 formulations significantly reduced corneal pain, as Diclofenac and Oxybuprocaine, but did not reduce corneal sensitivity. Formulation Y, instead, was not analgesic at any time point. In the alkali burn model, X1 and X2 formulation enhanced epithelial damage recovery, and reduced inflammation both at day 7 and 14. Moreover, formulation X showed a stronger analgesic effect when compared to the saline and Dexamethasone groups (p < 0.01). Finally, formulation X1 and X2 restored corneal sensitivity by promoting corneal nerve regeneration. CONCLUSIONS Aprepitant X formulation is a promising candidate for the treatment of pain associated with inflammation of the ocular surface.
Collapse
Affiliation(s)
- Filippo Bonelli
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy; Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | - Ibrahim Demirsoy
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Romina Mayra Lasagni Vitar
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philippe Fonteyne
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
6
|
Martin LF, Cheng K, Washington SM, Denton M, Goel V, Khandekar M, Largent-Milnes TM, Patwardhan A, Ibrahim MM. Green Light Exposure Elicits Anti-inflammation, Endogenous Opioid Release and Dampens Synaptic Potentiation to Relieve Post-surgical Pain. THE JOURNAL OF PAIN 2023; 24:509-529. [PMID: 36283655 PMCID: PMC9991952 DOI: 10.1016/j.jpain.2022.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Light therapy improves multiple conditions such as seasonal affective disorders, circadian rhythm dysregulations, and neurodegenerative diseases. However, little is known about its potential benefits in pain management. While current pharmacologic methods are effective in many cases, the associated side effects can limit their use. Non-pharmacological methods would minimize drug dependence, facilitating a reduction of the opioid burden. Green light therapy has been shown to be effective in reducing chronic pain in humans and rodents. However, its underlying mechanisms remain incompletely defined. In this study, we demonstrate that green light exposure reduced postsurgical hypersensitivity in rats. Moreover, this therapy potentiated the antinociceptive effects of morphine and ibuprofen on mechanical allodynia in male rats. Importantly, in female rats, GLED potentiated the antinociceptive effects of morphine but did not affect that of ibuprofen. We showed that green light increases endogenous opioid levels while lessening synaptic plasticity and neuroinflammation. Importantly, this study reveals new insights into how light exposure can affect neuroinflammation and plasticity in both genders. Clinical translation of these results could provide patients with improved pain control and decrease opioid consumption. Given the noninvasive nature of green light, this innovative therapy would be readily implementable in hospitals. PERSPECTIVE: This study provides a potential additional therapy to decrease postsurgical pain. Given the safety, availability, and the efficacy of green light therapy, there is a significant potential for advancing the green light therapy to clinical trials and eventual translation to clinical settings.
Collapse
Affiliation(s)
- Laurent F Martin
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Kevin Cheng
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Stephanie M Washington
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Millie Denton
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Vasudha Goel
- Department of Anesthesiology, The University of Minnesota Medical School, Minneapolis, Minnesota
| | - Maithili Khandekar
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Tally M Largent-Milnes
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Amol Patwardhan
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Neurosurgery, College of Medicine, The University of Arizona, Tucson, Arizona; Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona
| | - Mohab M Ibrahim
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Neurosurgery, College of Medicine, The University of Arizona, Tucson, Arizona; Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona.
| |
Collapse
|
7
|
Kim MS, Kim BY, Saghetlians A, Zhang X, Okida T, Kim SY. Anti-nociceptive effects of dual neuropeptide antagonist therapy in mouse model of neuropathic and inflammatory pain. Korean J Pain 2022; 35:173-182. [PMID: 35354680 PMCID: PMC8977203 DOI: 10.3344/kjp.2022.35.2.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/05/2022] Open
Abstract
Background Neurokinin-1 (NK1) and calcitonin gene-related peptide (CGRP) play a vital role in pain pathogenesis, and these proteins' antagonists have attracted attention as promising pharmaceutical candidates. The authors investigated the antinociceptive effect of co-administration of the CGRP antagonist and an NK1 antagonist on pain models compared to conventional single regimens. Methods C57Bl/6J mice underwent sciatic nerve ligation for the neuropathic pain model and were injected with 4% formalin into the hind paw for the inflammatory pain model. Each model was divided into four groups: vehicle, NK1 antagonist, CGRP antagonist, and combination treatment groups. The NK1 antagonist aprepitant (BIBN4096, 1 mg/kg) or the CGRP antagonist olcegepant (MK-0869, 10 mg/kg) was injected intraperitoneally. Mechanical allodynia, thermal hypersensitivity, and anxiety-related behaviors were assessed using the von Frey, hot plate, and elevated plus-maze tests. The flinching and licking responses were also evaluated after formalin injection. Results Co-administration of aprepitant and olcegepant more significantly alleviated pain behaviors than administration of single agents or vehicle, increasing the mechanical threshold and improving the response latency. Anxiety-related behaviors were also markedly improved after dual treatment compared with either naive mice or the neuropathic pain model in the dual treatment group. Flinching frequency and licking response after formalin injection decreased significantly in the dual treatment group. Isobolographic analysis showed a meaningful additive effect between the two compounds. Conclusions A combination pharmacological therapy comprised of multiple neuropeptide antagonists could be a more effective therapeutic strategy for alleviating neuropathic or inflammatory pain.
