1
|
Di Francesco V, Chua AJ, Huang D, D'Souza A, Yang A, Bleier BS, Amiji MM. RNA therapies for CNS diseases. Adv Drug Deliv Rev 2024; 208:115283. [PMID: 38494152 DOI: 10.1016/j.addr.2024.115283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Neurological disorders are a diverse group of conditions that pose an increasing health burden worldwide. There is a general lack of effective therapies due to multiple reasons, of which a key obstacle is the presence of the blood-brain barrier, which limits drug delivery to the central nervous system, and generally restricts the pool of candidate drugs to small, lipophilic molecules. However, in many cases, these are unable to target key pathways in the pathogenesis of neurological disorders. As a group, RNA therapies have shown tremendous promise in treating various conditions because they offer unique opportunities for specific targeting by leveraging Watson-Crick base pairing systems, opening up possibilities to modulate pathological mechanisms that previously could not be addressed by small molecules or antibody-protein interactions. This potential paradigm shift in disease management has been enabled by recent advances in synthesizing, purifying, and delivering RNA. This review explores the use of RNA-based therapies specifically for central nervous system disorders, where we highlight the inherent limitations of RNA therapy and present strategies to augment the effectiveness of RNA therapeutics, including physical, chemical, and biological methods. We then describe translational challenges to the widespread use of RNA therapies and close with a consideration of future prospects in this field.
Collapse
Affiliation(s)
- Valentina Di Francesco
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Andy J Chua
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA; Department of Otorhinolaryngology - Head and Neck Surgery, Sengkang General Hospital, 110 Sengkang E Way, 544886, Singapore
| | - Di Huang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Alicia Yang
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Jiang W, He F, Ding G, Wu J. Elamipretide reduces pyroptosis and improves functional recovery after spinal cord injury. CNS Neurosci Ther 2023; 29:2843-2856. [PMID: 37081763 PMCID: PMC10493668 DOI: 10.1111/cns.14221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/01/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
AIMS Elamipretide (EPT), a novel mitochondria-targeted peptide, has been shown to be protective in a range of diseases. However, the effect of EPT in spinal cord injury (SCI) has yet to be elucidated. We aimed to investigate whether EPT would inhibit pyroptosis and protect against SCI. METHODS After establishing the SCI model, we determined the biochemical and morphological changes associated with pyroptosis, including neuronal cell death, proinflammatory cytokine expression, and signal pathway levels. Furthermore, mitochondrial function was assessed with flow cytometry, quantitative real-time polymerase chain reaction, and western blot. RESULTS Here, we demonstrate that EPT improved locomotor functional recovery following SCI as well as reduced neuronal loss. Moreover, EPT inhibited nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome activation and pyroptosis occurrence and decreased pro-inflammatory cytokines levels following SCI. Furthermore, EPT alleviated mitochondrial dysfunction and reduced mitochondrial reactive oxygen species level. CONCLUSION EPT treatment may protect against SCI via inhibition of pyroptosis.
Collapse
Affiliation(s)
- Wu Jiang
- Department of Orthopedics, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of Orthopedics, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Fan He
- Department of Orthopedics, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Guoming Ding
- Department of Orthopedics, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Junsong Wu
- Department of Orthopedics, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
3
|
Jiang W, He F, Ding G, Wu J. Dopamine inhibits pyroptosis and attenuates secondary damage after spinal cord injury in female mice. Neurosci Lett 2023; 792:136935. [PMID: 36307053 DOI: 10.1016/j.neulet.2022.136935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND An excessive inflammatory response accompanies the pathogenesis of spinal cord injury (SCI) and has been found to be promoted by inflammasomes in a variety of disease models. Dopamine is a neurotransmitter that also regulates nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome-dependent neuroinflammation. However, little is known regarding the effects and molecular mechanisms underlying the role of dopamine in SCI. METHODS Functional recovery in mice was assessed with the Basso Mouse Scale (BMS). Neuronal loss was evaluated with immunochemical staining of NeuN. Pyroptosis was assessed with immunofluorescence staining, flow cytometry, western blotting, and cell viability and cytotoxicity assays. RESULTS Dopamine was significantly associated with enhanced locomotor recovery after SCI, and with decreased NLRP3 inflammasome activation, pyroptosis, neuronal loss and pro-inflammatory cytokine levels. In vitro data suggested that dopamine suppressed NLRP3 inflammasome activation and pyroptosis, and decreased pro-inflammatory cytokine levels. CONCLUSIONS Dopamine may be a novel approach for alleviating secondary damage after SCI.
