1
|
O'Brien EK, Walter GM, Bridle J. Environmental variation and biotic interactions limit adaptation at ecological margins: lessons from rainforest Drosophila and European butterflies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210017. [PMID: 35184592 PMCID: PMC8859522 DOI: 10.1098/rstb.2021.0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/06/2022] [Indexed: 12/27/2022] Open
Abstract
Models of local adaptation to spatially varying selection predict that maximum rates of evolution are determined by the interaction between increased adaptive potential owing to increased genetic variation, and the cost genetic variation brings by reducing population fitness. We discuss existing and new results from our laboratory assays and field transplants of rainforest Drosophila and UK butterflies along environmental gradients, which try to test these predictions in natural populations. Our data suggest that: (i) local adaptation along ecological gradients is not consistently observed in time and space, especially where biotic and abiotic interactions affect both gradient steepness and genetic variation in fitness; (ii) genetic variation in fitness observed in the laboratory is only sometimes visible to selection in the field, suggesting that demographic costs can remain high without increasing adaptive potential; and (iii) antagonistic interactions between species reduce local productivity, especially at ecological margins. Such antagonistic interactions steepen gradients and may increase the cost of adaptation by increasing its dimensionality. However, where biotic interactions do evolve, rapid range expansion can follow. Future research should test how the environmental sensitivity of genotypes determines their ecological exposure, and its effects on genetic variation in fitness, to predict the probability of evolutionary rescue at ecological margins. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.
Collapse
Affiliation(s)
- Eleanor K. O'Brien
- School of Biological Sciences, University of Bristol, Bristol, UK
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Greg M. Walter
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Jon Bridle
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
2
|
Borda MA, Gomez FH, Sambucetti P, Norry FM. Genetic variation in the heat-stress survival of embryos is largely decoupled from adult thermotolerance in an intercontinental set of recombinant lines of Drosophila melanogaster. J Therm Biol 2021; 102:103119. [PMID: 34863482 DOI: 10.1016/j.jtherbio.2021.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/30/2021] [Accepted: 10/24/2021] [Indexed: 11/30/2022]
Abstract
In insects, thermal adaptation works on the genetic variation for thermotolerance of not only larvae and adults but also of the immobile stages of the life cycle including eggs. In contrast to adults and larvae, the genetic basis for thermal adaptation in embryos (eggs) remains to be tested in the model insect Drosophila melanogaster. Quantitative-trait loci (QTL) for heat-stress resistance in embryos could largely differ from previously identified QTL for larvae and adults. Here we used an intercontinental set of recombinant inbred lines (RIL), which were previously used to identify thermotolerance-QTLs in adults and larvae because of their high variation segregating for adult thermotolerance. Eggs appeared to be more heat resistant than larvae and adults from previous studies on these RIL, though different heat-shock assays were used in previous studies. We found that variation in thermotolerance in embryos can be, at least partially, genetically decoupled from thermotolerance in the adult insect. Some RIL that are heat resistant in the adult and larvae can be heat susceptible in embryos. Only one small-effect QTL out of five autosomal QTL co-localized between embryo and other ontogenetic stages. These results suggest that selection for thermal adaptation in adult flies and larvae is predicted to have only a small impact on embryo thermotolerance. In addition, heat-stress tolerance of insects can be measured across ontogenetic stages including embryos in order to better predict thermal adaptive limits of populations and species.