Collapse
Affiliation(s)
- Min Su Kim
- Department of Rehabilitation Medicine, Wonkwang University College of Medicine, Iksan, Korea
| | - Bo Yeon Kim
- Department of Rehabilitation Medicine, Wonkwang University College of Medicine, Iksan, Korea.,Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Xiang Zhang
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Takuya Okida
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - So Yeon Kim
- Department of Rehabilitation Medicine, Wonkwang University College of Medicine, Iksan, Korea.,Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
8
|
Mirabelli E, Elkabes S. Neuropathic Pain in Multiple Sclerosis and Its Animal Models: Focus on Mechanisms, Knowledge Gaps and Future Directions. Front Neurol 2022; 12:793745. [PMID: 34975739 PMCID: PMC8716468 DOI: 10.3389/fneur.2021.793745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a multifaceted, complex and chronic neurological disease that leads to motor, sensory and cognitive deficits. MS symptoms are unpredictable and exceedingly variable. Pain is a frequent symptom of MS and manifests as nociceptive or neuropathic pain, even at early disease stages. Neuropathic pain is one of the most debilitating symptoms that reduces quality of life and interferes with daily activities, particularly because conventional pharmacotherapies do not adequately alleviate neuropathic pain. Despite advances, the mechanisms underlying neuropathic pain in MS remain elusive. The majority of the studies investigating the pathophysiology of MS-associated neuropathic pain have been performed in animal models that replicate some of the clinical and neuropathological features of MS. Experimental autoimmune encephalomyelitis (EAE) is one of the best-characterized and most commonly used animal models of MS. As in the case of individuals with MS, rodents affected by EAE manifest increased sensitivity to pain which can be assessed by well-established assays. Investigations on EAE provided valuable insights into the pathophysiology of neuropathic pain. Nevertheless, additional investigations are warranted to better understand the events that lead to the onset and maintenance of neuropathic pain in order to identify targets that can facilitate the development of more effective therapeutic interventions. The goal of the present review is to provide an overview of several mechanisms implicated in neuropathic pain in EAE by summarizing published reports. We discuss current knowledge gaps and future research directions, especially based on information obtained by use of other animal models of neuropathic pain such as nerve injury.
Collapse
Affiliation(s)
- Ersilia Mirabelli
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States.,Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - Stella Elkabes
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
9
|
Jung YH, Kim H, Kim H, Kim E, Baik J, Kang H. The anti-nociceptive effect of BPC-157 on the incisional pain model in rats. J Dent Anesth Pain Med 2022; 22:97-105. [PMID: 35449779 PMCID: PMC8995671 DOI: 10.17245/jdapm.2022.22.2.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Young-Hoon Jung
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Busan, Korea
| | - Haekyu Kim
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Busan, Korea
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, Korea
| | - Hyaejin Kim
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Busan, Korea
| | - Eunsoo Kim
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Busan, Korea
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, Korea
| | - Jiseok Baik
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Busan, Korea
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, Korea
| | - Hyunjong Kang
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
10
|
Hong JY, Kim SH, Seo Y, Jeon J, Davaa G, Hyun JK, Kim SH. Self-assembling peptide gels promote angiogenesis and functional recovery after spinal cord injury in rats. J Tissue Eng 2022; 13:20417314221086491. [PMID: 35340425 PMCID: PMC8943448 DOI: 10.1177/20417314221086491] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI) leads to disruption of the blood–spinal cord barrier,
hemorrhage, and tissue edema, which impair blood circulation and induce
ischemia. Angiogenesis after SCI is an important step in the repair of damaged
tissues, and the extent of angiogenesis strongly correlates with the neural
regeneration. Various biomaterials have been developed to promote angiogenesis
signaling pathways, and angiogenic self-assembling peptides are useful for
producing diverse supramolecular structures with tunable functionality. RADA16
(Ac-RARADADARARADADA-NH2), which forms nanofiber networks under physiological
conditions, is a self-assembling peptide that can provide mechanical support for
tissue regeneration and reportedly has diverse roles in wound healing. In this
study, we applied an injectable form of RADA16 with or without the neuropeptide
substance P to the contused spinal cords of rats and examined angiogenesis
within the damaged spinal cord and subsequent functional improvement.
