1
|
Saskianti T, Nugraha AP, Prahasanti C, Ernawati DS, Tanimoto K, Riawan W, Kanawa M, Kawamoto T, Fujimoto K. Study of Alveolar Bone Remodeling Using Deciduous Tooth Stem Cells and Hydroxyapatite by Vascular Endothelial Growth Factor Enhancement and Inhibition of Matrix Metalloproteinase-8 Expression in vivo. Clin Cosmet Investig Dent 2022; 14:71-78. [PMID: 35355803 PMCID: PMC8959620 DOI: 10.2147/ccide.s354153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/11/2022] [Indexed: 12/29/2022] Open
Abstract
Background Periodontitis progression is characterized by alveolar bone loss, and its prevention is a major clinical problem in periodontal disease management. Matrix metalloproteinase-8 (MMP-8) has been shown to adequately monitor the treatment of chronic periodontitis patients as gingival crevicular fluid MMP-8s were positively associated with the severity of periodontal disease. Moreover, modulating the vascular endothelial growth factor (VEGF) levels in bones could be a good way to improve bone regeneration and cure periodontitis as VEGF promotes endothelial cell proliferation, proteolytic enzyme release, chemotaxis, and migration; all of which are required for angiogenesis. Purpose The aim of this study was to determine the effect of hydroxyapatite incorporated with stem cells from exfoliated deciduous teeth (SHED) in Wistar rats’ initial alveolar bone remodeling based on the findings of MMP-8 and VEGF expressions. Methods A hydroxyapatite scaffold (HAS) in conjunction with SHED was transplanted into animal models with alveolar mandibular defects. A total of 10 Wistar rats (Rattus norvegicus) were divided into two groups: HAS and HAS + SHED. Immunohistochemistry staining was performed after 7 days to facilitate the examination of MMP-8 and VEGF expressions. Results The independent t-test found significant downregulation of MMP-8 and upregulation VEGF expressions in groups transplanted with HAS in conjunction with SHED compared with the HAS group (p < 0.05). Conclusion The combination of SHED with HAS on alveolar bone defects may contribute to initial alveolar bone remodeling as evident through the assessments of MMP-8 and VEGF expressions.
Collapse
Affiliation(s)
- Tania Saskianti
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Alexander Patera Nugraha
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Chiquita Prahasanti
- Department of Periodontology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Diah Savitri Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wibi Riawan
- Biomolecular Biochemistry, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Masami Kanawa
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Takeshi Kawamoto
- Department of Dental and Medical Biochemistry, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.,Writing Center, Hiroshima University, Higashi-Hiroshima, Japan
| | - Katsumi Fujimoto
- Department of Dental and Medical Biochemistry, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Molecular Biology and Biochemistry, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Tachalov VV, Orekhova LY, Kudryavtseva TV, Loboda ES, Pachkoriia MG, Berezkina IV, Golubnitschaja O. Making a complex dental care tailored to the person: population health in focus of predictive, preventive and personalised (3P) medical approach. EPMA J 2021; 12:129-140. [PMID: 33897916 PMCID: PMC8053896 DOI: 10.1007/s13167-021-00240-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
An evident underestimation of the targeted prevention of dental diseases is strongly supported by alarming epidemiologic statistics globally. For example, epidemiologists demonstrated 100% prevalence of dental caries in the Russian population followed by clinical manifestation of periodontal diseases. Inadequately provided oral health services in populations are caused by multi-factorial deficits including but not limited to low socio-economic status of affected individuals, lack of insurance in sub-populations, insufficient density of dedicated medical units. Another important aspect is the “participatory” medicine based on the active participation of population in maintaining oral health: healthcare will remain insufficient as long as the patient is not motivated and does not feel responsible for their oral health. To this end, nearly half of chronically diseased people do not comply with adequate medical services suffering from severely progressing pathologies. Noteworthy, the prominent risk factors and comorbidities linked to the severe disease course and poor outcomes in COVID-19-infected individuals, such as elderly, diabetes mellitus, hypertension and cardiovascular disease, are frequently associated with significantly altered oral microbiome profiles, systemic inflammatory processes and poor oral health. Suggested pathomechanisms consider potential preferences in the interaction between the viral particles and the host microbiota including oral cavity, the respiratory and gastrointestinal tracts. Since an aspiration of periodontopathic bacteria induces the expression of angiotensin-converting enzyme 2, the receptor for SARS-CoV-2, and production of inflammatory cytokines in the lower respiratory tract, poor oral hygiene and periodontal disease have been proposed as leading to COVID-19 aggravation. Consequently, the issue-dedicated expert recommendations are focused on the optimal oral hygiene as being crucial for improved individual outcomes and reduced morbidity under the COVID-19 pandemic condition. Current study demonstrated that age, gender, socio-economic status, quality of environment and life-style, oral hygiene quality, regularity of dental services requested, level of motivation and responsibility for own health status and corresponding behavioural patterns are the key parameters for the patient stratification considering person-tailored approach in a complex dental care in the population. Consequently, innovative screening programmes and adapted treatment schemes are crucial for the complex person-tailored dental care to improve individual outcomes and healthcare provided to the population.