Collapse
Affiliation(s)
- Wu Jiang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310003, China; Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China.
| | - Fan He
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China.
| | - Guoming Ding
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China.
| | - Junsong Wu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
4
|
Jiang W, He F, Ding G, Wu J. Topotecan Reduces Neuron Death after Spinal Cord Injury by Suppressing Caspase-1-Dependent Pyroptosis. Mol Neurobiol 2022; 59:6033-6048. [DOI: 10.1007/s12035-022-02960-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022]
|
5
|
Jiang W, He F, Ding G, Wu J. Topoisomerase 1 inhibition modulates pyroptosis to improve recovery after spinal cord injury. FASEB J 2022; 36:e22294. [PMID: 35579890 DOI: 10.1096/fj.202100713rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 11/11/2022]
Abstract
Excessive neuroinflammation and neuronal loss contribute to mechanisms of spinal cord injury (SCI). Accumulating evidence has suggested that topoisomerase 1 (Top1) inhibition can suppress exacerbated immune responses and protect against lethal inflammation. Pyroptosis is a recently identified pro-inflammatory programmed mode of cell death. However, the effects and underlying mechanisms of Top1 inhibition in SCI remains unclear. Locomotor functional recovery in mice was evaluated through Basso Mouse Scale (BMS). Neuronal loss was evaluated by immunochemistry staining of NeuN. Pyroptosis was determined by immunofluorescence staining, western blot, flow cytometry, cell viability, and cytotoxicity assays. In the present study, we estimated the effects of chemical inhibition of Top1 in an SCI model. Administration of Top1 inhibitor camptothecin (CPT) to mice significantly improved locomotor functional recovery after SCI. Moreover, CPT reduced Top1 level, inhibited nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome activation and pyroptosis, attenuated proinflammatory cytokines levels, diminished the number of neutrophil and neuronal loss in mice. Furthermore, CPT in oxygen-glucose deprivation neurons down-regulated Top1 level, attenuated NLRP3 inflammasome activation, and suppressed pyroptosis and inflammatory response. Together, our findings indicate that inhibition of Top1 with CPT can inhibit pyroptosis, control neuroinflammation, and improve functional recovery after SCI.
Collapse
Affiliation(s)
- Wu Jiang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan He
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoming Ding
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junsong Wu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
The Therapeutic Prospects of Targeting IL-1R1 for the Modulation of Neuroinflammation in Central Nervous System Disorders. Int J Mol Sci 2022; 23:ijms23031731. [PMID: 35163653 PMCID: PMC8915186 DOI: 10.3390/ijms23031731] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/16/2022] Open
Abstract
The interleukin-1 receptor type 1 (IL-1R1) holds pivotal roles in the immune system, as it is positioned at the “epicenter” of the inflammatory signaling networks. Increased levels of the cytokine IL-1 are a recognized feature of the immune response in the central nervous system (CNS) during injury and disease, i.e., neuroinflammation. Despite IL-1/IL-1R1 signaling within the CNS having been the subject of several studies, the roles of IL-1R1 in the CNS cellular milieu still cause controversy. Without much doubt, however, the persistent activation of the IL-1/IL-1R1 signaling pathway is intimately linked with the pathogenesis of a plethora of CNS disease states, ranging from Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS), all the way to schizophrenia and prion diseases. Importantly, a growing body of evidence is showing that blocking IL-1R1 signaling via pharmacological or genetic means in different experimental models of said CNS diseases leads to reduced neuroinflammation and delayed disease progression. The aim of this paper is to review the recent progress in the study of the biological roles of IL-1R1, as well as to highlight key aspects that render IL-1R1 a promising target for the development of novel disease-modifying treatments for multiple CNS indications.