Histological and immunohistochemical analyses revealed that the inflammatory
cell population in the lesion cavity was decreased, the vessel number and
density around the damaged spinal cord were increased, and the levels of
neurofilaments within the lesion cavity were increased in SCI rats that received
RADA16 and RADA16 with substance P (rats in the RADA16/SP group). Moreover,
real-time PCR analysis of damaged spinal cord tissues showed that IL-10
expression was increased and that locomotor function (as assessed by the Basso,
Beattie, and Bresnahan (BBB) scale and the horizontal ladder test) was
significantly improved in the RADA16/SP group compared to the control group. Our
findings indicate that RADA16 modified with substance P effectively stimulates
angiogenesis within the damaged spinal cord and is a candidate agent for
promoting functional recovery post-SCI.
Collapse
Affiliation(s)
- Jin Young Hong
- Department of Nanobiomedical Science
and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- Institute of Tissue Regeneration
Engineering, Dankook University, Cheonan, Republic of Korea
| | - Su Hee Kim
- Center for Biomaterials, Biomedical
Research Institute, Korea Institute of Science and Technology, Seoul, Republic of
Korea
- Medifab Ltd., Seoul, Republic of
Korea
| | - Yoojin Seo
- Center for Biomaterials, Biomedical
Research Institute, Korea Institute of Science and Technology, Seoul, Republic of
Korea
| | - Jooik Jeon
- Department of Nanobiomedical Science
and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- Institute of Tissue Regeneration
Engineering, Dankook University, Cheonan, Republic of Korea
| | - Ganchimeg Davaa
- Department of Nanobiomedical Science
and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- Institute of Tissue Regeneration
Engineering, Dankook University, Cheonan, Republic of Korea
| | - Jung Keun Hyun
- Department of Nanobiomedical Science
and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- Institute of Tissue Regeneration
Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Rehabilitation Medicine,
College of Medicine, Dankook University, Cheonan, Republic of Korea
- Jung Keun Hyun, Department of
Rehabilitation Medicine, College of Medicine, Dankook University, 119 Dandae-ro,
Anseo-dong, Dongnam-gu, Cheonan 31116, Republic of Korea.
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical
Research Institute, Korea Institute of Science and Technology, Seoul, Republic of
Korea
- Korea Institute of Science and
Technology Europe, Saarbrücken, Germany
- NBIT, KU-KIST Graduate School of
Converging Science and Technology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Lasagni Vitar RM, Barbariga M, Fonteyne P, Bignami F, Rama P, Ferrari G. Modulating Ocular Surface Pain Through Neurokinin-1 Receptor Blockade. Invest Ophthalmol Vis Sci 2021; 62:26. [PMID: 33729475 PMCID: PMC7980039 DOI: 10.1167/iovs.62.3.26] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose The purpose of this study was to test the role of substance P (SP) and its receptor neurokinin 1 (NK1R) on ocular surface pain. Methods Eight-week-old C57BL6/N (wild type [WT]) and B6.Cg-Tac1tm1Bbm/J (TAC1-KO) male mice were used. 5 M NaCl was topically applied on the cornea, followed by topical fosaprepitant 2, 10, and 50 mg/mL; 4 mg/mL oxybuprocaine chloride, or 0.1% diclofenac. Th eye wiping test was used to quantify ocular surface pain. SP content was quantified in the tear fluid and trigeminal ganglia (TG), and TAC1 mRNA was assessed in the cornea. Corneas were immunostained for β3-tubulin and NK1R, or CD45, to quantify leukocyte infiltration. Results TAC1-KO mice displayed a significant reduction of ocular pain (P < 0.001). Similarly, a single dose of 10 or 50 mg/mL fosaprepitant applied topically to WT mice reduced ocular pain as compared to vehicle (P < 0.001). Fosaprepitant 2 mg/mL, instead, induced corneal analgesia only when it was administered for 10 days, 6 times/day (P < 0.05). Diclofenac or oxybuprocaine reduced corneal nociception when compared to vehicle or fosaprepitant (P < 0.05). Fosaprepitant or oxybuprocaine groups showed lower SP content in tear secretions and TG (P < 0.05), and reduction in TAC1 mRNA (P < 0.05), and leukocyte infiltration (P < 0.05) in the cornea. Colocalization of NK1R and β3-tubulin was detected in mouse corneas. Conclusions Topical administration of the NK1R antagonist fosaprepitant effectively reduces ocular surface nociception by decreasing SP release in the tear fluid and TG, and corneal leukocyte infiltration. Fosaprepitant repurposing shows promise for the treatment of ocular pain.