Collapse
Affiliation(s)
- Miguel A Borda
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA) - CONICET, Universidad de Buenos Aires, C-1428-EHA, Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires, C-1428-EHA, Buenos Aires, Argentina
| | - Federico H Gomez
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA) - CONICET, Universidad de Buenos Aires, C-1428-EHA, Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires, C-1428-EHA, Buenos Aires, Argentina
| | - Pablo Sambucetti
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA) - CONICET, Universidad de Buenos Aires, C-1428-EHA, Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires, C-1428-EHA, Buenos Aires, Argentina
| | - Fabian M Norry
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA) - CONICET, Universidad de Buenos Aires, C-1428-EHA, Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires, C-1428-EHA, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Singh K, Kochar E, Gahlot P, Bhatt K, Prasad NG. Evolution of reproductive traits have no apparent life-history associated cost in populations of Drosophila melanogaster selected for cold shock resistance. BMC Ecol Evol 2021; 21:219. [PMID: 34872492 PMCID: PMC8650462 DOI: 10.1186/s12862-021-01934-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022] Open
Abstract
Background In insect species like Drosophila melanogaster, evolution of increased resistance or evolution of particular traits under specific environmental conditions can lead to energy trade-offs with other crucial life-history traits. Adaptation to cold stress can, in principle, involve modification of reproductive traits and physiological responses. Reproductive traits carry a substantial cost; and therefore, the evolution of reproductive traits in response to cold stress could potentially lead to trade-offs with other life-history traits. We have successfully selected replicate populations of Drosophila melanogaster for increased resistance to cold shock for over 33 generations. In these populations, the ability to recover from cold shock, mate, and lay fertile eggs 24 h post cold shock is under selection. These populations have evolved a suite of reproductive traits including increased egg viability, male mating ability, and siring ability post cold shock. These populations also show elevated mating rate both with and without cold shock. In the present study, we quantified a suite of life-history related traits in these populations to assess if evolution of cold shock resistance in these populations comes at a cost of other life-history traits. Results To assess life-history cost, we measured egg viability, mating frequency, longevity, lifetime fecundity, adult mortality, larva to adult development time, larvae to adults survival, and body weight in the cold shock selected populations and their controls under two treatments (a) post cold chock and (b) without cold shock. Twenty-four hours post cold shock, the selected population had significantly higher egg viability and mating frequency compared to control populations indicating that they have higher cold shock resistance. Selected populations had significantly longer pre-adult development time compared to their control populations. Females from the selected populations had higher body weight compared to their control populations. However, we did not find any significant difference between the selected and control populations in longevity, lifetime fecundity, adult mortality, larvae to adults survival, and male body weight under the cold chock or no cold shock treatments. Conclusions These findings suggest that cold shock selected populations have evolved higher mating frequency and egg viability. However, there is no apparent life-history associated cost with the evolution of egg viability and reproductive performances under the cold stress condition. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01934-2.
Collapse
Affiliation(s)
- Karan Singh
- Department of Cell Biology, NYU Grossman School of Medicine, 650 Medical Science Building, 550 First Ave, New York, NY, 10016, USA. .,Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli, Mohali, Punjab, 140306, India.
| | - Ekta Kochar
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli, Mohali, Punjab, 140306, India
| | - Prakhar Gahlot
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli, Mohali, Punjab, 140306, India
| | - Karan Bhatt
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli, Mohali, Punjab, 140306, India
| | - Nagaraj Guru Prasad
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli, Mohali, Punjab, 140306, India
| |
Collapse
|
4
|
Lauer Garcia AC, Pessoa Da Silva F, Campos Bezerra Neves CH, Montes MA. Current and future potential global distribution of the invading species Drosophila nasuta (Diptera: Drosophilidae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Species distribution modelling has been widely employed to indicate probable areas of invasion and to guide management strategies. Drosophila nasuta is native to Asia and has invaded Africa, islands of the Indian and Pacific Oceans and, more recently, the Americas. This species has been dispersing rapidly in the past decade, dominating the assemblage of drosophilids in numerous invaded territories, especially in protected areas. Here, we model the potential geographic distribution of D. nasuta for the present and two future scenarios. We also determine the environmental variables that most influence its distribution and investigate the risk of invasion in protected areas. Drosophila nasuta has the potential to expand its occurrence, especially on continents that have already been invaded. Variables related to greater rainfall were those that most influenced its distribution. The projections for the two future scenarios revealed a small increase in the distribution of the species compared to the projection for the present. The largest overlaps between the projected areas to be invaded by D. nasuta and territories in protected areas were found for Central and South America. The predictive maps delineated here can assist in the establishment of management plans directed at the conservation of biodiversity.
Collapse
Affiliation(s)
- Ana Cristina Lauer Garcia
- Universidade Federal de Pernambuco, Centro Acadêmico de Vitória, Rua Alto do Reservatório s/n, CEP 55608-680, Vitória de Santo Antão, Pernambuco, Brazil
| | - Felipe Pessoa Da Silva
- Departamento de Biologia, Universidade Federal Rural de Pernambuco, Campus Dois Irmãos, Rua Dom Manoel de Medeiros s/n, CEP 52171-900, Recife, Pernambuco, Brazil
| | - Carlos Henrique Campos Bezerra Neves
- Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Universidade Federal da Paraíba, Rua Jardim Universitário s/n, CEP 58051-900, João Pessoa, Paraíba, Brazil
| | - Martín Alejandro Montes
- Departamento de Biologia, Universidade Federal Rural de Pernambuco, Campus Dois Irmãos, Rua Dom Manoel de Medeiros s/n, CEP 52171-900, Recife, Pernambuco, Brazil
- Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Universidade Federal da Paraíba, Rua Jardim Universitário s/n, CEP 58051-900, João Pessoa, Paraíba, Brazil
| |
Collapse
|
5
|
Terry JCD, Chen J, Lewis OT. Natural enemies have inconsistent impacts on the coexistence of competing species. J Anim Ecol 2021; 90:2277-2288. [PMID: 34013519 DOI: 10.1111/1365-2656.13534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/30/2021] [Indexed: 11/27/2022]
Abstract
The role of natural enemies in promoting coexistence of competing species has generated substantial debate. Modern coexistence theory provides a detailed framework to investigate this topic, but there have been remarkably few empirical applications to the impact of natural enemies. We tested experimentally the capacity for a generalist enemy to promote coexistence of competing insect species, and the extent to which any impact can be predicted by trade-offs between reproductive rate and susceptibility to natural enemies. We used experimental mesocosms to conduct a fully factorial pairwise competition experiment for six rainforest Drosophila species, with and without a generalist pupal parasitoid. We then parameterised models of competition and examined the coexistence of each pair of Drosophila species within the framework of modern coexistence theory. We found idiosyncratic impacts of parasitism on pairwise coexistence, mediated through changes in fitness differences, not niche differences. There was no evidence of an overall reproductive rate-susceptibility trade-off. Pairwise reproductive rate-susceptibility relationships were not useful shortcuts for predicting the impact of parasitism on coexistence. Our results exemplify the value of modern coexistence theory in multi-trophic contexts and the importance of contextualising the impact of generalist natural enemies to determine their impact. In the set of species investigated, competition was affected by the higher trophic level, but the overall impact on coexistence cannot be easily predicted just from knowledge of relative susceptibility. Methodologically, our Bayesian approach highlights issues with the separability of model parameters within modern coexistence theory and shows how using the full posterior parameter distribution improves inferences. This method should be widely applicable for understanding species coexistence in a range of systems.
Collapse
Affiliation(s)
- J Christopher D Terry
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Jinlin Chen
- Department of Zoology, University of Oxford, Oxford, UK
| | - Owen T Lewis
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Wang Y, Ferveur JF, Moussian B. Eco-genetics of desiccation resistance in Drosophila. Biol Rev Camb Philos Soc 2021; 96:1421-1440. [PMID: 33754475 DOI: 10.1111/brv.12709] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Climate change globally perturbs water circulation thereby influencing ecosystems including cultivated land. Both harmful and beneficial species of insects are likely to be vulnerable to such changes in climate. As small animals with a disadvantageous surface area to body mass ratio, they face a risk of desiccation. A number of behavioural, physiological and genetic strategies are deployed to solve these problems during adaptation in various Drosophila species. Over 100 desiccation-related genes have been identified in laboratory and wild populations of the cosmopolitan fruit fly Drosophila melanogaster and its sister species in large-scale and single-gene approaches. These genes are involved in water sensing and homeostasis, and barrier formation and function via the production and composition of surface lipids and via pigmentation. Interestingly, the genetic strategy implemented in a given population appears to be unpredictable. In part, this may be due to different experimental approaches in different studies. The observed variability may also reflect a rich standing genetic variation in Drosophila allowing a quasi-random choice of response strategies through soft-sweep events, although further studies are needed to unravel any underlying principles. These findings underline that D. melanogaster is a robust species well adapted to resist climate change-related desiccation. The rich data obtained in Drosophila research provide a framework to address and understand desiccation resistance in other insects. Through the application of powerful genetic tools in the model organism D. melanogaster, the functions of desiccation-related genes revealed by correlative studies can be tested and the underlying molecular mechanisms of desiccation tolerance understood. The combination of the wealth of available data and its genetic accessibility makes Drosophila an ideal bioindicator. Accumulation of data on desiccation resistance in Drosophila may allow us to create a world map of genetic evolution in response to climate change in an insect genome. Ultimately these efforts may provide guidelines for dealing with the effects of climate-related perturbations on insect population dynamics in the future.
Collapse
Affiliation(s)
- Yiwen Wang
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Université de Bourgogne, 6, Bd Gabriel, Dijon, 21000, France
| | - Bernard Moussian
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,Institute of Biology Valrose, Université Côte d'Azur, CNRS, Inserm, Parc Valrose, Nice CEDEX 2, 06108, France
| |
Collapse
|
7
|
Flatt T. Life-History Evolution and the Genetics of Fitness Components in Drosophila melanogaster. Genetics 2020; 214:3-48. [PMID: 31907300 PMCID: PMC6944413 DOI: 10.1534/genetics.119.300160] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Life-history traits or "fitness components"-such as age and size at maturity, fecundity and fertility, age-specific rates of survival, and life span-are the major phenotypic determinants of Darwinian fitness. Analyzing the evolution and genetics of these phenotypic targets of selection is central to our understanding of adaptation. Due to its simple and rapid life cycle, cosmopolitan distribution, ease of maintenance in the laboratory, well-understood evolutionary genetics, and its versatile genetic toolbox, the "vinegar fly" Drosophila melanogaster is one of the most powerful, experimentally tractable model systems for studying "life-history evolution." Here, I review what has been learned about the evolution and genetics of life-history variation in D. melanogaster by drawing on numerous sources spanning population and quantitative genetics, genomics, experimental evolution, evolutionary ecology, and physiology. This body of work has contributed greatly to our knowledge of several fundamental problems in evolutionary biology, including the amount and maintenance of genetic variation, the evolution of body size, clines and climate adaptation, the evolution of senescence, phenotypic plasticity, the nature of life-history trade-offs, and so forth. While major progress has been made, important facets of these and other questions remain open, and the D. melanogaster system will undoubtedly continue to deliver key insights into central issues of life-history evolution and the genetics of adaptation.
Collapse
Affiliation(s)
- Thomas Flatt
- Department of Biology, University of Fribourg, CH-1700, Switzerland
| |
Collapse
|
8
|
Hangartner S, Lasne C, Sgrò CM, Connallon T, Monro K. Genetic covariances promote climatic adaptation in Australian
Drosophila
*. Evolution 2019; 74:326-337. [DOI: 10.1111/evo.13831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/12/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Sandra Hangartner
- School of Biological Sciences Monash University Building 18 Melbourne Victoria 3800 Australia
| | - Clementine Lasne
- School of Biological Sciences Monash University Building 18 Melbourne Victoria 3800 Australia
| | - Carla M. Sgrò
- School of Biological Sciences Monash University Building 18 Melbourne Victoria 3800 Australia
| | - Tim Connallon
- School of Biological Sciences Monash University Building 18 Melbourne Victoria 3800 Australia
| | - Keyne Monro
- School of Biological Sciences Monash University Building 18 Melbourne Victoria 3800 Australia
- Centre for Geometric Biology Monash University Melbourne Victoria 3800 Australia
| |
Collapse
|
9
|
Yang Y, Edery I. Parallel clinal variation in the mid-day siesta of Drosophila melanogaster implicates continent-specific targets of natural selection. PLoS Genet 2018; 14:e1007612. [PMID: 30180162 PMCID: PMC6138418 DOI: 10.1371/journal.pgen.1007612] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 09/14/2018] [Accepted: 08/06/2018] [Indexed: 11/18/2022] Open
Abstract
Similar to many diurnal animals, Drosophila melanogaster exhibits a mid-day siesta that is more robust as ambient temperature rises, an adaptive response aimed at minimizing exposure to heat. Mid-day siesta levels are partly regulated by the thermosensitive splicing of a small intron (termed dmpi8) found in the 3’ untranslated region (UTR) of the circadian clock gene period (per). Using the well-studied D. melanogaster latitudinal cline along the eastern coast of Australia, we show that flies from temperate populations sleep less during the day compared to those from tropical regions. We identified combinations of four single nucleotide polymorphisms (SNPs) in the 3’ UTR of per that yield several different haplotypes. The two most abundant of these haplotypes exhibit a reciprocal tropical-temperate distribution in relative frequency. Intriguingly, transgenic flies with the major tropical isoform manifest increased daytime sleep and reduced dmpi8 splicing compared to those carrying the temperate variant. Our results strongly suggest that for a major portion of D. melanogaster in Australia, thermal adaptation of daily sleep behavior included spatially varying selection on ancestrally derived polymorphisms in the per 3’ UTR that differentially control dmpi8 splicing efficiency. Prior work showed that African flies from high altitudes manifest reduced mid-day siesta levels, indicative of parallel latitudinal and altitudinal adaptation across continents. However, geographical variation in per 3’ UTR haplotypes was not observed for African flies, providing a compelling case for inter-continental variation in factors targeted by natural selection in attaining a parallel adaptation. We propose that the ability to calibrate mid-day siesta levels to better match local temperature ranges is a key adaptation contributing to the successful colonization of D. melanogaster beyond its ancestral range in the lowlands of Sub-Saharan Africa. In warm climates many animals, including humans, exhibit a mid-day siesta, almost certainly a behavior meant to minimize the harm from prolonged exposure to the hot mid-day sun. But what about animals that adapted to cooler more temperate climates, might they have a less pronounced siesta? Indeed, we show that in the common fruit fly, Drosophila melanogaster, those from temperate regions in Australia exhibit less mid-day siesta compared to their tropical counterparts. Prior work showed that mid-day sleep levels are partially regulated by a ‘clock’ gene called period (per), which controls the timing of wake-sleep cycles in addition to other daily rhythms. We identified several DNA differences in the per gene that show geographical variation and contribute to the daytime sleep differences in flies from tropical and temperate regions via a mechanism that involves how well a temperature-sensitive intron in per is removed. A similar reduction in mid-day sleep was previously observed in African flies that adapted to the cooler temperatures found at high altitudes. Together, our findings provide a rare example where latitude and altitude lead to a similar behavioral adaptation to temperature. Moreover, the results suggest inter-continental differences in the evolutionary solutions used to attain the same thermal adaptation to cooler climates.
Collapse
Affiliation(s)
- Yong Yang
- Rutgers University, Center for Advanced Biotechnology and Medicine, New Jersey, United States of America
| | - Isaac Edery
- Rutgers University, Center for Advanced Biotechnology and Medicine, New Jersey, United States of America
- Department of Molecular Biology and Biochemistry, Rutgers University, Center for Advanced Biotechnology and Medicine, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
10
|
Rajpurohit S, Zhao X, Schmidt PS. A resource on latitudinal and altitudinal clines of ecologically relevant phenotypes of the Indian Drosophila. Sci Data 2017; 4:170066. [PMID: 28509912 PMCID: PMC5433391 DOI: 10.1038/sdata.2017.66] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 04/07/2017] [Indexed: 01/26/2023] Open
Abstract
The unique geography of the Indian subcontinent has provided diverse natural environments for a variety of organisms. In this region, many ecological indices such as temperature and humidity vary predictably as a function of both latitude and altitude; these environmental parameters significantly affect fundamental dynamics of natural populations. Indian drosophilids are diverse in their geographic distribution and climate tolerance, possibly as a result of climatic adaptation. These associations with environmental parameters are further reflected in a large number of clines that have been reported for various fitness traits along these geographical ranges. This unique amalgamation of environmental variability and genetic diversity make the subcontinent an ecological laboratory for studying evolution in action. We assembled data collected over the last 20 years on the geographical clines for various phenotypic traits in several species of drosophilids and present a web-resource on Indian-Drosophila ( http://www.indian-drosophila.org/). The clinal data on ecologically relevant phenotypes of Indian drosophilids will be useful in addressing questions related to future challenges in biodiversity and ecosystems in this region.
Collapse
Affiliation(s)
- Subhash Rajpurohit
- Department of Biology, University of Pennsylvania, 433 S University Ave, Philadelphia, Pennsylvania 19104, USA
| | - Xiaqing Zhao
- Department of Pathology, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98195, USA
| | - Paul S. Schmidt
- Department of Biology, University of Pennsylvania, 433 S University Ave, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
11
|
Correlations of Genotype with Climate Parameters Suggest Caenorhabditis elegans Niche Adaptations. G3-GENES GENOMES GENETICS 2017; 7:289-298. [PMID: 27866149 PMCID: PMC5217117 DOI: 10.1534/g3.116.035162] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Species inhabit a variety of environmental niches, and the adaptation to a particular niche is often controlled by genetic factors, including gene-by-environment interactions. The genes that vary in order to regulate the ability to colonize a niche are often difficult to identify, especially in the context of complex ecological systems and in experimentally uncontrolled natural environments. Quantitative genetic approaches provide an opportunity to investigate correlations between genetic factors and environmental parameters that might define a niche. Previously, we have shown how a collection of 208 whole-genome sequenced wild Caenorhabditis elegans can facilitate association mapping approaches. To correlate climate parameters with the variation found in this collection of wild strains, we used geographic data to exhaustively curate daily weather measurements in short-term (3 month), middle-term (one year), and long-term (three year) durations surrounding the date of strain isolation. These climate parameters were used as quantitative traits in association mapping approaches, where we identified 11 quantitative trait loci (QTL) for three climatic variables: elevation, relative humidity, and average temperature. We then narrowed the genomic interval of interest to identify gene candidates with variants potentially underlying phenotypic differences. Additionally, we performed two-strain competition assays at high and low temperatures to validate a QTL that could underlie adaptation to temperature and found suggestive evidence supporting that hypothesis.
Collapse
|
12
|
Bush A, Mokany K, Catullo R, Hoffmann A, Kellermann V, Sgrò C, McEvey S, Ferrier S. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol Lett 2016; 19:1468-1478. [DOI: 10.1111/ele.12696] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/01/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Alex Bush
- CSIRO Land and Water; Canberra Australia
| | | | - Renee Catullo
- CSIRO Land and Water; Canberra Australia
- Biological Sciences; Macquarie University; Sydney Australia
- School of Science and Health; Western Sydney University; Australia
| | | | | | | | | | | |
Collapse
|