Collapse
Affiliation(s)
- V. V. Tachalov
- Therapeutic Dentistry and Periodontology Department, Pavlov First Saint Petersburg State Medical University, 6/8 Lva Tolstogo Street, St. Petersburg, Russia
| | - L. Y. Orekhova
- Therapeutic Dentistry and Periodontology Department, Pavlov First Saint Petersburg State Medical University, 6/8 Lva Tolstogo Street, St. Petersburg, Russia
- City Periodontology Centre, “PAKS”, Dobrolubova prospect, 27, St. Petersburg, Russia
| | - T. V. Kudryavtseva
- Therapeutic Dentistry and Periodontology Department, Pavlov First Saint Petersburg State Medical University, 6/8 Lva Tolstogo Street, St. Petersburg, Russia
| | - E. S. Loboda
- City Periodontology Centre, “PAKS”, Dobrolubova prospect, 27, St. Petersburg, Russia
| | - M. G. Pachkoriia
- Therapeutic Dentistry and Periodontology Department, Pavlov First Saint Petersburg State Medical University, 6/8 Lva Tolstogo Street, St. Petersburg, Russia
| | - I. V. Berezkina
- Therapeutic Dentistry and Periodontology Department, Pavlov First Saint Petersburg State Medical University, 6/8 Lva Tolstogo Street, St. Petersburg, Russia
| | - O. Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
3
|
Pei J, Li F, Xie Y, Liu J, Yu T, Feng X. Microbial and metabolomic analysis of gingival crevicular fluid in general chronic periodontitis patients: lessons for a predictive, preventive, and personalized medical approach. EPMA J 2020; 11:197-215. [PMID: 32547651 PMCID: PMC7272536 DOI: 10.1007/s13167-020-00202-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/10/2020] [Indexed: 12/14/2022]
Abstract
Objectives General chronic periodontitis (GCP) is a bacterial inflammatory disease with complex pathology. Despite extensive studies published on the variation in the oral microbiota and metabolic profiles of GCP patients, information is lacking regarding the correlation between host-bacterial interactions and biochemical metabolism. This study aimed to analyze the oral microbiome, the oral metabolome, and the link between them and to identify potential molecules as useful biomarkers for predictive, preventive, and personalized medicine (PPPM) in GCP. Methods In this study, gingival crevicular fluid (GCF) samples were collected from patients with GCP (n = 30) and healthy controls (n = 28). The abundance of oral microbiota constituents was obtained by Illumina sequencing, and the relative level of metabolites was measured by gas chromatography-mass spectrometry. Full-mouth probing depth, clinical attachment loss, and bleeding on probing were recorded as indices of periodontal disease. Results The relative abundances of 7 phyla and 82 genera differed significantly between the GCP and healthy groups. Seventeen differential metabolites involved in different metabolism pathways were selected based on variable influence on projection values (VIP > 1) and P values (P < 0.05). Through Spearman's correlation analysis, microorganisms, metabolites in GCF, and clinical data together showed a clear trend, and clinical data regarding periodontitis can be reflected in the shift of the oral microbial community and the change in metabolites in GCF. A combination of citramalic acid and N-carbamylglutamate yielded satisfactory accuracy (AUC = 0.876) for the predictive diagnosis of GCP. Conclusions Dysbiosis in the polymicrobial community structure and changes in metabolism could be mechanisms underlying periodontitis. The differential microorganisms and metabolites in GCF between periodontitis patients and healthy individuals are possibly biomarkers, pointing to a potential strategy for the prediction, diagnosis, prognosis, and management of personalized periodontal therapy.
Collapse
Affiliation(s)
- Jun Pei
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000 China.,National Clinical Research Center for Oral Diseases, Shanghai, 200000 China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200000 China
| | - Fei Li
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000 China.,National Clinical Research Center for Oral Diseases, Shanghai, 200000 China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200000 China
| | - Youhua Xie
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200000 China
| | - Jing Liu
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200000 China
| | - Tian Yu
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000 China.,National Clinical Research Center for Oral Diseases, Shanghai, 200000 China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200000 China
| | - Xiping Feng
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000 China.,National Clinical Research Center for Oral Diseases, Shanghai, 200000 China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200000 China
| |
Collapse
|
4
|
Zhang C, Gan Y, Lv JW, Qin MQ, Hu WR, Liu ZB, Ma L, Song BD, Li J, Jiang WY, Wang JQ, Wang H, Xu DX. The protective effect of obeticholic acid on lipopolysaccharide-induced disorder of maternal bile acid metabolism in pregnant mice. Int Immunopharmacol 2020; 83:106442. [PMID: 32248018 DOI: 10.1016/j.intimp.2020.106442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 12/16/2022]
Abstract
The disorder of bile acid metabolism is a common feature during pregnancy, which leads to adverse birth outcomes and maternal damage effects. However, the cause and therapy about the disorder of bile acid metabolism are still poor. Microbial infection often occurs in pregnant women, which can induce the disorder of bile acid metabolism in adult mice. Here, this study observed the acute effect of lipopolysaccharide (LPS) on maternal bile acid of pregnant mice at gestational day 17 and the protective effect of obeticholic acid (OCA) pretreatment, a potent agonist of bile acid receptor farnesoid X receptor (FXR). The results showed LPS significantly increased the level of maternal serum and disordered bile acids components of maternal serum and liver, which were ameliorated by OCA pretreatment with obviously reducing the contents of CA, TCA, DCA, TCDCA, CDCA, GCA and TDCA in maternal serum and DCA, TCA, TDCA, TUDCA, CDCA and TCDCA in maternal liver. Furthermore, we investigated the effects of OCA on LPS-disrupted bile acid metabolism in maternal liver. LPS disrupted maternal bile acid profile by decreasing transport and metabolism with hepatic tight junctions of bile acid in pregnant mice. OCA obviously increased the protein level of nuclear FXR and regulated its target genes involving in the metabolism of bile acid, which was characterized by the lower expression of bile acid synthase CYP7A1, the higher expression of CYP3A and the higher mRNA level of transporter Mdr1a/b. This study provided the evidences that LPS disrupted bile acid metabolism in the late stage of pregnant mice and OCA pretreatment played the protective role on it by activating FXR.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei 230032, Anhui, China
| | - Yu Gan
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Jin-Wei Lv
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Ming-Qiang Qin
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Wei-Rong Hu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Zhi-Bing Liu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Li Ma
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Bing-Dong Song
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Jian Li
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Wei-Ying Jiang
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Jian-Qing Wang
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei 230032, Anhui, China; The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei 230032, Anhui, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei 230032, Anhui, China.
| |
Collapse
|
5
|
Uwitonze AM, Uwambaye P, Isyagi M, Mumena CH, Hudder A, Haq A, Nessa K, Razzaque MS. Periodontal diseases and adverse pregnancy outcomes: Is there a role for vitamin D? J Steroid Biochem Mol Biol 2018; 180:65-72. [PMID: 29341890 DOI: 10.1016/j.jsbmb.2018.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/06/2017] [Accepted: 01/12/2018] [Indexed: 01/22/2023]
Abstract
Studies have shown a relationship between maternal periodontal diseases (PDs) and premature delivery. PDs are commonly encountered oral diseases which cause progressive damage to the periodontal ligament and alveolar bones, leading to loss of teeth and oral disabilities. PDs also adversely affect general health by worsening of cardiovascular and metabolic diseases. Moreover, maternal PDs are thought to be related to increasing the frequency of preterm-birth with low birth weight (PBLBW) in new-borns. Prematurity and immaturity are the leading causes of prenatal and infant mortality and is a major public health problem around the world. Inflamed periodontal tissues generate significantly high levels of proinflammatory cytokines that may have systemic effects on the host mother and the fetus. In addition, the bacteria that cause PDs produce endotoxins which can harm the fetus. Furthermore, studies have shown that microorganisms causing PDs can get access to the bloodstream, invading uterine tissues, to induce PBLBW. Another likely mechanism that connects PDs with adverse pregnancy outcome is maternal vitamin D status. A role of inadequate vitamin D status in the genesis of PDs has been reported. Administration of vitamin D supplementation during pregnancy could reduce the risk of maternal infections and adverse pregnancy outcomes. As maternal PDs are significant risk factors for adverse pregnancy outcome, preventive antenatal care for pregnant women in collaboration with the obstetric and dental professions are required.
Collapse
Affiliation(s)
- Anne Marie Uwitonze
- Department of Preventive & Community Dentistry, University of Rwanda College of Medicine & Health Sciences, School of Dentistry, Kigali, Rwanda
| | - Peace Uwambaye
- Department of Preventive & Community Dentistry, University of Rwanda College of Medicine & Health Sciences, School of Dentistry, Kigali, Rwanda
| | - Moses Isyagi
- Department of Preventive & Community Dentistry, University of Rwanda College of Medicine & Health Sciences, School of Dentistry, Kigali, Rwanda
| | - Chrispinus H Mumena
- Department of Preventive & Community Dentistry, University of Rwanda College of Medicine & Health Sciences, School of Dentistry, Kigali, Rwanda
| | - Alice Hudder
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Afrozul Haq
- Department of Food Technology, School of Interdisciplinary Sciences & Technology, Jamia Hamdard, New Delhi, India
| | - Kamrun Nessa
- Department of Obstetrics & Gynaecology, Chittagong Medical College Hospital, Chittagong, Bangladesh
| | - Mohammed S Razzaque
- Department of Preventive & Community Dentistry, University of Rwanda College of Medicine & Health Sciences, School of Dentistry, Kigali, Rwanda; Department of Applied Oral Sciences, Forsyth Institute, Harvard School of Dental Medicine Affiliate, Cambridge, MA, USA; Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, USA.
| |
Collapse
|
6
|
Zambon M, Mandò C, Lissoni A, Anelli GM, Novielli C, Cardellicchio M, Leone R, Monari MN, Massari M, Cetin I, Abati S. Inflammatory and Oxidative Responses in Pregnancies With Obesity and Periodontal Disease. Reprod Sci 2018; 25:1474-1484. [PMID: 29343164 DOI: 10.1177/1933719117749758] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Maternal obesity is related to immunologic and inflammatory systemic modifications that may worsen the pregnancy inflammatory status. Hormonal changes during pregnancy can adversely affect oral biofilms and oral health initiating or worsening periodontal diseases, with enhanced local and systemic oxidative stress and inflammation. OBJECTIVE The aim of this study was to examine the relationship between local salivary and systemic parameters of oxidative stress and inflammation in relation to obesity and periodontal diseases. STUDY DESIGN Sixty-two women with singleton pregnancies were enrolled. Twenty-seven women were normal weight (NW; 18.5< body mass index [BMI] <25 kg/m2) and 35 obese (BMI ≥30 kg/m2). Seventeen of the obese had gestational diabetes mellitus (GDM). During third trimester, periodontal status was evaluated, saliva (s) was collected to assess total antioxidant capacity (s-TAC) and C-reactive protein (s-CRP) levels, and venous plasma (p) was used to measure CRP levels (p-CRP). Maternal, fetal, and placental data were registered at delivery. RESULTS Levels of s-TAC, s-CRP, and p-CRP were significantly higher in obese, particularly in the presence of GDM, compared to NW and related to each other ( P = .000; r > 0.59), to maternal BMI ( P = .000; r > 0.52), and fasting glycemia ( P < .002; r > 0.47). Periodontal disease was more frequent in obese groups (80%) versus NW (52%; P = .04), particularly when GDM was diagnosed ( P = .009). A significant interaction effect between maternal BMI and oral condition was found for s-TAC levels. Obese with periodontitis showed significant increase in local and systemic parameters versus NW. CONCLUSION Obesity and periodontal disease could synergistically amplify the inflammatory and oxidative status, resulting in increased local and systemic biomarkers particularly when GDM is diagnosed.
Collapse
Affiliation(s)
- Marta Zambon
- 1 Unit of Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, "L. Sacco" University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Chiara Mandò
- 1 Unit of Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, "L. Sacco" University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Lissoni
- 2 Unit of Oral Pathology, Department of Dentistry, University Vita-Salute San Raffaele and IRCCS San Raffaele University Hospital, Milan, Italy
| | - Gaia Maria Anelli
- 1 Unit of Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, "L. Sacco" University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Chiara Novielli
- 1 Unit of Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, "L. Sacco" University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Manuela Cardellicchio
- 1 Unit of Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, "L. Sacco" University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Roberto Leone
- 3 Humanitas Clinical and Research Center, Rozzano, Italy
| | - Marta Noemi Monari
- 4 Laboratory of Analysis, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Maddalena Massari
- 1 Unit of Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, "L. Sacco" University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Irene Cetin
- 1 Unit of Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, "L. Sacco" University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Silvio Abati
- 2 Unit of Oral Pathology, Department of Dentistry, University Vita-Salute San Raffaele and IRCCS San Raffaele University Hospital, Milan, Italy
| |
Collapse
|
7
|
Multi-omics Analysis of Periodontal Pocket Microbial Communities Pre- and Posttreatment. mSystems 2017; 2:mSystems00016-17. [PMID: 28744486 PMCID: PMC5513737 DOI: 10.1128/msystems.00016-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
Periodontal disease affects the majority of adults worldwide and has been linked to numerous systemic diseases. Despite decades of research, the reasons for the substantial differences among periodontitis patients in disease incidence, progressivity, and response to treatment remain poorly understood. While deep sequencing of oral bacterial communities has greatly expanded our comprehension of the microbial diversity of periodontal disease and identified associations with healthy and disease states, predicting treatment outcomes remains elusive. Our results suggest that combining multiple omics approaches enhances the ability to differentiate among disease states and determine differential effects of treatment, particularly with the addition of metabolomic information. Furthermore, multi-omics analysis of biofilm community instability indicated that these approaches provide new tools for investigating the ecological dynamics underlying the progressive periodontal disease process. Periodontitis is a polymicrobial infectious disease that causes breakdown of the periodontal ligament and alveolar bone. We employed a meta-omics approach that included microbial 16S rRNA amplicon sequencing, shotgun metagenomics, and tandem mass spectrometry to analyze sub- and supragingival biofilms in adults with chronic periodontitis pre- and posttreatment with 0.25% sodium hypochlorite. Microbial samples were collected with periodontal curettes from 3- to 12-mm-deep periodontal pockets at the baseline and at 2 weeks and 3 months. All data types showed high interpersonal variability, and there was a significant correlation between phylogenetic diversity and pocket depth at the baseline and a strong correlation (rho = 0.21; P = 0.008) between metabolite diversity and maximum pocket depth (MPD). Analysis of subgingival baseline samples (16S rRNA and shotgun metagenomics) found positive correlations between abundances of particular bacterial genera and MPD, including Porphyromonas, Treponema, Tannerella, and Desulfovibrio species and unknown taxon SHD-231. At 2 weeks posttreatment, we observed an almost complete turnover in the bacterial genera (16S rRNA) and species (shotgun metagenomics) correlated with MPD. Among the metabolites detected, the medians of the 20 most abundant metabolites were significantly correlated with MPD pre- and posttreatment. Finally, tests of periodontal biofilm community instability found markedly higher taxonomic instability in patients who did not improve posttreatment than in patients who did improve (UniFrac distances; t = −3.59; P = 0.002). Interestingly, the opposite pattern occurred in the metabolic profiles (Bray-Curtis; t = 2.42; P = 0.02). Our results suggested that multi-omics approaches, and metabolomics analysis in particular, could enhance treatment prediction and reveal patients most likely to improve posttreatment. IMPORTANCE Periodontal disease affects the majority of adults worldwide and has been linked to numerous systemic diseases. Despite decades of research, the reasons for the substantial differences among periodontitis patients in disease incidence, progressivity, and response to treatment remain poorly understood. While deep sequencing of oral bacterial communities has greatly expanded our comprehension of the microbial diversity of periodontal disease and identified associations with healthy and disease states, predicting treatment outcomes remains elusive. Our results suggest that combining multiple omics approaches enhances the ability to differentiate among disease states and determine differential effects of treatment, particularly with the addition of metabolomic information. Furthermore, multi-omics analysis of biofilm community instability indicated that these approaches provide new tools for investigating the ecological dynamics underlying the progressive periodontal disease process.
Collapse
|
8
|
Hasturk H, Kantarci A. Activation and resolution of periodontal inflammation and its systemic impact. Periodontol 2000 2015; 69:255-73. [PMID: 26252412 PMCID: PMC4530469 DOI: 10.1111/prd.12105] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2015] [Indexed: 02/06/2023]
Abstract
Inflammation is a highly organized event impacting upon organs, tissues and biological systems. Periodontal diseases are characterized by dysregulation or dysfunction of resolution pathways of inflammation that results in failure to heal and in a dominant chronic, progressive, destructive and predominantly unresolved inflammation. The biological consequences of inflammatory processes may be independent of the etiological agents, such as trauma, microbial organisms and stress. The impact of the inflammatory pathological process depends upon the tissues or organ system affected. Whilst mediators are similar, there is tissue specificity for the inflammatory events. It is plausible that inflammatory processes in one organ could directly lead to pathologies in another organ or tissue. Communication between distant parts of the body and their inflammatory status is also mediated by common signaling mechanisms mediated via cells and soluble mediators. This review focuses on periodontal inflammation, its systemic associations and advances in therapeutic approaches based on mediators acting through orchestration of natural pathways to resolution of inflammation. We also discuss a new treatment concept in which natural pathways of resolution of periodontal inflammation can be used to limit systemic inflammation and promote healing and regeneration.
Collapse
Affiliation(s)
- Hatice Hasturk
- The Forsyth Institute, Department of Applied Oral Sciences, Center for Periodontology, Cambridge, MA 02142, USA. Phone: 617-892-8499; Fax: 617-892-8505
| | - Alpdogan Kantarci
- The Forsyth Institute, Department of Applied Oral Sciences, Center for Periodontology, Cambridge, MA 02142, USA. Phone: 617-892-8530
| |
Collapse
|
9
|
Grenier D, Chen H, Ben Lagha A, Fournier-Larente J, Morin MP. Dual Action of Myricetin on Porphyromonas gingivalis and the Inflammatory Response of Host Cells: A Promising Therapeutic Molecule for Periodontal Diseases. PLoS One 2015; 10:e0131758. [PMID: 26121135 PMCID: PMC4487256 DOI: 10.1371/journal.pone.0131758] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/07/2015] [Indexed: 12/16/2022] Open
Abstract
Periodontitis that affects the underlying structures of the periodontium, including the alveolar bone, is a multifactorial disease, whose etiology involves interactions between specific bacterial species of the subgingival biofilm and the host immune components. In the present study, we investigated the effects of myricetin, a flavonol largely distributed in fruits and vegetables, on growth and virulence properties of Porphyromonas gingivalis as well as on the P. gingivalis-induced inflammatory response in host cells. Minimal inhibitory concentration values of myricetin against P. gingivalis were in the range of 62.5 to 125 μg/ml. The iron-chelating activity of myricetin may contribute to the antibacterial activity of this flavonol. Myricetin was found to attenuate the virulence of P. gingivalis by reducing the expression of genes coding for important virulence factors, including proteinases (rgpA, rgpB, and kgp) and adhesins (fimA, hagA, and hagB). Myricetin dose-dependently prevented NF-κB activation in a monocyte model. Moreover, it inhibited the secretion of IL-6, IL-8 and MMP-3 by P. gingivalis-stimulated gingival fibroblasts. In conclusion, our study brought clear evidence that the flavonol myricetin exhibits a dual action on the periodontopathogenic bacterium P. gingivalis and the inflammatory response of host cells. Therefore, myricetin holds promise as a therapeutic agent for the treatment/prevention of periodontitis.
Collapse
Affiliation(s)
- Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, Quebec, Canada
- * E-mail:
| | - Huangqin Chen
- Department of Stomatology, Hubei University of Science and Technology, Xianning City, Hubei Province, China
| | - Amel Ben Lagha
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, Quebec, Canada
| | - Jade Fournier-Larente
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, Quebec, Canada
| | - Marie-Pierre Morin
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|