Collapse
|
7
|
Chen H, Xu G, Wu Y, Wang X, Wang F, Zhang Y. HBO-PC Promotes Locomotor Recovery by Reducing Apoptosis and Inflammation in SCI Rats: The Role of the mTOR Signaling Pathway. Cell Mol Neurobiol 2021; 41:1537-1547. [PMID: 32715402 DOI: 10.1007/s10571-020-00921-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 07/10/2020] [Indexed: 11/25/2022]
Abstract
Hyperbaric oxygen preconditioning (HBO-PC) has beneficial effects on the promotion of locomotor recovery by reducing apoptosis and inflammation after traumatic spinal cord injury (SCI). The mammalian target of rapamycin (mTOR) signaling pathway has been implicated in apoptosis and inflammation in many pathophysiological conditions. However, whether HBO-PC improves traumatic SCI-induced locomotor dysfunction by regulating the mTOR signaling pathway and its downstream molecules remains unknown. In the present study, we found that HBO-PC significantly promoted SCI-induced hind-limb locomotor recovery and increased the amplitude and potential of motor evoked potential. Magnetic resonance imaging showed that spinal cavitation or atrophy caused by SCI was obviously alleviated by HBO-PC therapy. Histological analysis showed that the changes in spinal cord neural structure in SCI rats were markedly restored by HBO-PC treatment. Western blot analysis showed that the SCI-induced enhanced levels of p-mTOR, inflammatory cytokines and apoptosis in the spinal cord were abrogated after administration of HBO-PC. Furthermore, intrathecal administration of an mTOR agonist reversed the effects of HBO-PC on locomotor function recovery, p-NF-κB p65 and p-p70S6K levels, inflammation and apoptosis. These findings indicated a new mechanism by which HBO-PC therapy suppressed inflammation and apoptosis through inactivation of the mTOR signaling pathway, which contributed to motor disability in SCI rats.
Collapse
Affiliation(s)
- Huiqiang Chen
- Department of Orthopedics, General Hospital of Southern Theater Command, Gusangzhou, 510010, Guangdong Province, China
| | - Guoshen Xu
- Department of Orthopedics, Guangdong Tongjiang Hospital, Foshan, 528300, Guangdong Province, China
| | - You Wu
- Department of Orthopedics, General Hospital of Southern Theater Command, Gusangzhou, 510010, Guangdong Province, China
| | - Xinyu Wang
- Department of Orthopedics, General Hospital of Southern Theater Command, Gusangzhou, 510010, Guangdong Province, China
| | - Fei Wang
- Department of Orthopedics, General Hospital of Southern Theater Command, Gusangzhou, 510010, Guangdong Province, China
| | - Ying Zhang
- Department of Orthopedics, General Hospital of Southern Theater Command, Gusangzhou, 510010, Guangdong Province, China.
| |
Collapse
|
8
|
Lithium alleviated spinal cord injury (SCI)-induced apoptosis and inflammation in rats via BDNF-AS/miR-9-5p axis. Cell Tissue Res 2021; 384:301-312. [PMID: 33464390 DOI: 10.1007/s00441-020-03298-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) is a major cause of paralysis, disability and even death in severe cases. Lithium has neuroprotective effects on SCI, while the underlying mechanisms remain obscure. In the present study, we established a SCI rat model, which subsequently received lithium treatment. Results displayed that lithium treatment improved the locomotor function recovery and reduced apoptosis by increasing anti-apoptotic molecule expression and decreasing pro-apoptotic factor expression in SCI rats. Furthermore, lithium treatment alleviated the inflammatory response by inactivating the nuclear factor-kappa B (NF-κB) pathway and inhibited the expression of lncRNA brain-derived neurotrophic factor antisense (BDNF-AS) in SCI rats. Subsequent researches indicated that miR-9-5p was targeted and regulated by BDNF-AS. Lithium treatment rescued the upregulation of BDNF-AS expression and downregulation of miR-9-5p expression induced by H2O2 in SH-SY5Y cells. BDNF-AS overexpression or miR-9-5p interference attenuated the anti-apoptotic and anti-inflammatory effects of lithium chloride in SH-SY5Y cells that was damaged by H2O2 induction, revealing that lithium might act through the BDNF-AS/miR-9-5p axis. In vivo studies showed that the injection of BDNF-AS adenovirus vector or miR-9-5p inhibitor reversed the effects of lithium on the histologic morphology of spinal cord, motor function, inflammatory reaction and apoptosis in SCI rats, which was consistent with the results of in vitro studies. In conclusion, our data demonstrated that lithium reduced SCI-induced apoptosis and inflammation in rats via the BDNF-AS/miR-9-5p axis.