Collapse
Affiliation(s)
- Romina Mayra Lasagni Vitar
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Barbariga
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philippe Fonteyne
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Bignami
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Rama
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
12
|
Pulsed radiofrequency alleviated neuropathic pain by down-regulating the expression of substance P in chronic constriction injury rat model. Chin Med J (Engl) 2020; 133:190-197. [PMID: 31929370 PMCID: PMC7028183 DOI: 10.1097/cm9.0000000000000619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Pulsed radiofrequency (PRF), as a non-invasive treatment of neuropathic pain (NP), has been widely administered clinically. Previous studies have shown that PRF has the potential to improve hyperalgesia in animal models of NP. However, there have been few reports to clarify whether the mechanism of PRF treatment of NP involves intervention in the expression of substance P (SP). Therefore, this study administered PRF treatment to chronic constriction injury (CCI) model rats and observed the sciatic nerve mechanical pain threshold and SP expression in the spinal cord to explore the mechanism of PRF treatment. Methods A total of 96 Sprague-Dawley rats were randomly divided into the sham-surgery-sham-treatment group (S-S group), the sham-surgery-PRF group (S-P group), the CCI-sham-treatment group (C-S group), and the CCI-PRF group (C-P group). The C-S group and the C-P group underwent sciatic nerve CCI, while the other groups received a sham operation. At 14 days after the operation, the C-P group and the S-P group were treated with PRF for 300 s. We recorded the hindpaw withdrawal threshold (HWT) and the thermal withdrawal latency (TWL) of rats in the various groups at baseline, before treatment (0 days), and at 1, 7, 14, and 28 days after treatment. L4 to L6 spinal cord tissues were taken before treatment (0 days) and 1, 7, 14, and 28 days after treatment. The transcription and translation of SP were measured by quantitative polymerase chain reaction and Western blotting, respectively. Results The HWT and the TWL in the C-P group 28 days after PRF treatment were significantly higher than those in the C-S group (95% confidence interval [CI]: 5.84–19.50, P < 0.01; 95% CI: 2.58–8.69, P = 0.01). The expression of SP in the C-P group 28 days after PRF treatment was significantly lower than that in the C-S group (95% CI: 1.17–2.48, P < 0.01). Conclusions PRF may alleviate CCI-induced NP by down-regulating the expression of SP in the spinal cord of CCI model rats.
Collapse
|
13
|
PAR2, Keratinocytes, and Cathepsin S Mediate the Sensory Effects of Ciguatoxins Responsible for Ciguatera Poisoning. J Invest Dermatol 2020; 141:648-658.e3. [PMID: 32800876 DOI: 10.1016/j.jid.2020.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/14/2023]
Abstract
Ciguatera fish poisoning is caused by the consumption of fish contaminated with ciguatoxins (CTXs). The most distressing symptoms are cutaneous sensory disturbances, including cold dysesthesia and itch. CTXs are neurotoxins known to activate voltage-gated sodium channels, but no specific treatment exists. Peptidergic neurons have been critically involved in ciguatera fish poisoning sensory disturbances. Protease-activated receptor-2 (PAR2) is an itch- and pain-related G protein‒coupled receptor whose activation leads to a calcium-dependent neuropeptide release. In this study, we studied the role of voltage-gated sodium channels, PAR2, and the PAR2 agonist cathepsin S in the cytosolic calcium increase and subsequent release of the neuropeptide substance P elicited by Pacific CTX-2 (P-CTX-2) in rat sensory neurons and human epidermal keratinocytes. In sensory neurons, the P-CTX-2‒evoked calcium response was driven by voltage-gated sodium channels and PAR2-dependent mechanisms. In keratinocytes, P-CTX-2 also induced voltage-gated sodium channels and PAR2-dependent marked calcium response. In the cocultured cells, P-CTX-2 significantly increased cathepsin S activity, and cathepsin S and PAR2 antagonists almost abolished P-CTX-2‒elicited substance P release. Keratinocytes synergistically favored the induced substance P release. Our results demonstrate that the sensory effects of CTXs involve the cathepsin S-PAR2 pathway and are potentiated by their direct action on nonexcitable keratinocytes through the same pathway.
