1
|
Shao L, Srivastava R, Delgoffe GM, Thorne SH, Sarkar SN. An IRF2-Expressing Oncolytic Virus Changes the Susceptibility of Tumor Cells to Antitumor T Cells and Promotes Tumor Clearance. Cancer Immunol Res 2024; 12:779-790. [PMID: 38517470 PMCID: PMC11150089 DOI: 10.1158/2326-6066.cir-23-0573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/26/2023] [Accepted: 03/20/2024] [Indexed: 03/23/2024]
Abstract
IFN regulatory factor 1 (IRF1) can promote antitumor immunity. However, we have shown previously that in the tumor cell, IRF1 can promote tumor growth, and IRF1-deficient tumor cells exhibit severely restricted tumor growth in several syngeneic mouse tumor models. Here, we investigate the potential of functionally modulating IRF1 to reduce tumor progression and prolong survival. Using inducible IRF1 expression, we established that it is possible to regulate IRF1 expression to modulate tumor progression in established B16-F10 tumors. Expression of IRF2, which is a functional antagonist of IRF1, downregulated IFNγ-induced expression of inhibitory ligands, upregulated MHC-related molecules, and slowed tumor growth and extended survival. We characterized the functional domain(s) of IRF2 needed for this antitumor activity, showing that a full-length IRF2 was required for its antitumor functions. Finally, using an oncolytic vaccinia virus as a delivery platform, we showed that IRF2-expressing vaccinia virus suppressed tumor progression and prolonged survival in multiple tumor models. These results suggest the potency of targeting IRF1 and using IRF2 to modulate immunotherapy.
Collapse
Affiliation(s)
- Lulu Shao
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Rashmi Srivastava
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Greg M. Delgoffe
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh School of Medicine
| | - Stephen H. Thorne
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA
- KaliVir Immunotherapeutics, Inc., Pittsburgh, PA
| | - Saumendra N. Sarkar
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh School of Medicine
| |
Collapse
|
2
|
James JL, Taylor BC, Axelrod ML, Sun X, Guerin LN, Gonzalez-Ericsson PI, Wang Y, Sanchez V, Fahey CC, Sanders ME, Xu Y, Hodges E, Johnson DB, Balko JM. Polycomb repressor complex 2 suppresses interferon-responsive MHC-II expression in melanoma cells and is associated with anti-PD-1 resistance. J Immunother Cancer 2023; 11:e007736. [PMID: 38315170 PMCID: PMC10660662 DOI: 10.1136/jitc-2023-007736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Despite the remarkable success of immunotherapy in treating melanoma, understanding of the underlying mechanisms of resistance remains limited. Emerging evidence suggests that upregulation of tumor-specific major histocompatibility complex-II (tsMHC-II) serves as a predictive marker for the response to anti-programmed death-1 (PD-1)/programmed death ligand 1 (PD-L1) therapy in various cancer types. The genetic and epigenetic pathways modulating tsMHC-II expression remain incompletely characterized. Here, we provide evidence that polycomb repressive complex 2 (PRC2)/EZH2 signaling and resulting H3K27 hypermethylation suppresses tsMHC-II. METHODS RNA sequencing data from tumor biopsies from patients with cutaneous melanoma treated with or without anti-PD-1, targeted inhibition assays, and assays for transposase-accessible chromatin with sequencing were used to observe the relationship between EZH2 inhibition and interferon (IFN)-γ inducibility within the MHC-II pathway. RESULTS We find that increased EZH2 pathway messenger RNA (mRNA) expression correlates with reduced mRNA expression of both presentation and T-cell genes. Notably, targeted inhibition assays revealed that inhibition of EZH2 influences the expression dynamics and inducibility of the MHC-II pathway following IFN-γ stimulation. Additionally, our analysis of patients with metastatic melanoma revealed a significant inverse association between PRC2-related gene expression and response to anti-PD-1 therapy. CONCLUSIONS Collectively, our findings demonstrate that EZH2 inhibition leads to enhanced MHC-II expression potentially resulting from improved chromatin accessibility at CIITA, the master regulator of MHC-II. These insights shed light on the molecular mechanisms involved in tsMHC-II suppression and highlight the potential of targeting EZH2 as a therapeutic strategy to improve immunotherapy efficacy.