Collapse
|
9
|
Nuclear Heme Oxidase-1 Inhibits Endoplasmic Reticulum Stress-Mediated Apoptosis after Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7576063. [PMID: 32802873 PMCID: PMC7421098 DOI: 10.1155/2020/7576063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
Abstract
The treatment goal for spinal cord injury (SCI) is to repair neurites and suppress cellular apoptosis. This study is to investigate the effects of nuclear heme oxidase-1 (HO-1) on the acute spinal cord injury and the related mechanisms. The rat model of the SCI was established. On day 7, before model establishment, the adenovirus vector carrying nuclear HO-1 (Ad-GFP-HO-1CΔ23) was injected into the animals into the tenth thoracic spine (T10) segment by the intrathecal injection. Starting from after the model establishment to day 28, the recovery of motor function was assessed by the Basso-Beattie-Bresnahan (BBB) scoring method. Immunofluorescence was performed to detect the expression patterns of nuclear and cytoplasmic proteins. HE and Nissl staining methods were used to evaluate the structural damage and the number of surviving neurons near the injured area. The TUNEL method was conducted to evaluate the apoptotic degree. Protein expression levels were detected with the Western blot analysis. The BBB assay scores in the nuclear HO-1 group were significantly higher than the blank and adenovirus control groups. Moreover, compared to the blank and adenovirus control groups, the neuronal apoptosis in the nuclear HO-1 group was significantly alleviated. Furthermore, the expression levels of the endoplasmic reticulum stress-related proteins, i.e., CHOP, GRP78, and caspase-12, were significantly decreased in the nuclear HO-1 group. Nuclear HO-1 significantly improves the SCI, promotes the functional recovery, inhibits the endoplasmic reticulum stress, and alleviates the apoptotic process after SCI.
Collapse
|
10
|
|
11
|
Ren H, Chen X, Tian M, Zhou J, Ouyang H, Zhang Z. Regulation of Inflammatory Cytokines for Spinal Cord Injury Repair Through Local Delivery of Therapeutic Agents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800529. [PMID: 30479916 PMCID: PMC6247077 DOI: 10.1002/advs.201800529] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/06/2018] [Indexed: 05/29/2023]
Abstract
The balance of inflammation is critical to the repair of spinal cord injury (SCI), which is one of the most devastating traumas in human beings. Inflammatory cytokines, the direct mediators of local inflammation, have differential influences on the repair of the injured spinal cord. Some inflammatory cytokines are demonstrated beneficial to spinal cord repair in SCI models, while some detrimental. Various animal researches have revealed that local delivery of therapeutic agents efficiently regulates inflammatory cytokines and promotes repair from SCI. Quite a few clinical studies have also shown the promotion of repair from SCI through regulation of inflammatory cytokines. However, local delivery of a single agent affects only a part of the inflammatory cytokines that need to be regulated. Meanwhile, different individuals have differential profiles of inflammatory cytokines. Therefore, future studies may aim to develop personalized strategies of locally delivered therapeutic agent cocktails for effective and precise regulation of inflammation, and substantial functional recovery from SCI.
Collapse
Affiliation(s)
- Hao Ren
- The Third Affiliated Hospital of Guangzhou Medical UniversityNo. 63 Duobao RoadGuangzhou510150P. R. China
| | - Xuri Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Mengya Tian
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Jing Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Zhiyong Zhang
- Translational Research Center for Regenerative Medicine and 3D Printing TechnologiesGuangzhou Medical UniversityNo. 63 Duobao RoadGuangzhou510150P. R. China
| |
Collapse
|
12
|
Chen ZR, Ma Y, Guo HH, Lu ZD, Jin QH. Therapeutic efficacy of cyclosporin A against spinal cord injury in rats with hyperglycemia. Mol Med Rep 2018; 17:4369-4375. [PMID: 29328412 PMCID: PMC5802210 DOI: 10.3892/mmr.2018.8422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/24/2017] [Indexed: 01/20/2023] Open
Abstract
The present study aimed to explore the therapeutic effects of cyclosporin A (CsA) on spinal cord injury (SCI) in rats with hyperglycemia and to identify a novel potential method to treat SCI in the presence of hyperglycemia. Female Sprague‑Dawley (SD) rats were randomly allocated into four groups: Sham, SCI, SCI+hyperglycemia and SCI+hyperglycemia+CsA groups. Streptozotocin‑induced hyperglycemic SD rats and a weight‑drop contusion SCI model were established. The Basso, Beattie, Bresnahan scale and inclined plane test were used to evaluate the neurological function of the rats. Flow cytometric assay was performed to detect the apoptotic rates of cells in the spinal cord. ELISA and western blot analysis were performed to determine the levels of interleukin (IL)‑10, tumor necrosis factor (TNF)‑α, cyclophilin‑D (Cyp‑D) and apoptosis‑inducing factor (AIF). The results demonstrated that CsA significantly improved the neurological function of the SCI rats with hyperglycemia. CsA markedly reduced the number of apoptotic cells exaggerated by hyperglycemia in the spinal cord of the SCI rats. CsA significantly decreased the expression levels of IL‑10, TNF‑α, Cyp‑D and AIF in the spinal cord of the SCI rats. Overall, the present study revealed a significant role of CsA in the treatment of SCI in the presence of hyperglycemia by inhibiting the apoptosis of spinal cord cells.
Collapse
Affiliation(s)
- Zhi-Rong Chen
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yi Ma
- Department of Pathology and Physiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hao-Hui Guo
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zhi-Dong Lu
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Qun-Hua Jin
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
13
|
Herrera-Carrillo E, Liu YP, Berkhout B. Improving miRNA Delivery by Optimizing miRNA Expression Cassettes in Diverse Virus Vectors. Hum Gene Ther Methods 2018; 28:177-190. [PMID: 28712309 DOI: 10.1089/hgtb.2017.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The RNA interference pathway is an evolutionary conserved post-transcriptional gene regulation mechanism that is exclusively triggered by double-stranded RNA inducers. RNAi-based methods and technologies have facilitated the discovery of many basic science findings and spurred the development of novel RNA therapeutics. Transient induction of RNAi via transfection of synthetic small interfering RNAs can trigger the selective knockdown of a target mRNA. For durable silencing of gene expression, either artificial short hairpin RNA or microRNA encoding transgene constructs were developed. These miRNAs are based on the molecules that induce the natural RNAi pathway in mammals and humans: the endogenously expressed miRNAs. Significant efforts focused on the construction and delivery of miRNA cassettes in order to solve basic biology questions or to design new therapy strategies. Several viral vectors have been developed, which are particularly useful for the delivery of miRNA expression cassettes to specific target cells. Each vector system has its own unique set of distinct properties. Thus, depending on the specific application, a particular vector may be most suitable. This field was previously reviewed for different viral vector systems, and now the recent progress in the field of miRNA-based gene-silencing approaches using lentiviral vectors is reported. The focus is on the unique properties and respective limitations of the available vector systems for miRNA delivery.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| | - Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| |
Collapse
|
14
|
An Agonist of the Protective Factor SIRT1 Improves Functional Recovery and Promotes Neuronal Survival by Attenuating Inflammation after Spinal Cord Injury. J Neurosci 2017; 37:2916-2930. [PMID: 28193684 DOI: 10.1523/jneurosci.3046-16.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/23/2017] [Accepted: 01/31/2017] [Indexed: 12/22/2022] Open
Abstract
Targeting posttraumatic inflammation is crucial for improving locomotor function. SIRT1 has been shown to play a critical role in disease processes such as hepatic inflammation, rheumatoid arthritis, and acute lung inflammation by regulating inflammation. However, the role of SIRT1 in spinal cord injury (SCI) is unknown. We hypothesized that SIRT1 plays an important role in improving locomotor function after SCI by regulating neuroinflammation. In this study, we investigate the effect of SIRT1 in SCI using pharmacological intervention (SRT1720) and the Mx1-Cre/loxP recombination system to knock out target genes. First, we found that SIRT1 expression at the injured lesion site of wild-type (WT) mice (C57BL/6) decreased 4 h after SCI and lasted for 3 d. Moreover, administration of SRT1720, an agonist of SIRT1, to WT mice significantly improved functional recovery for up to 28 d after injury by reducing the levels of proinflammatory cytokines, the number of M1 macrophages, the number of macrophages/microglia, and the accumulation of perivascular macrophages. In contrast, administration of SRT1720 to SIRT1 knock-out (KO) mice did not improve locomotor recovery or attenuate inflammation. Furthermore, SIRT1 KO mice exhibited worse locomotor recovery, increased levels of inflammatory cytokines, and more M1 macrophages and perivascular macrophages than those of WT mice after SCI. Together, these findings indicate that SRT1720, an SIRT1 agonist, can improve functional recovery by attenuating inflammation after SCI. Therefore, SIRT1 is not only a protective factor but also an anti-inflammatory molecule that exerts beneficial effects on locomotor function after SCI.SIGNIFICANCE STATEMENT Posttraumatic inflammation plays a central role in regulating the pathogenesis of spinal cord injury (SCI). Here, new data show that administration of SRT1720, an SIRT1 agonist, to wild-type (WT) mice significantly improved outcomes after SCI, most likely by reducing the levels of inflammatory cytokines, the number of macrophages/microglia, perivascular macrophages, and M1 macrophages. In contrast, SIRT1 KO mice exhibited worse locomotor recovery than that of WT mice due to aggravated inflammation. Taken together, the results of this study expand upon the previous understanding of the functions and mechanisms of SIRT1 in neuroinflammation following injury to the CNS, suggesting that SIRT1 plays a critical role in regulating neuroinflammation following CNS injury and may be a novel therapeutic target for post-SCI intervention.
Collapse
|
15
|
Kwan T, Floyd CL, Kim S, King PH. RNA Binding Protein Human Antigen R Is Translocated in Astrocytes following Spinal Cord Injury and Promotes the Inflammatory Response. J Neurotrauma 2017; 34:1249-1259. [PMID: 27852147 DOI: 10.1089/neu.2016.4757] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inflammation plays a prominent role in the events following traumatic injury to the central nervous system (CNS). The initial inflammatory response is driven by mediators such as tumor necrosis factor α and interleukin 1β, which are produced by activated astrocytes and microglia at the site of injury. These factors are regulated post-transcriptionally by RNA binding proteins (RBP) that interact with adenylate and uridylate-rich elements (ARE) in the 3'-untranslated region of the messenger RNA (mRNA). Human antigen R (HuR) is one of these RBPs and generally functions as a positive regulator of ARE-containing mRNAs. Here, we hypothesized that HuR plays an important role in the induction of cytokine and chemokines in astrocytes following traumatic injury. Using a mouse model of spinal cord injury, we found HuR to be extensively translocated to the cytoplasm in astrocytes at the level of injury, consistent with its activation. In an in vitro stretch injury model of CNS trauma, we observed a similar cytoplasmic shift of HuR in astrocytes and an attenuation of cytokine induction with HuR knockdown. RNA kinetics and luciferase assays suggested that the effect was more related to transcription than RNA destabilization. A small molecule inhibitor of HuR suppressed cytokine induction of injured astrocytes and reduced chemoattraction for neutrophils and microglia. In summary, HuR is activated in astrocytes in the early stages of CNS trauma and positively regulates the molecular response of key inflammatory mediators in astrocytes. Our findings suggest that HuR may be a therapeutic target in acute CNS trauma for blunting secondary tissue injury triggered by the inflammatory response.
Collapse
Affiliation(s)
- Thaddaeus Kwan
- 1 Department of Neurology, University of Alabama , Birmingham, Alabama
| | - Candace L Floyd
- 2 Department of Physical Medicine and Rehabilitation, University of Alabama , Birmingham, Alabama
| | - Soojin Kim
- 1 Department of Neurology, University of Alabama , Birmingham, Alabama.,4 Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| | - Peter H King
- 1 Department of Neurology, University of Alabama , Birmingham, Alabama.,3 Department of Cell, Developmental and Integrative Biology, University of Alabama , Birmingham, Alabama.,4 Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| |
Collapse
|