Collapse
|
14
|
Khan A, Khan S, Kim YS. Insight into Pain Modulation: Nociceptors Sensitization and Therapeutic Targets. Curr Drug Targets 2020; 20:775-788. [PMID: 30706780 DOI: 10.2174/1389450120666190131114244] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/21/2022]
Abstract
Pain is a complex multidimensional concept that facilitates the initiation of the signaling cascade in response to any noxious stimuli. Action potential generation in the peripheral nociceptor terminal and its transmission through various types of nociceptors corresponding to mechanical, chemical or thermal stimuli lead to the activation of receptors and further neuronal processing produces the sensation of pain. Numerous types of receptors are activated in pain sensation which vary in their signaling pathway. These signaling pathways can be regarded as a site for modulation of pain by targeting the pain transduction molecules to produce analgesia. On the basis of their anatomic location, transient receptor potential ion channels (TRPV1, TRPV2 and TRPM8), Piezo 2, acid-sensing ion channels (ASICs), purinergic (P2X and P2Y), bradykinin (B1 and B2), α-amino-3-hydroxy-5- methylisoxazole-4-propionate (AMPA), N-methyl-D-aspartate (NMDA), metabotropic glutamate (mGlu), neurokinin 1 (NK1) and calcitonin gene-related peptide (CGRP) receptors are activated during pain sensitization. Various inhibitors of TRPV1, TRPV2, TRPM8, Piezo 2, ASICs, P2X, P2Y, B1, B2, AMPA, NMDA, mGlu, NK1 and CGRP receptors have shown high therapeutic value in experimental models of pain. Similarly, local inhibitory regulation by the activation of opioid, adrenergic, serotonergic and cannabinoid receptors has shown analgesic properties by modulating the central and peripheral perception of painful stimuli. This review mainly focused on various classes of nociceptors involved in pain transduction, transmission and modulation, site of action of the nociceptors in modulating pain transmission pathways and the drugs (both clinical and preclinical data, relevant to targets) alleviating the painful stimuli by exploiting nociceptor-specific channels and receptors.
Collapse
Affiliation(s)
- Amna Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yeong Shik Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
15
|
Gonçalves ECD, Vieira G, Gonçalves TR, Simões RR, Brusco I, Oliveira SM, Calixto JB, Cola M, Santos ARS, Dutra RC. Bradykinin Receptors Play a Critical Role in the Chronic Post-ischaemia Pain Model. Cell Mol Neurobiol 2020; 41:63-78. [PMID: 32222846 DOI: 10.1007/s10571-020-00832-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Complex regional pain syndrome type-I (CRPS-I) is a chronic painful condition resulting from trauma. Bradykinin (BK) is an important inflammatory mediator required in acute and chronic pain response. The objective of this study was to evaluate the association between BK receptors (B1 and B2) and chronic post-ischaemia pain (CPIP) development in mice, a widely accepted CRPS-I model. We assessed mechanical and cold allodynia, and paw oedema in male and female Swiss mice exposed to the CPIP model. Upon induction, the animals were treated with BKR antagonists (HOE-140 and DALBK); BKR agonists (Tyr-BK and DABK); antisense oligonucleotides targeting B1 and B2 and captopril by different routes in the model (7, 14 and 21 days post-induction). Here, we demonstrated that treatment with BKR antagonists, by intraperitoneal (i.p.), intraplantar (i.pl.), and intrathecal (i.t.) routes, mitigated CPIP-induced mechanical allodynia and oedematogenic response, but not cold allodynia. On the other hand, i.pl. administration of BKR agonists exacerbated pain response. Moreover, a single treatment with captopril significantly reversed the anti-allodynic effect of BKR antagonists. In turn, the inhibition of BKRs gene expression in the spinal cord inhibited the nociceptive behaviour in the 14th post-induction. The results of the present study suggest the participation of BKRs in the development and maintenance of chronic pain associated with the CPIP model, possibly linking them to CRPS-I pathogenesis.
Collapse
Affiliation(s)
- Elaine C D Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil.,Post-Graduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Graziela Vieira
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil
| | - Tainara R Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil
| | - Róli R Simões
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Indiara Brusco
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Sara M Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - João B Calixto
- Center of Innovation and Preclinical Research, Florianópolis, SC, 88056-000, Brazil
| | - Maíra Cola
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Rafael C Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil. .,Post-Graduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil. .,Laboratório de Autoimunidade e Imunofarmacologia (LAIF), Departamento de Ciências da Saúde, Universidade Federal de Santa Catarina, Campus Araranguá. Rodovia Jorge Lacerda, Km 35.4 - Jardim das Avenidas, Araranguá, SC, CEP 88906-072, Brazil.
| |
Collapse
|
16
|
Lee JY, Sim WS, Cho NR, Kim BW, Moon JY, Park HJ. The Antiallodynic Effect of Nefopam on Vincristine-Induced Neuropathy in Mice. J Pain Res 2020; 13:323-329. [PMID: 32104054 PMCID: PMC7012248 DOI: 10.2147/jpr.s224478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background Chemotherapy-induced neuropathic pain is a disabling condition following cancer treatment. Vincristine has more neurotoxicity than other vinca alkaloid agents. This study evaluated the correlation of different doses of nefopam with antiallodynic effects in a mouse vincristine neuropathy model. Methods A peripheral neuropathic mouse model was made by intraperitoneal injection of vincristine (0.1 mg/kg/day; 5-day-on, 2-day-off schedule over 12 days). After the development of allodynia, mice were injected intraperitoneally with 0.9% normal saline (NS group) or various doses (10, 30, 60 mg/kg) of nefopam (Nefopam group). We examined allodynia using von Frey hairs pre-administration and at 30, 60, 90, 120, 180, 240 mins, and 24 hrs after drug administration. We also measured the neurokinin-1 receptor concentrations in the spinal cord to confirm the antiallodynic effect of nefopam after drug administration. Results The peripheral neuropathic mouse model showed prominent mechanical allodynia. Intraperitoneal nefopam produced a clear dose-dependent increase in paw withdrawal threshold compared with pre-administration values and versus the NS group. The concentration of neurokinin-1 receptor was significantly decreased in the Nefopam group (P<0.05). Conclusion Intraperitoneally administered nefopam yielded a dose-dependent attenuation of mechanical allodynia and decreased neurokinin-1 receptor concentration, suggesting that the neurokinin-1 receptor is involved in the antiallodynic effects of nefopam in vincristine neuropathy.
Collapse
Affiliation(s)
- Jin Young Lee
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Woo Seog Sim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Noo Ree Cho
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Korea
| | - Bae Wook Kim
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Korea
| | - Jeong Yeon Moon
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Korea
| | - Hue Jung Park
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Liu X, Zhu Y, Zheng W, Qian T, Wang H, Hou X. Antagonism of NK-1R using aprepitant suppresses inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1628-1634. [PMID: 31010320 DOI: 10.1080/21691401.2019.1573177] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chronic inflammation in fibroblast-like synoviocytes (FLSs) induced by pro-inflammatory cytokines such as TNF-α plays a key role in the pathogenesis of rheumatoid arthritis (RA). The neurokinin-1 receptor (NK-1R) is one of the G protein-coupled receptors (GPCRs) mediating the intracellular signalling of substance P (SP). However, the possible implications of NK-1R in rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs) and the pathogenesis of RA have not yet been reported. In the current study, we report that NK-1R is expressed in FLSs. Importantly, NK-1R expression was found to be significantly increased in RA-FLSs compared to normal FLSs. Interestingly, we found that treatment with tumour necrosis factor (TNF)-α increased the expression of NK-1R at both the gene and protein levels. Treatment with the NK-1R antagonist aprepitant reduced TNF-α-induced expression of NADPH oxidase 4 (NOX-4) and generation of reactive oxygen species (ROS) in FLSs. Our results also display that blockage of NF-1R using aprepitant inhibited TNF-α-induced expression and secretion of proinflammatory cytokines, including interleukin-1β (IL-1β), IL-6, and IL-8. Consistently, aprepitant prevented TNF-α-induced expression of matrix metalloproteinases (MMPs), including matrix metalloproteinase-3 (MMP-3) and matrix metalloproteinase-13 (MMP-13). Mechanistically, our data demonstrate that treatment with aprepitant inhibited TNF-α-induced phosphorylation and degradation of inhibitor of NF-κB (IκBα). Notably, aprepitant attenuated TNF-α-induced nuclear translocation of nuclear factor κB (NF-κB) p65 and reduced luciferase activity of NF-κB in FLSs. The findings implicated a novel function of NK-1R in RA-FLSs. Blockage of NK-1R using its specific antagonist aprepitant might provide a new therapeutic strategy for RA.
Collapse
Affiliation(s)
- Xiaoping Liu
- a Department of Rheumatology , Dongfang Hospital of Beijing University of Chinese Medicine , Beijing , China
| | - Yuelan Zhu
- a Department of Rheumatology , Dongfang Hospital of Beijing University of Chinese Medicine , Beijing , China
| | - Wei Zheng
- b Internal medicine of TCM , Beijing University of Chinese Medicine , Beijing , China
| | - Tangliang Qian
- b Internal medicine of TCM , Beijing University of Chinese Medicine , Beijing , China
| | - Haiyu Wang
- b Internal medicine of TCM , Beijing University of Chinese Medicine , Beijing , China
| | - Xiujuan Hou
- a Department of Rheumatology , Dongfang Hospital of Beijing University of Chinese Medicine , Beijing , China
| |
Collapse
|
18
|
Kumar R, Gupta S, Gautam M, Jhajhria SK, Ray SB. Diverse characters of Brennan's paw incision model regarding certain parameters in the rat. Korean J Pain 2019; 32:168-177. [PMID: 31257825 PMCID: PMC6615451 DOI: 10.3344/kjp.2019.32.3.168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/26/2022] Open
Abstract
Background Brennan’s rodent paw incision model has been extensively used for understanding mechanisms underlying postoperative pain in humans. However, alterations of physiological parameters like blood pressure and heart rate, or even feeding and drinking patterns after the incision have not been documented as yet. Moreover, though eicosanoids like prostaglandins and leukotrienes contribute to inflammation, tissue levels of these inflammatory mediators have never been studied. This work further investigates the antinociceptive effect of protein C after intra-wound administration. Methods Separate groups of Sprague–Dawley rats were used for quantitation of cyclooxygenase (COX) activity and leukotriene B4 level by enzyme-linked immunosorbent assay, as well as estimation of cardiovascular parameters and feeding and drinking behavior after paw incision. In the next part, rats were subjected to incision and 10 μg of protein C was locally administered by a micropipette. Both evoked and non-evoked pain parameters were then estimated. Results COX, particularly COX-2 activity and leukotriene B4 levels increased after incision. Hemodynamic parameters were normal. Feeding and drinking were affected on days 1 and 3, and on day 1, respectively. Protein C attenuated non-evoked pain behavior alone up to day 2. Conclusions Based upon current observations, Brennan’s rodent paw incision model appears to exhibit a prolonged period of nociception similar to that after surgery, with minimal interference of physiological parameters. Protein C, which is likely converted to activated protein C in the wound, attenuated the guarding score, which probably represents pain at rest after surgery in humans.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Shivani Gupta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Mayank Gautam
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Saroj Kaler Jhajhria
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Subrata Basu Ray
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
19
|
Haberberger RV, Barry C, Dominguez N, Matusica D. Human Dorsal Root Ganglia. Front Cell Neurosci 2019; 13:271. [PMID: 31293388 PMCID: PMC6598622 DOI: 10.3389/fncel.2019.00271] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Sensory neurons with cell bodies situated in dorsal root ganglia convey information from external or internal sites of the body such as actual or potential harm, temperature or muscle length to the central nervous system. In recent years, large investigative efforts have worked toward an understanding of different types of DRG neurons at transcriptional, translational, and functional levels. These studies most commonly rely on data obtained from laboratory animals. Human DRG, however, have received far less investigative focus over the last 30 years. Nevertheless, knowledge about human sensory neurons is critical for a translational research approach and future therapeutic development. This review aims to summarize both historical and emerging information about the size and location of human DRG, and highlight advances in the understanding of the neurochemical characteristics of human DRG neurons, in particular nociceptive neurons.
Collapse
Affiliation(s)
- Rainer Viktor Haberberger
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia.,Órama Institute, Flinders University, Adelaide, SA, Australia
| | - Christine Barry
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia
| | - Nicholas Dominguez
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia
| | - Dusan Matusica
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia.,Órama Institute, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
20
|
Gupta S, Gautam M, Prasoon P, Kumar R, Ray SB, Kaler Jhajhria S. Involvement of Neuropeptide Y in Post-Incisional Nociception in Rats. Ann Neurosci 2018; 25:268-276. [PMID: 31000967 PMCID: PMC6470383 DOI: 10.1159/000495130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/30/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Neuropeptide Y (NPY) is abundantly distributed in the mammalian nervous system. Its role in nociception arising from inflammatory and neuropathic pain conditions has been elucidated. However, its involvement in post-incisional nociception, particularly at the spinal cord level, is relatively unknown. PURPOSE Management of postoperative pain is suboptimal. Evaluation of changes at the spinal level could facilitate better understanding of neural mechanisms underlying this type of pain. METHODS Rats were subjected to hind paw incision and spatiotemporal pattern of NPY expression in the dorsal horn was investigated by immunohistochemistry. Next, rats were implanted with intrathecal catheters using previously standardized procedure. NPY was injected into the intrathecal space by an indwelling catheter and behavioral assessment of nociception was performed. RESULTS Higher expression of NPY was observed in the superficial laminae of the dorsal horn. After incision, specific changes were observed like an abrupt decrease at 3 h after incision, which could be correlated with the intense nociception at this time. In contrast to morphine administration, which attenuated all 3 behavioral parameters of nociception, NPY decreased guarding behavior and thermal hyperalgesia during the acute phase. CONCLUSIONS NPY is extensively expressed in the superficial laminae of the spinal cord and exhibit marked changes after incision. Nociception is also decreased after its administration. Hence, it is likely involved in post-incisional nociception. This information could have clinical relevance.
Collapse
Affiliation(s)
| | | | | | | | | | - Saroj Kaler Jhajhria
- Departments of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
21
|
Barbariga M, Rabiolo A, Fonteyne P, Bignami F, Rama P, Ferrari G. The Effect of Aging on Nerve Morphology and Substance P Expression in Mouse and Human Corneas. ACTA ACUST UNITED AC 2018; 59:5329-5335. [DOI: 10.1167/iovs.18-24707] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Marco Barbariga
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Rabiolo
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philippe Fonteyne
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Bignami
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Rama
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
22
|
Neuroepithelial control of mucosal inflammation in acute cystitis. Sci Rep 2018; 8:11015. [PMID: 30030504 PMCID: PMC6054610 DOI: 10.1038/s41598-018-28634-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/03/2018] [Indexed: 12/18/2022] Open
Abstract
The nervous system is engaged by infection, indirectly through inflammatory cascades or directly, by bacterial attack on nerve cells. Here we identify a neuro-epithelial activation loop that participates in the control of mucosal inflammation and pain in acute cystitis. We show that infection activates Neurokinin-1 receptor (NK1R) and Substance P (SP) expression in nerve cells and bladder epithelial cells in vitro and in vivo in the urinary bladder mucosa. Specific innate immune response genes regulated this mucosal response, and single gene deletions resulted either in protection (Tlr4−/− and Il1b−/− mice) or in accentuated bladder pathology (Asc−/− and Nlrp3−/− mice), compared to controls. NK1R/SP expression was lower in Tlr4−/− and Il1b−/− mice than in C56BL/6WT controls but in Asc−/− and Nlrp3−/− mice, NK1R over-activation accompanied the exaggerated disease phenotype, due, in part to transcriptional de-repression of Tacr1. Pharmacologic NK1R inhibitors attenuated acute cystitis in susceptible mice, supporting a role in disease pathogenesis. Clinical relevance was suggested by elevated urine SP levels in patients with acute cystitis, compared to patients with asymptomatic bacteriuria identifying NK1R/SP as potential therapeutic targets. We propose that NK1R and SP influence the severity of acute cystitis through a neuro-epithelial activation loop that controls pain and mucosal inflammation.
Collapse
|
23
|
Serum substance P: an indicator of disease activity and subclinical inflammation in rheumatoid arthritis. Clin Rheumatol 2017; 37:901-908. [DOI: 10.1007/s10067-017-3929-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/21/2017] [Indexed: 12/26/2022]
|
24
|
Role of calcitonin gene-related peptide in nociception resulting from hind paw incision in rats. J ANAT SOC INDIA 2017. [DOI: 10.1016/j.jasi.2017.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|