Collapse
Affiliation(s)
- Jamaal L James
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Brandie C Taylor
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Margaret L Axelrod
- Department of Medicine, Washington University in St Louis, St Louis, Missouri, USA
| | - Xiaopeng Sun
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lindsey N Guerin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Paula I Gonzalez-Ericsson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yu Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Violeta Sanchez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Catherine C Fahey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Melinda E Sanders
- Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Genetics Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin M Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Goodman RS, Jung S, Balko JM, Johnson DB. Biomarkers of immune checkpoint inhibitor response and toxicity: Challenges and opportunities. Immunol Rev 2023; 318:157-166. [PMID: 37470280 PMCID: PMC10528475 DOI: 10.1111/imr.13249] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023]
Abstract
Immune checkpoint inhibitors have transformed cancer therapy, but their optimal use is still constrained by lack of response and toxicity. Biomarkers of response may facilitate drug development by allowing appropriate therapy selection and focusing clinical trial enrollment. However, aside from PD-L1 staining in a subset of tumors and rarely mismatch repair deficiency, no biomarkers are routinely used in the clinic. In addition, severe toxicities may cause severe morbidity, therapy discontinuation, and even death. Here, we review the state of the field with a focus on our research in therapeutic biomarkers and toxicities from immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Seungyeon Jung
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Justin M. Balko
- Department of Medicine, Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Douglas B. Johnson
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
4
|
Mohammadi A, Najafi S, Amini M, Baradaran B, Firouzamandi M. B7H6 silencing increases chemosensitivity to dacarbazine and suppresses cell survival and migration in cutaneous melanoma. Melanoma Res 2023; 33:173-183. [PMID: 37053079 DOI: 10.1097/cmr.0000000000000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cutaneous melanoma (CM) is a highly metastatic cancer whose incidence rate is heightening worldwide. B7H6, as one of the co-stimulatory ligands of the B7 family, is expressed in malignant cells, involved in tumorigenesis. This study aimed to investigate the significance of B7H6 in CM cell chemosensitivity and metastatic ability. A375 CM cells were transfected with B7H6-siRNA and treated with dacarbazine individually or combined. The MTT assay to estimate half-maximal inhibitory concentration of dacarbazine and cell viability, the apoptotic induction using Annexin V/PI, cell cycle progression via flow cytometry, and wound healing assay for determining the migration ability of cells and assessing the clonogenic potential of A375 cells were executed. Functional analyses were performed to evaluate changes in A375 cells. The results illustrated that B7H6 suppression significantly increased the chemosensitivity of A375 cells to dacarbazine. Apoptosis induction by dacarbazine was enhanced after B7H6 knockdown through modulating Caspase-3, Bax, and Bcl-2 mRNA levels. Western blotting indicated enhancement of cleaved caspase-3 protein expression in treatment groups. A375 cells were arrested at the sub-G1 and S phases when using B7H6-siRNA and dacarbazine. B7H6 suppression combined with dacarbazine restrained cell migration through suppression of matrix metalloproteinase (MMP) expression, including MMP2, MMP3, and MMP9. In addition, the clonogenic ability of A375 cells was decreased by downregulating Sox2, Nanog, and CD44 mRNA levels. A visible decrement in STAT3 protein expression was observed in the combination group. Hence, our findings revealed that B7H6 knockdown with dacarbazine could be a promising treatment approach for cutaneous melanoma.
Collapse
Affiliation(s)
- Alaleh Mohammadi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz
- Immunology Research Center
| | | | | | - Behzad Baradaran
- Immunology Research Center
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
5
|
HLA-DRB1: A new potential prognostic factor and therapeutic target of cutaneous melanoma and an indicator of tumor microenvironment remodeling. PLoS One 2022; 17:e0274897. [PMID: 36129956 PMCID: PMC9491554 DOI: 10.1371/journal.pone.0274897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Cutaneous melanoma (CM) is the most common skin cancer and one of the most aggressive cancers and its incidence has risen dramatically over the past few decades. The tumor microenvironment (TME) plays a crucial role in the occurrence and development of cutaneous melanoma. Nevertheless, the dynamics modulation of the immune and stromal components in the TME is not fully understood. In this study, 471 CM samples were obtained from TCGA database, and the ratio of tumor-infiltrating immune cells (TICs) in the TME were estimated using the ESTIMATE algorithms and CIBERSORT computational method. The differently expressed genes (DEGs) were applied to GO and KEGG function enrichment analysis, establishment of protein-protein interaction (PPI) network and univariate Cox regression analysis. Subsequently, we identified a predictive factor: HLA-DRB1 (major histocompatibility complex, class II, DR beta 1) by the intersection analysis of the hub genes of PPI network and the genes associated with the prognosis of the CM patients obtained by univariate Cox regression analysis. Correlation analysis and survival analysis showed that the expression level of HLA-DRB1 was negatively correlated with the Stage of the patients while positively correlated with the survival, prognosis and TME of melanoma. The GEPIA web server and the representative immunohistochemical images of HLA-DRB1 in the normal skin tissue and melanoma tissue from the Human Protein Atlas (HPA) database were applied to validate the expression level of HLA-DRB1. CIBERSORT analysis for the ratio of TICs indicated that 9 types of TICs were positively correlated with the expression level of HLA-DRB1 and only 4 types of TICs were negatively correlated with the expression level of HLA-DRB1. These results suggested that the expression level of HLA-DRB1 may be related to the immune activity of the TME and may affect the prognosis of CM patients by changing the status of the TME.
Collapse
|
6
|
Vackova J, Polakova I, Johari SD, Smahel M. CD80 Expression on Tumor Cells Alters Tumor Microenvironment and Efficacy of Cancer Immunotherapy by CTLA-4 Blockade. Cancers (Basel) 2021; 13:cancers13081935. [PMID: 33923750 PMCID: PMC8072777 DOI: 10.3390/cancers13081935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 01/05/2023] Open
Abstract
Cluster of differentiation (CD) 80 is mainly expressed in immune cells but can also be found in several types of cancer cells. This molecule may either activate or inhibit immune reactions. Here, we determined the immunosuppressive role of CD80 in the tumor microenvironment by CRISPR/Cas9-mediated deactivation of the corresponding gene in the mouse oncogenic TC-1 cell line. The tumor cells with deactivated CD80 (TC-1/dCD80-1) were more immunogenic than parental cells and induced tumors that gained sensitivity to cytotoxic T-lymphocyte antigen 4 (CTLA-4) blockade, as compared with the TC-1 cells. In vivo depletion experiments showed that the deactivation of CD80 switched the pro-tumorigenic effect of macrophages observed in TC-1-induced tumors into an anti-tumorigenic effect in TC-1/dCD80-1 tumors and induced the pro-tumorigenic activity of CD4+ cells. Moreover, the frequency of lymphoid and myeloid cells and the CTLA-4 expression by T helper (Th)17 cells were increased in TC-1/dCD80-1- compared with that in the TC-1-induced tumors. CTLA-4 blockade downregulated the frequencies of most immune cell types and upregulated the frequency of M2 macrophages in the TC-1 tumors, while it increased the frequency of lymphoid cells in TC-1/dCD80-1-induced tumors. Furthermore, the anti-CTLA-4 therapy enhanced the frequency of CD8+ T cells as well as CD4+ T cells, especially for a Th1 subset. Regulatory T cells (Treg) formed the most abundant CD4+ T cell subset in untreated tumors. The anti-CTLA-4 treatment downregulated the frequency of Treg cells with limited immunosuppressive potential in the TC-1 tumors, whereas it enriched this type of Treg cells and decreased the Treg cells with high immunosuppressive potential in TC-1/dCD80-1-induced tumors. The immunosuppressive role of tumor-cell-expressed CD80 should be considered in research into biomarkers for the prediction of cancer patients' sensitivity to immune checkpoint inhibitors and for the development of a tumor-cell-specific CD80 blockade.
Collapse
Affiliation(s)
- Julie Vackova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic; (J.V.); (I.P.); (S.D.J.)
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic
| | - Ingrid Polakova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic; (J.V.); (I.P.); (S.D.J.)
| | - Shweta Dilip Johari
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic; (J.V.); (I.P.); (S.D.J.)
| | - Michal Smahel
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic; (J.V.); (I.P.); (S.D.J.)
- Correspondence: ; Tel.: +420-325-873-921
| |
Collapse
|
7
|
Kalaora S, Nagler A, Nejman D, Alon M, Barbolin C, Barnea E, Ketelaars SLC, Cheng K, Vervier K, Shental N, Bussi Y, Rotkopf R, Levy R, Benedek G, Trabish S, Dadosh T, Levin-Zaidman S, Geller LT, Wang K, Greenberg P, Yagel G, Peri A, Fuks G, Bhardwaj N, Reuben A, Hermida L, Johnson SB, Galloway-Peña JR, Shropshire WC, Bernatchez C, Haymaker C, Arora R, Roitman L, Eilam R, Weinberger A, Lotan-Pompan M, Lotem M, Admon A, Levin Y, Lawley TD, Adams DJ, Levesque MP, Besser MJ, Schachter J, Golani O, Segal E, Geva-Zatorsky N, Ruppin E, Kvistborg P, Peterson SN, Wargo JA, Straussman R, Samuels Y. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature 2021; 592:138-143. [PMID: 33731925 PMCID: PMC9717498 DOI: 10.1038/s41586-021-03368-8] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/17/2021] [Indexed: 01/31/2023]
Abstract
A variety of species of bacteria are known to colonize human tumours1-11, proliferate within them and modulate immune function, which ultimately affects the survival of patients with cancer and their responses to treatment12-14. However, it is not known whether antigens derived from intracellular bacteria are presented by the human leukocyte antigen class I and II (HLA-I and HLA-II, respectively) molecules of tumour cells, or whether such antigens elicit a tumour-infiltrating T cell immune response. Here we used 16S rRNA gene sequencing and HLA peptidomics to identify a peptide repertoire derived from intracellular bacteria that was presented on HLA-I and HLA-II molecules in melanoma tumours. Our analysis of 17 melanoma metastases (derived from 9 patients) revealed 248 and 35 unique HLA-I and HLA-II peptides, respectively, that were derived from 41 species of bacteria. We identified recurrent bacterial peptides in tumours from different patients, as well as in different tumours from the same patient. Our study reveals that peptides derived from intracellular bacteria can be presented by tumour cells and elicit immune reactivity, and thus provides insight into a mechanism by which bacteria influence activation of the immune system and responses to therapy.
Collapse
Affiliation(s)
- Shelly Kalaora
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Nagler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah Nejman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Chaya Barbolin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eilon Barnea
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Steven L C Ketelaars
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kuoyuan Cheng
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Noam Shental
- Department of Mathematics and Computer Science, Open University of Israel, Raanana, Israel
| | - Yuval Bussi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Rotkopf
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Levy
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Benedek
- Tissue Typing and Immunogenetics Unit, Hadassah Medical Center, Jerusalem, Israel
| | - Sophie Trabish
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Dadosh
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Smadar Levin-Zaidman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Leore T Geller
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Kun Wang
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Polina Greenberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gal Yagel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Aviyah Peri
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Garold Fuks
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Neerupma Bhardwaj
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alexandre Reuben
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Leandro Hermida
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sarah B Johnson
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cara Haymaker
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Reetakshi Arora
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lior Roitman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Raya Eilam
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Adina Weinberger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Lotan-Pompan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Arie Admon
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yishai Levin
- The de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Mitchell P Levesque
- Faculty of Medicine, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Michal J Besser
- The Ella Lemelbaum Institute for Immuno Oncology and Melanoma, Chaim Sheba Medical Center, Tel Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Schachter
- The Ella Lemelbaum Institute for Immuno Oncology and Melanoma, Chaim Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Geva-Zatorsky
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- MaRS Centre, Canadian Institute for Advanced Research (CIFAR) Azrieli Global Scholar, Toronto, Ontario, Canada
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Scott N Peterson
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
8
|
Gadeyne L, Van Herck Y, Milli G, Atak ZK, Bolognesi MM, Wouters J, Marcelis L, Minia A, Pliaka V, Roznac J, Alexopoulos LG, Cattoretti G, Bechter O, Oord JVD, De Smet F, Antoranz A, Bosisio FM. A Multi-Omics Analysis of Metastatic Melanoma Identifies a Germinal Center-Like Tumor Microenvironment in HLA-DR-Positive Tumor Areas. Front Oncol 2021; 11:636057. [PMID: 33842341 PMCID: PMC8029980 DOI: 10.3389/fonc.2021.636057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
The emergence of immune checkpoint inhibitors has dramatically changed the therapeutic landscape for patients with advanced melanoma. However, relatively low response rates and a high incidence of severe immune-related adverse events have prompted the search for predictive biomarkers. A positive predictive value has been attributed to the aberrant expression of Human Leukocyte Antigen-DR (HLA-DR) by melanoma cells, but it remains unknown why this is the case. In this study, we have examined the microenvironment of HLA-DR positive metastatic melanoma samples using a multi-omics approach. First, using spatial, single-cell mapping by multiplexed immunohistochemistry, we found that the microenvironment of HLA-DR positive melanoma regions was enriched by professional antigen presenting cells, including classical dendritic cells and macrophages, while a more general cytotoxic T cell exhaustion phenotype was present in these regions. In parallel, transcriptomic analysis on micro dissected tissue from HLA-DR positive and HLA-DR negative areas showed increased IFNγ signaling, enhanced leukocyte adhesion and mononuclear cell proliferation in HLA-DR positive areas. Finally, multiplexed cytokine profiling identified an increased expression of germinal center cytokines CXCL12, CXCL13 and CCL19 in HLA-DR positive metastatic lesions, which, together with IFNγ and IL4 could serve as biomarkers to discriminate tumor samples containing HLA-DR overexpressing tumor cells from HLA-DR negative samples. Overall, this suggests that HLA-DR positive areas in melanoma attract the anti-tumor immune cell infiltration by creating a dystrophic germinal center-like microenvironment where an enhanced antigen presentation leads to an exhausted microenvironment, nevertheless representing a fertile ground for a better efficacy of anti-PD-1 inhibitors due to simultaneous higher levels of PD-1 in the immune cells and PD-L1 in the HLA-DR positive melanoma cells.
Collapse
Affiliation(s)
| | - Yannick Van Herck
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Giorgia Milli
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | | | - Jasper Wouters
- Laboratory of Computational Biology, KU Leuven, Leuven, Belgium
| | - Lukas Marcelis
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | | | - Jan Roznac
- ProtATonce Ltd, Athens, Greece.,Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Leonidas G Alexopoulos
- ProtATonce Ltd, Athens, Greece.,Biomedical Systems Laboratory, Department of Mechanical Engineering, National Technical University of Athens, Athens, Greece
| | - Giorgio Cattoretti
- Pathology, Department of Medicine & Surgery, University of Milano-Bicocca, Milan, Italy
| | - Oliver Bechter
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Joost Van Den Oord
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Asier Antoranz
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Francesca Maria Bosisio
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Combined inhibition of PD-1/PD-L1, Lag-3, and Tim-3 axes augments antitumor immunity in gastric cancer-T cell coculture models. Gastric Cancer 2021; 24:611-623. [PMID: 33611641 PMCID: PMC8065004 DOI: 10.1007/s10120-020-01151-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Immunotherapy targeting PD-1 provides a limited survival benefit in patients with unresectable advanced or recurrent gastric cancer (GC). Beside PD-L1, the expression of inhibitory ligands such as CEACAM-1 and LSECtin on GC cells account for this limitation. Here we assessed their expression and immune suppressive effect in GC patients. METHODS Using multiplexed immunohistochemistry staining, we evaluated the distribution of different inhibitory ligands, including PD-L1, CEACAM-1, LSECtin, and MHC class II, in 365 GC patients. We analyzed their correlations and overall survival (OS) based on the expression of each inhibitory ligand and the independent prognostic factors that affect OS. Subsequently, we evaluated the additive effect of anti-PD-1 mAb or anti-PD-L1 mAb with/without anti-Lag-3 mAb with/without anti-Tim-3 mAb in cytotoxic assay using tumor-antigen specific CTL clones against GC cell lines. RESULTS Co-expression of the inhibitory ligands for PD-1, Tim-3, and Lag-3 was observed in the largest proportion (34.7%). CEACAM-1, LSECtin, and MHC class II expression showed significant correlation with PD-L1 expression and OS. Multivariable analysis demonstrated that CEACAM-1 low is an independent prognostic factor. Furthermore, combining dual and triple ICIs yielded additive effect on cytotoxicity of CTL clones against each immune inhibitory ligand positive GC cell lines. CONCLUSIONS Our findings suggested that the expression of inhibitory ligands for Tim-3 and Lag-3 on GC cells serve as potential biomarkers to predict the response to anti-PD-1 therapy and the combinatorial immunotherapy with ICIs targeting for PD-1, Tim-3, and Lag-3 has a therapeutic potential for GC patients.
Collapse
|
10
|
Qin H, Chen Y. Lipid Metabolism and Tumor Antigen Presentation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:169-189. [PMID: 33740250 DOI: 10.1007/978-981-33-6785-2_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumors always evade immune surveillance and block T cell activation in a poorly immunogenic and immunosuppressive environment. Cancer cells and immune cells exhibit metabolic reprogramming in the tumor microenvironment (TME), which intimately links immune cell function and edits tumor immunology. In addition to glucose metabolism, amino acid and lipid metabolism also provide the materials for biological processes crucial in cancer biology and pathology. Furthermore, lipid metabolism is synergistically or negatively involved in the interactions between tumors and the microenvironment and contributes to the regulation of immune cells. Antigen processing and presentation as the initiation of adaptive immune response play a critical role in antitumor immunity. Therefore, a relationship exists between antigen-presenting cells and lipid metabolism in TME. This chapter introduces the updated understandings of lipid metabolism of tumor antigen-presenting cells and describes new directions in the manipulation of immune responses for cancer treatment.
Collapse
Affiliation(s)
- Hong Qin
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Centre for Lipid Research, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaxi Chen
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Centre for Lipid Research, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Tomela K, Pietrzak B, Schmidt M, Mackiewicz A. The Tumor and Host Immune Signature, and the Gut Microbiota as Predictive Biomarkers for Immune Checkpoint Inhibitor Response in Melanoma Patients. Life (Basel) 2020; 10:life10100219. [PMID: 32992737 PMCID: PMC7600343 DOI: 10.3390/life10100219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
There are various melanoma treatment strategies that are based on immunological responses, among which immune checkpoint inhibitors (ICI) are relatively novel form. Nowadays, anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and anti-programmed death-1 (PD-1) antibodies represent a standard treatment for metastatic melanoma. Although there are remarkable curative effects in responders to ICI therapy, up to 70% of melanoma patients show resistance to this treatment. This low response rate is caused by innate as well as acquired resistance, and some aspects of treatment resistance are still unknown. Growing evidence shows that gut microbiota and bacterial metabolites, such as short-chain fatty acids (SCFAs), affect the efficacy of immunotherapy. Various bacterial species have been indicated as potential biomarkers of anti-PD-1 or anti-CTLA-4 therapy efficacy in melanoma, next to biomarkers related to molecular and genetic tumor characteristics or the host immunological response, which are detected in patients' blood. Here, we review the current status of biomarkers of response to ICI melanoma therapies, their pre-treatment predictive values, and their utility as on-treatment monitoring tools in order to select a relevant personalized therapy on the basis of probability of the best clinical outcome.
Collapse
Affiliation(s)
- Katarzyna Tomela
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland;
- Correspondence:
| | - Bernadeta Pietrzak
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego Street, 60-627 Poznan, Poland; (B.P.); (M.S.)
| | - Marcin Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego Street, 60-627 Poznan, Poland; (B.P.); (M.S.)
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland;
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| |
Collapse
|
12
|
Expressions of HLA Class II Genes in Cutaneous Melanoma Were Associated with Clinical Outcome: Bioinformatics Approaches and Systematic Analysis of Public Microarray and RNA-Seq Datasets. Diagnostics (Basel) 2019; 9:diagnostics9020059. [PMID: 31212865 PMCID: PMC6628136 DOI: 10.3390/diagnostics9020059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/24/2022] Open
Abstract
Major histocompatibility complex (MHC) class II molecules, encoded by human leukocyte antigen (HLA) class II genes, play important roles in antigen presentation and initiation of immune responses. However, the correlation between HLA class II gene expression level and patient survival and disease progression in cutaneous melanoma is still under investigation. In the present study, we analyzed microarray and RNA-Seq data of cutaneous melanoma from The Cancer Genome Atlas (TCGA) using different bioinformatics tools. Survival analysis revealed higher expression level of HLA class II genes in cutaneous melanoma, especially HLA-DP and -DR, was significantly associated with better overall survival. Furthermore, the expressions of HLA class II genes were most closely associated with survival in cutaneous melanoma as compared with other cancer types. The expression of HLA class II co-expressed genes, which were found to associate with antigen processing, immune response, and inflammatory response, was also positively associated with overall survival in cutaneous melanoma. Therefore, the results indicated that increased HLA class II expression may contribute to enhanced anti-tumor immunity and related inflammatory response via presenting tumor antigens to the immune system. The expression pattern of HLA class II genes may serve as a prognostic biomarker and therapeutic targets in cutaneous melanoma.
Collapse
|
13
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Al Bakir I, Curtius K, Graham TA. From Colitis to Cancer: An Evolutionary Trajectory That Merges Maths and Biology. Front Immunol 2018; 9:2368. [PMID: 30386335 PMCID: PMC6198656 DOI: 10.3389/fimmu.2018.02368] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/24/2018] [Indexed: 12/25/2022] Open
Abstract
Patients with inflammatory bowel disease have an increased risk of developing colorectal cancer, and this risk is related to disease duration, extent, and cumulative inflammation burden. Carcinogenesis follows the principles of Darwinian evolution, whereby somatic cells acquire genomic alterations that provide them with a survival and/or growth advantage. Colitis represents a unique situation whereby routine surveillance endoscopy provides a serendipitous opportunity to observe somatic evolution over space and time in vivo in a human organ. Moreover, somatic evolution in colitis is evolution in the ‘fast lane': the repeated rounds of inflammation and mucosal healing that are characteristic of the disease accelerate the evolutionary process and likely provide a strong selective pressure for inflammation-adapted phenotypic traits. In this review, we discuss the evolutionary dynamics of pre-neoplastic clones in colitis with a focus on how measuring their evolutionary trajectories could deliver a powerful way to predict future cancer occurrence. Measurements of somatic evolution require an interdisciplinary approach that combines quantitative measurement of the genotype, phenotype and the microenvironment of somatic cells–paying particular attention to spatial heterogeneity across the colon–together with mathematical modeling to interpret these data within an evolutionary framework. Here we take a practical approach in discussing how and why the different “evolutionary ingredients” can and should be measured, together with our viewpoint on subsequent translation into clinical practice. We highlight the open questions in the evolution of colitis-associated cancer as a stimulus for future work.
Collapse
Affiliation(s)
- Ibrahim Al Bakir
- Evolution and Cancer Laboratory, Centre for Tumour Biology, Barts Cancer Institute, London, United Kingdom.,Inflammatory Bowel Disease Unit, St Mark's Hospital, Harrow, United Kingdom
| | - Kit Curtius
- Evolution and Cancer Laboratory, Centre for Tumour Biology, Barts Cancer Institute, London, United Kingdom
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Centre for Tumour Biology, Barts Cancer Institute, London, United Kingdom
| |
Collapse
|
15
|
Chapuis AG, Roberts IM, Thompson JA, Margolin KA, Bhatia S, Lee SM, Sloan HL, Lai IP, Farrar EA, Wagener F, Shibuya KC, Cao J, Wolchok JD, Greenberg PD, Yee C. T-Cell Therapy Using Interleukin-21-Primed Cytotoxic T-Cell Lymphocytes Combined With Cytotoxic T-Cell Lymphocyte Antigen-4 Blockade Results in Long-Term Cell Persistence and Durable Tumor Regression. J Clin Oncol 2017; 34:3787-3795. [PMID: 27269940 DOI: 10.1200/jco.2015.65.5142] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Peripheral blood-derived antigen-specific cytotoxic T cells (CTLs) provide a readily available source of effector cells that can be administered with minimal toxicity in an outpatient setting. In metastatic melanoma, this approach results in measurable albeit modest clinical responses in patients resistant to conventional therapy. We reasoned that concurrent cytotoxic T-cell lymphocyte antigen-4 (CTLA-4) checkpoint blockade might enhance the antitumor activity of adoptively transferred CTLs. Patients and Methods Autologous MART1-specific CTLs were generated by priming with peptide-pulsed dendritic cells in the presence of interleukin-21 and enriched by peptide-major histocompatibility complex multimer-guided cell sorting. This expeditiously yielded polyclonal CTL lines uniformly expressing markers associated with an enhanced survival potential. In this first-in-human strategy, 10 patients with stage IV melanoma received the MART1-specific CTLs followed by a standard course of anti-CTLA-4 (ipilimumab). Results The toxicity profile of the combined treatment was comparable to that of ipilimumab monotherapy. Evaluation of best responses at 12 weeks yielded two continuous complete remissions, one partial response (PR) using RECIST criteria (two PRs using immune-related response criteria), and three instances of stable disease. Infused CTLs persisted with frequencies up to 2.9% of CD8+ T cells for as long as the patients were monitored (up to 40 weeks). In patients who experienced complete remissions, PRs, or stable disease, the persisting CTLs acquired phenotypic and functional characteristics of long-lived memory cells. Moreover, these patients also developed responses to nontargeted tumor antigens (epitope spreading). Conclusion We demonstrate that combining antigen-specific CTLs with CTLA-4 blockade is safe and produces durable clinical responses, likely reflecting both enhanced activity of transferred cells and improved recruitment of new responses, highlighting the promise of this strategy.
Collapse
Affiliation(s)
- Aude G Chapuis
- Aude G. Chapuis, Ilana M. Roberts, Sylvia M. Lee, Heather L. Sloan, Ivy P. Lai, Erik A. Farrar, Felecia Wagener, Kendall C. Shibuya, Jianhong Cao, Philip D. Greenberg, and Cassian Yee, Fred Hutchinson Cancer Research Center; John A. Thompson, Kim A. Margolin, and Shailender Bhatia, Seattle Cancer Care Alliance and University of Washington, Seattle WA; and Jedd D. Wolchok, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ilana M Roberts
- Aude G. Chapuis, Ilana M. Roberts, Sylvia M. Lee, Heather L. Sloan, Ivy P. Lai, Erik A. Farrar, Felecia Wagener, Kendall C. Shibuya, Jianhong Cao, Philip D. Greenberg, and Cassian Yee, Fred Hutchinson Cancer Research Center; John A. Thompson, Kim A. Margolin, and Shailender Bhatia, Seattle Cancer Care Alliance and University of Washington, Seattle WA; and Jedd D. Wolchok, Memorial Sloan Kettering Cancer Center, New York, NY
| | - John A Thompson
- Aude G. Chapuis, Ilana M. Roberts, Sylvia M. Lee, Heather L. Sloan, Ivy P. Lai, Erik A. Farrar, Felecia Wagener, Kendall C. Shibuya, Jianhong Cao, Philip D. Greenberg, and Cassian Yee, Fred Hutchinson Cancer Research Center; John A. Thompson, Kim A. Margolin, and Shailender Bhatia, Seattle Cancer Care Alliance and University of Washington, Seattle WA; and Jedd D. Wolchok, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kim A Margolin
- Aude G. Chapuis, Ilana M. Roberts, Sylvia M. Lee, Heather L. Sloan, Ivy P. Lai, Erik A. Farrar, Felecia Wagener, Kendall C. Shibuya, Jianhong Cao, Philip D. Greenberg, and Cassian Yee, Fred Hutchinson Cancer Research Center; John A. Thompson, Kim A. Margolin, and Shailender Bhatia, Seattle Cancer Care Alliance and University of Washington, Seattle WA; and Jedd D. Wolchok, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Shailender Bhatia
- Aude G. Chapuis, Ilana M. Roberts, Sylvia M. Lee, Heather L. Sloan, Ivy P. Lai, Erik A. Farrar, Felecia Wagener, Kendall C. Shibuya, Jianhong Cao, Philip D. Greenberg, and Cassian Yee, Fred Hutchinson Cancer Research Center; John A. Thompson, Kim A. Margolin, and Shailender Bhatia, Seattle Cancer Care Alliance and University of Washington, Seattle WA; and Jedd D. Wolchok, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sylvia M Lee
- Aude G. Chapuis, Ilana M. Roberts, Sylvia M. Lee, Heather L. Sloan, Ivy P. Lai, Erik A. Farrar, Felecia Wagener, Kendall C. Shibuya, Jianhong Cao, Philip D. Greenberg, and Cassian Yee, Fred Hutchinson Cancer Research Center; John A. