1
|
Mahajan AT, Shivani, Datusalia AK, Coluccini C, Coghi P, Chaudhary S. Pyrazolo[1,5- a]pyrimidine as a Prominent Framework for Tropomyosin Receptor Kinase (Trk) Inhibitors-Synthetic Strategies and SAR Insights. Molecules 2024; 29:3560. [PMID: 39124968 PMCID: PMC11314189 DOI: 10.3390/molecules29153560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Tropomyosin receptor kinases (Trks) are transmembrane receptor tyrosine kinases named TrkA, TrkB, and TrkC and encoded by the NTRK1, NTRK2, and NTRK3 genes, respectively. These kinases have attracted significant attention and represent a promising therapeutic target for solid tumor treatment due to their vital role in cellular signaling pathways. First-generation TRK inhibitors, i.e., Larotrectinib sulfate and Entrectinib, received clinical approval in 2018 and 2019, respectively. However, the use of these inhibitors was significantly limited because of the development of resistance due to mutations. Fortunately, the second-generation Trk inhibitor Repotrectinib (TPX-0005) was approved by the FDA in November 2023, while Selitrectinib (Loxo-195) has provided an effective solution to this issue. Another macrocycle-based analog, along with many other TRK inhibitors, is currently in clinical trials. Two of the three marketed drugs for NTRK fusion cancers feature a pyrazolo[1,5-a] pyrimidine nucleus, prompting medicinal chemists to develop numerous novel pyrazolopyrimidine-based molecules to enhance clinical applications. This article focuses on a comprehensive review of chronological synthetic developments and the structure-activity relationships (SAR) of pyrazolo[1,5-a]pyrimidine derivatives as Trk inhibitors. This article will also provide comprehensive knowledge and future directions to the researchers working in the field of medicinal chemistry by facilitating the structural modification of pyrazolo [1,5-a]pyrimidine derivatives to synthesize more effective novel chemotherapeutics as TRK inhibitors.
Collapse
Affiliation(s)
- Amol T. Mahajan
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India; (A.T.M.); (S.)
| | - Shivani
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India; (A.T.M.); (S.)
| | - Ashok Kumar Datusalia
- Laboratory of Molecular Neurotherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India;
| | - Carmine Coluccini
- Institute of New Drug Development, College of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Paolo Coghi
- Laboratory for Drug Discovery from Natural Resources & Industrialization, School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Sandeep Chaudhary
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India; (A.T.M.); (S.)
| |
Collapse
|
2
|
El-Nassan HB, Al-Qadhi MA. Recent advances in the discovery of tropomyosin receptor kinases TRKs inhibitors: A mini review. Eur J Med Chem 2023; 258:115618. [PMID: 37413881 DOI: 10.1016/j.ejmech.2023.115618] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
The tropomyosin receptor tyrosine kinases (TRKs) control the cell proliferation mainly in the nervous system and are encoded by NTRK genes. Fusion and mutation of NTRK genes were detected in various types of cancers. Many small molecules TRK inhibitors have been discovered during the last two decades and some of them have entered clinical trials. Moreover, two of these inhibitors; larotrectinib and entrectinib; were approved by FDA for the treatment of TRK-fusion positive solid tumors. However, mutation of TRK enzymes resulted in resistance to both drugs. Therefore, next generation TRK inhibitors were discovered to overcome the acquired drug resistance. Additionally, the off-target and on-target adverse effects on the brain initiated the need for selective TRK subtype inhibitors. Indeed, some molecules were recently reported as selective TRKA or TRKC inhibitors with minimal CNS side effects. The current review highlighted the efforts done during the last three years in the design and discovery of novel TRK inhibitors.
Collapse
Affiliation(s)
- Hala B El-Nassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mustafa A Al-Qadhi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
3
|
Lv R, Wang X, Sun Y, Qin Q, Liu N, Wu T, Sun Y, Yin W, Zhao D, Cheng M. Design, synthesis, and biological evaluation of aminopyridine derivatives as novel tropomyosin receptor kinase inhibitors. Arch Pharm (Weinheim) 2023; 356:e2200438. [PMID: 36398500 DOI: 10.1002/ardp.202200438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022]
Abstract
Tropomyosin receptor kinase (TRK) is a successful target for the treatment of various cancers caused by NTRK gene fusions. Herein, based on a rational drug design strategy, we designed and synthesized 35 aminopyrimidine derivatives that were shown to be TRKA inhibitors in the enzyme assay, among which compounds C3, C4, and C6 showed potent inhibitory activities against TRKA with IC50 values of 6.5, 5.0, and 7.0 nM, respectively. In vitro antiproliferative activity study showed that compound C3 significantly inhibited the proliferation of KM-12 cells but had weak inhibitory effect on MCF-7 cells and HUVEC cells. The preliminary druggability evaluation showed that compound C3 exhibited favorable liver microsomal and plasma stabilities and had weak or no inhibitory activity against cytochrome P450 isoforms at 10 µM. Compounds C3, C4, and C6 were also selected for ADME (absorption, distribution, metabolism, and elimination) properties prediction and molecular docking studies. Inhibition experiments showed that compound C3 was not selective for TRK subtypes. All results indicated that compound C3 was a useful candidate for the development of TRK inhibitors.
Collapse
Affiliation(s)
- Ruicheng Lv
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Nian Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
4
|
Liu N, Wang X, Fu Q, Qin Q, Wu T, Lv R, Zhao D, Cheng M. Design, synthesis and biological evaluation of pyrazolo[3,4- b]pyridine derivatives as TRK inhibitors. RSC Med Chem 2023; 14:85-102. [PMID: 36760745 PMCID: PMC9890667 DOI: 10.1039/d2md00334a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Tropomyosin receptor kinases (TRKs) are associated with the proliferation and differentiation of cells, and thus their continuous activation and overexpression cause cancer. Herein, based on scaffold hopping and computer-aid drug design, 38 pyrazolo[3,4-b]pyridine derivatives were synthesised. Further, we evaluated their activities to inhibit TRKA. Among them, compound C03 showed acceptable activity with an IC50 value of 56 nM and it inhibited the proliferation of the Km-12 cell line with an IC50 value of 0.304 μM together with obvious selectivity for the MCF-7 cell line and HUVEC cell line. Furthermore, compound C03 possessed good plasma stability and low inhibitory activity to a panel of cytochrome P450 isoforms except CYP2C9. Overall, C03 has potential for further exploration.
Collapse
Affiliation(s)
- Nian Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 PR China
| | - Xin Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 PR China
| | - Qinglin Fu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 PR China
| | - Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 PR China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 PR China
| | - Ruicheng Lv
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 PR China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 PR China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 PR China
| |
Collapse
|
5
|
Waguespack SG, Drilon A, Lin JJ, Brose MS, McDermott R, Almubarak M, Bauman J, Casanova M, Krishnamurthy A, Kummar S, Leyvraz S, Oh DY, Park K, Sohal D, Sherman E, Norenberg R, Silvertown JD, Brega N, Hong DS, Cabanillas ME. Efficacy and safety of larotrectinib in patients with TRK fusion-positive thyroid carcinoma. Eur J Endocrinol 2022; 186:631-643. [PMID: 35333737 PMCID: PMC9066591 DOI: 10.1530/eje-21-1259] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/25/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Larotrectinib is a highly selective tropomyosin receptor kinase (TRK) inhibitor with demonstrated efficacy across various TRK fusion-positive solid tumours. We assessed the efficacy and safety of larotrectinib in patients with TRK fusion-positive thyroid carcinoma (TC). METHODS We pooled data from three phase I/II larotrectinib clinical trials (NCT02576431, NCT02122913, and NCT02637687). The primary endpoint was the investigator-assessed objective response rate (ORR) per Response Evaluation Criteria in Solid Tumors v1.1. Secondary endpoints included duration of response (DoR), progression-free survival (PFS), overall survival (OS), and safety. Data cut-off: July 2020. RESULTS Twenty-nine patients (median age: 60; range: 6-80) with TRK fusion-positive TC were treated. Tumour histology was papillary (PTC) in 20 (69%) patients, follicular (FTC) in 2 (7%), and anaplastic (ATC) in 7 (24%) patients. Among 28 evaluable patients, ORR was 71% (95% CI: 51-87); best responses were complete response in 2 (7%) patients, partial response in 18 (64%), stable disease in 4 (14%), progressive disease in 3 (11%), and undetermined in 1 (4%) due to clinical progression prior to the first post-baseline assessment. ORR was 86% (95% CI: 64-97) for PTC/FTC and 29% (95% CI 4-71) for ATC. Median time to response was 1.87 months (range 1.64-3.68). The 24-month DoR, PFS, and OS rates were 81, 69, and 76%, respectively. Treatment-related adverse events were mainly grades 1-2. CONCLUSION In TRK fusion-positive TC, larotrectinib demonstrates rapid and durable disease control and a favourable safety profile in patients with advanced disease requiring systemic therapy. SIGNIFICANCE STATEMENT NTRK gene fusions are known oncogenic drivers and have been identified in various histologies of thyroid carcinoma, most commonly in papillary thyroid carcinoma. This is the first publication specifically studying a TRK inhibitor in a cohort of TRK fusion-positive thyroid carcinoma patients. In the current study, the highly selective TRK inhibitor larotrectinib showed durable antitumour efficacy and a favourable safety profile in patients with TRK fusion-positive thyroid carcinoma. Our findings show that patients with advanced non-medullary thyroid carcinoma who may require systemic therapy could be considered for testing for gene fusions by next-generation sequencing.
Collapse
Affiliation(s)
- Steven G Waguespack
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Correspondence should be addressed to S G Waguespack;
| | - Alexander Drilon
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | - Jessica J Lin
- Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Marcia S Brose
- Sidney Kimmel Cancer Center of Jefferson University Health, Philadelphia, Pennsylvania, USA
| | - Ray McDermott
- St Vincent’s University Hospital and Cancer Trials Ireland, Dublin, Ireland
| | | | - Jessica Bauman
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Michela Casanova
- Paediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Shivaani Kummar
- Stanford Cancer Center, Stanford University, Palo Alto, California, USA
| | - Serge Leyvraz
- Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Do-Youn Oh
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, South Korea
| | - Keunchil Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | - Eric Sherman
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | | | | | - David S Hong
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
6
|
Moraes BC, Ribeiro-Filho HV, Roldão AP, Toniolo EF, Carretero GPB, Sgro GG, Batista FAH, Berardi DE, Oliveira VRS, Tomasin R, Vieceli FM, Pramio DT, Cardoso AB, Figueira ACM, Farah SC, Devi LA, Dale CS, de Oliveira PSL, Schechtman D. Structural analysis of TrkA mutations in patients with congenital insensitivity to pain reveals PLCγ as an analgesic drug target. Sci Signal 2022; 15:eabm6046. [PMID: 35471943 DOI: 10.1126/scisignal.abm6046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chronic pain is a major health issue, and the search for new analgesics has become increasingly important because of the addictive properties and unwanted side effects of opioids. To explore potentially new drug targets, we investigated mutations in the NTRK1 gene found in individuals with congenital insensitivity to pain with anhidrosis (CIPA). NTRK1 encodes tropomyosin receptor kinase A (TrkA), the receptor for nerve growth factor (NGF) and that contributes to nociception. Molecular modeling and biochemical analysis identified mutations that decreased the interaction between TrkA and one of its substrates and signaling effectors, phospholipase Cγ (PLCγ). We developed a cell-permeable phosphopeptide derived from TrkA (TAT-pQYP) that bound the Src homology domain 2 (SH2) of PLCγ. In HEK-293T cells, TAT-pQYP inhibited the binding of heterologously expressed TrkA to PLCγ and decreased NGF-induced, TrkA-mediated PLCγ activation and signaling. In mice, intraplantar administration of TAT-pQYP decreased mechanical sensitivity in an inflammatory pain model, suggesting that targeting this interaction may be analgesic. The findings demonstrate a strategy to identify new targets for pain relief by analyzing the signaling pathways that are perturbed in CIPA.
Collapse
Affiliation(s)
- Beatriz C Moraes
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Helder V Ribeiro-Filho
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio) Campinas, SP 13083-100, Brazil
| | - Allan P Roldão
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Elaine F Toniolo
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, SP 05508-000, Brazil
| | - Gustavo P B Carretero
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Germán G Sgro
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil.,Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040903, Brazil
| | - Fernanda A H Batista
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio) Campinas, SP 13083-100, Brazil
| | - Damian E Berardi
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Victoria R S Oliveira
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, SP 05508-000, Brazil
| | - Rebeka Tomasin
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Felipe M Vieceli
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Dimitrius T Pramio
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Alexandre B Cardoso
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Ana C M Figueira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio) Campinas, SP 13083-100, Brazil
| | - Shaker C Farah
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Camila S Dale
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, SP 05508-000, Brazil
| | - Paulo S L de Oliveira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio) Campinas, SP 13083-100, Brazil
| | - Deborah Schechtman
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| |
Collapse
|
7
|
Wu T, Zhang C, Lv R, Qin Q, Liu N, Yin W, Wang R, Sun Y, Wang X, Sun Y, Zhao D, Cheng M. Design, synthesis, biological evaluation and pharmacophore model analysis of novel tetrahydropyrrolo[3,4-c]pyrazol derivatives as potential TRKs inhibitors. Eur J Med Chem 2021; 223:113627. [PMID: 34171657 DOI: 10.1016/j.ejmech.2021.113627] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/19/2023]
Abstract
The tropomyosin receptor kinases TRKs are responsible for different tumor types which caused by NTRK gene fusion, and have been identified as a successful target for anticancer therapeutics. Herein, we report a potent and selectivity TRKs inhibitor 19m through rational drug design strategy from a micromolar potency hit 17a. Compound 19m significantly inhibits the proliferation of TRK-dependent cell lines (Km-12), while it has no inhibitory effect on TRK-independent cell lines (A549 and THLE-2). Furthermore, kinases selectivity profiling showed that in addition to TRKs, compound 19m only displayed relatively strong inhibitory activity on ALK. These data may indicate that compound 19m has a good drug safety. Partial ADME properties were evaluated in vitro and in vivo. Compound 19m exhibited a good AUC values and volume of distribution and low clearance in the pharmacokinetics experiment of rats. Finally, a pharmacophore model guided by experimental results is proposed. We hope this theoretical model can help researchers find type I TRK inhibitors more efficiently.
Collapse
Affiliation(s)
- Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Chu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Ruicheng Lv
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Nian Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Ruifeng Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Xiaoyan Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| |
Collapse
|
8
|
Jiang T, Wang G, Liu Y, Feng L, Wang M, Liu J, Chen Y, Ouyang L. Development of small-molecule tropomyosin receptor kinase (TRK) inhibitors for NTRK fusion cancers. Acta Pharm Sin B 2021; 11:355-372. [PMID: 33643817 PMCID: PMC7893124 DOI: 10.1016/j.apsb.2020.05.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
Tropomyosin receptor kinase A, B and C (TRKA, TRKB and TRKC), which are well-known members of the cell surface receptor tyrosine kinase (RTK) family, are encoded by the neurotrophic receptor tyrosine kinase 1, 2 and 3 (NTRK1, NTRK2 and NTRK3) genes, respectively. TRKs can regulate cell proliferation, differentiation and even apoptosis through the RAS/MAPKs, PI3K/AKT and PLCγ pathways. Gene fusions involving NTRK act as oncogenic drivers of a broad diversity of adult and pediatric tumors, and TRKs have become promising antitumor targets. Therefore, achieving a comprehensive understanding of TRKs and relevant TRK inhibitors should be urgently pursued for the further development of novel TRK inhibitors for potential clinical applications. This review focuses on summarizing the biological functions of TRKs and NTRK fusion proteins, the development of small-molecule TRK inhibitors with different chemotypes and their activity and selectivity, and the potential therapeutic applications of these inhibitors for future cancer drug discovery efforts.
Collapse
Key Words
- AFAP1, actin filament-associated protein 1
- AML, acute myeloid leukemia
- ARHGEF2, Rho/Rac guanine nucleotide exchange factor 2
- BCAN, brevican
- BDNF, brain-derived neurotrophic factor
- BTBD1, BTB (POZ) domain containing 1
- CDK-2, cyclin-dependent kinase 2
- CR, complete response
- CRC, colorectal cancer
- CTCs, sequencing of circulating tumor cells
- DFG, Asp-Phe-Gly
- DOR, durable objective responses
- ETV6, ETS translocation variant 6
- EWG, electron-withdrawing group
- FDA, U.S. Food and Drug Administration
- FISH, fluorescence in situ hybridization
- GBM, glioblastoma multiforme
- HNSCC, head and neck squamous cell carcinoma
- HTS, high-throughput screening
- ICC, intrahepatic cholangiocarcinoma
- IG-C2, Ig-like C2 type I
- LMNA, lamin A/C
- MASC, mammary analogue secretory carcinoma
- MPRIP, myosin phosphatase Rho interacting protein
- NACC2, NACC family member 2
- NCCN, National Comprehensive Cancer Network
- NFASC, neurofascin
- NGF, nerve growth factor
- NGS, next-generation sequencing of tumor tissue
- NSCLC, non-small cell lung cancer
- NT3, neurotrophin-3
- NTRK fusion cancer
- NTRK, neurotrophic receptor tyrosine kinase
- Neurotrophic receptor tyrosine kinase fusions
- OAK, osteoarthritis of the knee
- ORR, overall response rate
- PAN3, poly(A) nuclease 3
- PPL, periplakin
- PROTAC proteolysis targeting chimera, QKI
- RABGTPase activating protein 1-like, RFWD2
- RTK, receptor tyrosine kinase
- SAR, structure–activity relationship
- SBC, secretory breast carcinoma
- SCYL3, SCY1 like pseudokinase 3
- SQSTM1, sequestosome 1
- Small-molecule inhibitor
- TFG, TRK-fused gene
- TP53, tumor protein P53
- TPM3, tropomyosin 3
- TPR, translocated promoter region
- TRIM24, tripartite motif containing 24
- TRK, tropomyosin receptor kinase
- Tropomyosin receptor kinase
- VCL, vinculin
- VEGFR2, vascular endothelial growth factor receptor 2
- quaking I protein, RABGAP1L
- ring finger and WD repeat domain 2, E3 ubiquitin protein ligase
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Meng Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Yan W, Lakkaniga NR, Carlomagno F, Santoro M, McDonald NQ, Lv F, Gunaganti N, Frett B, Li HY. Insights into Current Tropomyosin Receptor Kinase (TRK) Inhibitors: Development and Clinical Application. J Med Chem 2018; 62:1731-1760. [PMID: 30188734 DOI: 10.1021/acs.jmedchem.8b01092] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The use of kinase-directed precision medicine has been heavily pursued since the discovery and development of imatinib. Annually, it is estimated that around ∼20 000 new cases of tropomyosin receptor kinase (TRK) cancers are diagnosed, with the majority of cases exhibiting a TRK genomic rearrangement. In this Perspective, we discuss current development and clinical applications for TRK precision medicine by providing the following: (1) the biological background and significance of the TRK kinase family, (2) a compilation of known TRK inhibitors and analysis of their cocrystal structures, (3) an overview of TRK clinical trials, and (4) future perspectives for drug discovery and development of TRK inhibitors.
Collapse
Affiliation(s)
- Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Francesca Carlomagno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy.,Istituto di Endocrinologia e Oncologia Sperimentale del CNR , Via S Pansini 5 , 80131 Naples , Italy
| | - Massimo Santoro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy
| | - Neil Q McDonald
- Signaling and Structural Biology Laboratory , The Francis Crick Institute , London NW1 1AT , U.K.,Institute of Structural and Molecular Biology, Department of Biological Sciences , Birkbeck College , Malet Street , London WC1E 7HX , U.K
| | - Fengping Lv
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naresh Gunaganti
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| |
Collapse
|
10
|
Abstract
One of the most challenging issues in oncology research and treatment is identifying oncogenic drivers within an individual patient's tumor which can be directly targeted by a clinically available therapeutic drug. In this context, gene fusions as one important example of genetic aberrations leading to carcinogenesis follow the widely accepted concept that cell growth and proliferation are driven by the accomplished fusion (usually involving former proto-oncogenes) and may therefore be successfully inhibited by substances directed against the fusion. This concept has already been established with oncogenic gene fusions like BCR-ABL in chronic myelogenous leukemia (CML) or anaplastic lymphoma kinase (ALK) in lung cancer, including special tyrosine kinase inhibitors (TKIs) which are able to block the activation of the depending downstream proliferation pathways and, consequently, tumor growth. During the last decade, the NTRK1, 2, and 3 genes, encoding the TRKA, B, and C proteins, have attracted increasing attention as another significant and targetable gene fusion in a variety of cancers. Several TRK inhibitors have been developed, and one of them, Larotrectinib (formerly known as LOXO-101), represents an orally available, selective inhibitor of the TRK receptor family that has already shown substantial clinical benefit in both pediatric and adult patients harboring an NTRK gene fusion over the last few years.
Collapse
|
11
|
Abstract
UNLABELLED The use of high-throughput next-generation sequencing techniques in multiple tumor types during the last few years has identified NTRK1, 2, and 3 gene rearrangements encoding novel oncogenic fusions in 19 different tumor types to date. These recent developments have led us to revisit an old oncogene, Trk (originally identified as OncD), which encodes the TPM3-NTRK1 gene fusion and was one of the first transforming chromosomal rearrangements identified 32 years ago. However, no drug has yet been approved by the FDA for cancers harboring this oncogene. This review will discuss the biology of the TRK family of receptors, their role in human cancer, the types of oncogenic alterations, and drugs that are currently in development for this family of oncogene targets. SIGNIFICANCE Precision oncology approaches have accelerated recently due to advancements in our ability to detect oncogenic mutations in tumor samples. Oncogenic alterations, most commonly gene fusions, have now been detected for the genes encoding the TRKA, TRKB, and TRKC receptor tyrosine kinases across multiple tumor types. The scientific rationale for the targeting of the TRK oncogene family will be discussed here.
Collapse
Affiliation(s)
- Aria Vaishnavi
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Anh T Le
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Robert C Doebele
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
12
|
Degl'Innocenti D, Romeo P, Tarantino E, Sensi M, Cassinelli G, Catalano V, Lanzi C, Perrone F, Pilotti S, Seregni E, Pierotti MA, Greco A, Borrello MG. DUSP6/MKP3 is overexpressed in papillary and poorly differentiated thyroid carcinoma and contributes to neoplastic properties of thyroid cancer cells. Endocr Relat Cancer 2013; 20:23-37. [PMID: 23132790 DOI: 10.1530/erc-12-0078] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thyroid carcinomas derived from follicular cells comprise papillary thyroid carcinoma (PTC), follicular thyroid carcinoma, poorly differentiated thyroid carcinoma (PDTC) and undifferentiated anaplastic thyroid carcinoma (ATC). PTC, the most frequent thyroid carcinoma histotype, is associated with gene rearrangements that generate RET/PTC and TRK oncogenes and with BRAF-V600E and RAS gene mutations. These last two genetic lesions are also present in a fraction of PDTCs. The ERK1/2 pathway, downstream of the known oncogenes activated in PTC, has a central role in thyroid carcinogenesis. In this study, we demonstrate that the BRAF-V600E, RET/PTC, and TRK oncogenes upregulate the ERK1/2 pathway's attenuator cytoplasmic dual-phase phosphatase DUSP6/MKP3 in thyroid cells. We also show DUSP6 overexpression at the mRNA and protein levels in all the analysed PTC cell lines. Furthermore, DUSP6 mRNA was significantly higher in PTC and PDTC in comparison with normal thyroid tissues both in expression profile datasets and in patients' surgical samples analysed by real-time RT-PCR. Immunohistochemical and western blot analyses showed that DUSP6 was also overexpressed at the protein level in most PTC and PDTC surgical samples tested, but not in ATC, and revealed a positive correlation trend with ERK1/2 pathway activation. Finally, DUSP6 silencing reduced the neoplastic properties of four PTC cell lines, thus suggesting that DUSP6 may have a pro-tumorigenic role in thyroid carcinogenesis.
Collapse
MESH Headings
- Adenocarcinoma, Follicular/genetics
- Adenocarcinoma, Follicular/metabolism
- Adenocarcinoma, Follicular/pathology
- Adult
- Aged
- Aged, 80 and over
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/metabolism
- Carcinoma, Papillary/pathology
- Cell Adhesion
- Cell Differentiation
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Dual Specificity Phosphatase 6/genetics
- Dual Specificity Phosphatase 6/metabolism
- Female
- Gene Expression Profiling
- Humans
- Male
- Middle Aged
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Neoplasm Staging
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Thyroid Gland/cytology
- Thyroid Gland/metabolism
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
Collapse
Affiliation(s)
- Debora Degl'Innocenti
- Molecular Mechanisms Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Greco A, Miranda C, Pierotti MA. Rearrangements of NTRK1 gene in papillary thyroid carcinoma. Mol Cell Endocrinol 2010; 321:44-9. [PMID: 19883730 DOI: 10.1016/j.mce.2009.10.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/18/2009] [Accepted: 10/20/2009] [Indexed: 12/27/2022]
Abstract
TRK oncogenes are observed in a consistent fraction of papillary thyroid carcinoma (PTC); they arise from the fusion of the 3' terminal sequences of the NTRK1/NGF receptor gene with 5' terminal sequences of various activating genes, such as TPM3, TPR and TFG. TRK oncoproteins display constitutive tyrosine-kinase activity, leading to in vitro and in vivo transformation. In this review studies performed during the last 20 years will be summarized. The following topics will be illustrated: (a) frequency of TRK oncogenes and correlation with radiation and tumor histopathological features; (b) molecular mechanisms underlying NTRK1 oncogenic rearrangements; (c) molecular and biochemical characterization of TRK oncoproteins, and their mechanism of action; (d) role of activating sequences in the activation of TRK oncoproteins.
Collapse
Affiliation(s)
- A Greco
- Department of Experimental Oncology and Laboratory, Operative Unit 3 Molecular Mechanisms of Cancer Growth and Progression, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133 Milan, Italy.
| | | | | |
Collapse
|
14
|
Miranda C, Fumagalli T, Anania MC, Vizioli MG, Pagliardini S, Pierotti MA, Greco A. Role of STAT3 in in vitro transformation triggered by TRK oncogenes. PLoS One 2010; 5:e9446. [PMID: 20209132 PMCID: PMC2831059 DOI: 10.1371/journal.pone.0009446] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 02/06/2010] [Indexed: 01/08/2023] Open
Abstract
TRK oncoproteins are chimeric versions of the NTRK1/NGF receptor and display constitutive tyrosine kinase activity leading to transformation of NIH3T3 cells and neuronal differentiation of PC12 cells. Signal Transducer and Activator of Transcription (STAT) 3 is activated in response to cytokines and growth factors and it has been recently identified as a novel signal transducer for TrkA, mediating the functions of NGF in nervous system. In this paper we have investigated STAT3 involvement in signalling induced by TRK oncogenes. We showed that TRK oncogenes trigger STAT3 phosphorylation both on Y705 and S727 residues and STAT3 transcriptional activity. MAPK pathway was involved in the induction of STAT3 phosphorylation. Interestingly, we have shown reduced STAT3 protein level in NIH3T3 transformed foci expressing TRK oncogenes. Overall, we have unveiled a dual role for STAT3 in TRK oncogenes-induced NIH3T3 transformation: i) decreased STAT3 protein levels, driven by TRK oncoproteins activity, are associated to morphological transformation; ii) residual STAT3 transcriptional activity is required for cell growth.
Collapse
Affiliation(s)
- Claudia Miranda
- Operative Unit “Molecular Mechanisms”, Department of Experimental Oncology and Molecular Medicine, IRCCS Foundation, Istituto Nazionale dei Tumori, Milan, Italy
- * E-mail: (AG); (CM))
| | - Tiziana Fumagalli
- Operative Unit “Molecular Mechanisms”, Department of Experimental Oncology and Molecular Medicine, IRCCS Foundation, Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Chiara Anania
- Operative Unit “Molecular Mechanisms”, Department of Experimental Oncology and Molecular Medicine, IRCCS Foundation, Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Grazia Vizioli
- Operative Unit “Molecular Mechanisms”, Department of Experimental Oncology and Molecular Medicine, IRCCS Foundation, Istituto Nazionale dei Tumori, Milan, Italy
| | - Sonia Pagliardini
- Operative Unit “Molecular Mechanisms”, Department of Experimental Oncology and Molecular Medicine, IRCCS Foundation, Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco A. Pierotti
- Scientific Directorate, IRCCS Foundation, Istituto Nazionale dei Tumori, Milan, Italy
| | - Angela Greco
- Operative Unit “Molecular Mechanisms”, Department of Experimental Oncology and Molecular Medicine, IRCCS Foundation, Istituto Nazionale dei Tumori, Milan, Italy
- * E-mail: (AG); (CM))
| |
Collapse
|
15
|
Affiliation(s)
- Angela Greco
- Istituto Nazionale Tumori, Department of Experimental Oncology Operative Unit #3 Via G. Venezian, 1 20133 Milan, Italy
| | | | | |
Collapse
|
16
|
Pierotti MA, Greco A. Oncogenic rearrangements of the NTRK1/NGF receptor. Cancer Lett 2005; 232:90-8. [PMID: 16242838 DOI: 10.1016/j.canlet.2005.07.043] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 07/10/2005] [Indexed: 12/31/2022]
Abstract
The NTRK1 gene encodes the high affinity receptor for Nerve Growth Factor, and its action regulates neural development and differentiation. Deregulation of NTRK1 activity is associated with several human disorders. Loss of function mutations causes the genetic disease congenital insensitivity to pain with anhidrosis (CIPA). Constitutive activation of NTRK1 has been detected in several tumor types. An autocrine loop involving NTRK1 and NGF is associated with tumor progression in prostate carcinoma and in breast cancer. A novel alternative splicing variant with constitutive oncogenic potential has been recently described in neuroblastoma. Somatic rearrangements of NTRK1, producing chimeric oncogenes with constitutive tyrosine kinase activity, have been detected in a consistent fraction of papillary thyroid tumors. The topic of this review is a detailed analysis of the thyroid TRK oncogenes. The modalities of their activation, their mechanism of action, the contribution of activating sequences, and the molecular mechanisms underlying their generation will be discussed.
Collapse
Affiliation(s)
- Marco A Pierotti
- Department of Experimental Oncology and Labs Operative Unit 3, Istituto Nazionale Tumori, Via G. Venezian, 1 20133 Milan, Italy.
| | | |
Collapse
|
17
|
Roccato E, Miranda C, Raho G, Pagliardini S, Pierotti MA, Greco A. Analysis of SHP-1-mediated Down-regulation of the TRK-T3 Oncoprotein Identifies Trk-fused Gene (TFG) as a Novel SHP-1-interacting Protein. J Biol Chem 2005; 280:3382-9. [PMID: 15557341 DOI: 10.1074/jbc.m407522200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SHP-1 is a cytoplasmic SH2 domain containing protein-tyrosine phosphatase (PTP) involved in the negative regulation of multiple signaling pathways in hematopoietic, nervous, and epithelial cells. The thyroid TRK-T3 oncogene consists of the NTRK1 tyrosine kinase domain fused in-frame with sequences of the TFG (TRK-fused gene), encoding a protein of unknown function. TFG contains a coiled-coil domain responsible for TRK-T3 oligomerization. In addition, recent analysis of the sequences outside of the coiled-coil domain suggested possible interactions with other proteins. Based on the presence of a putative SHP-1 SH2-binding site within the TFG sequences, we have investigated the role of the SHP-1 phosphatase in TRK-T3 oncoprotein signaling. In this study we show that SHP-1 interacts with and down-regulates TRK-T3. We provide evidence that SHP-1 SH2 and catalytic domains, respectively, associate with the TFG- and NTRK1-derived portions of TRK-T3. Our data contribute to the definition of cellular mechanisms involved in thyroid tumorigenesis. Moreover, it reveals TFG as a novel protein able to modulate SHP-1 activity.
Collapse
Affiliation(s)
- Emanuela Roccato
- Department of Experimental Oncology Operative Unit Molecular Mechanisms of Cancer Growth and Progression, Istituto Nazionale Tumori, Via G. Venezian, 1 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Edel MJ, Shvarts A, Medema JP, Bernards R. An in vivo functional genetic screen reveals a role for the TRK-T3 oncogene in tumor progression. Oncogene 2004; 23:4959-65. [PMID: 15077169 DOI: 10.1038/sj.onc.1207667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past decades, much has been learnt about the genes that contribute to oncogenic transformation of primary cells in vitro. However, much less is known about the genes that contribute to the later stages of tumor progression, in which cells of ever increasing malignancy arise through clonal selection in vivo. To search for genes that confer a tumor progression phenotype in vivo, we have used a functional genetic approach. We used adenovirus-transformed mouse embryo fibroblasts, which are tumorigenic in immunodeficient nude mice, but not in immunocompetent mice, due to strong cytotoxic T-cell-mediated immune rejection. We infected these cells in vitro with several high-complexity retroviral cDNA expression libraries and selected rare variants that formed tumors in immunocompetent mice. Using this approach, we identify here the TRK-T3 oncogene as a tumor progression gene. TRK-T3 does not inhibit T-cell reactivity towards the tumor cells. Instead, we find that cells expressing TRK-T3 enhances in vivo growth rate, most likely by stimulating anchorage-independent proliferation in growth factor-limiting conditions. Our data indicate that cDNA expression libraries can be used to identify tumor progression genes in vivo that cannot be readily identified using in vitro cell culture systems.
Collapse
Affiliation(s)
- Michael J Edel
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
19
|
Abstract
Knowledge of the molecular events that govern human thyroid tumorigenesis has grown considerably in the past ten years. Key genetic alterations and new oncogenic pathways have been identified. Molecular genetic aberrations in thyroid carcinomas bear noteworthy resemblance to those in acute myelogenous leukemias. Thyroid carcinomas and myeloid leukemias both possess transcription factor gene rearrangements-PPARgamma-related translocations in thyroid carcinoma and RARalpha-related and CBF-related translocations (amongst others) in myeloid leukemia. PPARgamma and RARalpha are closely related members ofthe same nuclear receptor subfamily, and the PML-RARalpha and PAX8-PPARgamma fusion proteins both function as dominant negative inhibitors of their wild-type parent proteins. Thyroid carcinomas and myeloid leukemias also both harbor NRAS mutations (15-25% of both cancers) and receptor tyrosine kinase mutations--RET mutations in thyroid carcinomas and FLT3 mutations in myeloid leukemias. The NRAS and tyrosine receptor kinase mutations are not observed in the same thyroid carcinoma or leukemia patients, suggesting that multiple initiating pathways exist in both. Lastly, thyroid carcinomas and myeloid leukemias possess p53 mutations at relatively low frequency (10-15%) in patients who tend to be older and have more aggressive, therapy resistant disease. Such parallels are unlikely to occur by chance alone and argue that common mechanisms underlie these diverse epithelial and hematologic cancers. The comparison of thyroid carcinomas and myeloid leukemias may highlight areas of thyroid cancer investigation worthy of further focus. For example, few collaborating mutations have been defined in thyroid carcinomas even though they play a clear role in myeloid leukemias, as exemplified by RARalpha rearrangements and FLT3 mutations that together dictate the promyleocytic leukemia phenotype. Functional interactions between collaborating mutations are possible at multiple levels, and it is tempting to speculate that some thyroid carcinomas might develop through an unique combination or co-activation of RET and RAS and/or RET and PPARgamma (and/or other) signaling systems. In fact, the ELE1-RET (PTC3) fusion protein contains the ELE1 nuclear receptor co-activator domain and it appears to physically associate with and inhibit wild-type PPARgamma in some papillary carcinomas. The similarities of the fusion proteins in thyroid carcinoma and myeloid leukemia suggest that a more directed search for fusion genes in non-thyroid carcinomas is warranted. In fact, novel fusion genes have been identified recently in aggressive midline, secretory breast, and renal cell carcinomas, although the epithelial nature of the latter is not well-documented. Interestingly, these cancers all tend to present more frequently in adolescence and young adulthood in a manner similar to thyroid and myeloid malignancies that have fusion genes. The analyses of cancers that present earlier in life may enhance fusion gene recognition in other carcinoma types. Definition and biologic characterization of the precursor cells that give rise to thyroid carcinoma will also be important. Myeloid leukemias are thought to arise from stem/progenitor cells that acquire disturbed self-renewal and differentiation capacities but retain characteristics of the myeloid lineages. Although the presence of comparable stem/progenitor cells in the thyroid are not defined, distinct thyroid cancer lineages and patterns of differentiation exist and candidate stem/progenitor cells such as the p63-immunoreactive solid cell nests are apparent. A last important area is development of molecular-based therapies for thyroid carcinoma patients resistant to standard radio-iodine treatment. Treatments for such cancers are limited and pathways defined by thyroid cancer mutations are prime targets for pharmacologic interventions with molecular inhibitors. Tyrosine kinase inhibitors and nuclear receptor ligands have proven dramatically effective in some myeloid leukemia patients. Various molecular inhibitors are being investigated now in thyroid cancer models. Such developments predict that the thyroid cancer model will continue to provide biologic insights into human carcinoma biology and that improved pathologic diagnosis and treatment for thyroid cancer patients sit on the not too distant horizon.
Collapse
Affiliation(s)
- Todd G Kroll
- Department of Pathology, Endocrinology Division, University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| |
Collapse
|
20
|
Roccato E, Pagliardini S, Cleris L, Canevari S, Formelli F, Pierotti MA, Greco A. Role of TFG sequences outside the coiled-coil domain in TRK-T3 oncogenic activation. Oncogene 2003; 22:807-18. [PMID: 12584559 DOI: 10.1038/sj.onc.1206189] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The TRK-T3 oncoprotein, isolated from a human papillary thyroid tumor, arises from the fusion between the N-terminal domain of the TFG gene and the tyrosine kinase domain of the NTRK1 receptor. The 68 kDa TRK-T3 oncoprotein displays a constitutive tyrosine kinase activity resulting in its capability to transform NIH3T3 cells. The TFG portion of TRK-T3 contains a coiled-coil domain, which mediates protein oligomerization essential for the oncogene constitutive activation, and several consensus sites for protein interaction. In this study, we investigate the role of TFG sequences outside the coiled-coil domain on TRK-T3 activation, We constructed four mutants carrying different deletions of TFG sequences and expressed them in mammalian cells. By performing biochemical and biological assays we demonstrated that all the deleted regions are required for TRK-T3 activation, as they are involved in different mechanisms such as protein processing, formation of stable and/or functional complexes, and possible interaction with other proteins. By constructing site-specific mutants, we demonstrated a crucial role for a PB1 domain and a considerable contribution of an SH2-binding motif in TRK-T3 oncogenic activation. This work establishes an important role for TFG sequences outside the coiled-coil domain in the activation of the thyroid TRK-T3 oncogene.
Collapse
Affiliation(s)
- Emanuela Roccato
- Operative Unit #3, Department of Experimental Oncology, Instituto Nazionale Tumori, Via G Venezian, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Charest A, Kheifets V, Park J, Lane K, McMahon K, Nutt CL, Housman D. Oncogenic targeting of an activated tyrosine kinase to the Golgi apparatus in a glioblastoma. Proc Natl Acad Sci U S A 2003; 100:916-21. [PMID: 12538861 PMCID: PMC298701 DOI: 10.1073/pnas.242741799] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activating oncogenic mutations of receptor tyrosine kinases (RTKs) have been reported in several types of cancers. In many cases, genomic rearrangements lead to the fusion of unrelated genes to the DNA coding for the kinase domain of RTKs. All RTK-derived fusion proteins reported so far display oligomerization sequences within the 5' fusion partners that are responsible for oncogenic activation. Here, we report a mechanism by which an altered RTK gains oncogenic potential in a glioblastoma cell line. A microdeletion on 6q21 results in the fusion of FIG, a gene coding for a Golgi apparatus-associated protein, to the kinase domain of the protooncogene c-ROS. The fused protein product FIG-ROS is a potent oncogene, and its transforming potential resides in its ability to interact with and become localized to the Golgi apparatus. Thus we have found a RTK fusion protein whose subcellular location leads to constitutive kinase activation and results in oncogenic transformation.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Line
- Cell Transformation, Neoplastic
- Chromosomes, Human, Pair 6
- Fluorescent Antibody Technique, Indirect
- Glioblastoma/enzymology
- Glioblastoma/metabolism
- Golgi Apparatus/metabolism
- Humans
- Mice
- Mice, Nude
- Microscopy, Fluorescence
- Mutation
- Oncogene Proteins, Fusion/metabolism
- Peptides/chemistry
- Phosphorylation
- Plasmids/metabolism
- Precipitin Tests
- Protein Isoforms
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases
- Proto-Oncogene Proteins/chemistry
- Proto-Oncogene Proteins/metabolism
- Rats
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/metabolism
- Retroviridae/genetics
- Subcellular Fractions
- Tumor Cells, Cultured
- Ultracentrifugation
Collapse
Affiliation(s)
- Alan Charest
- Center for Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | |
Collapse
|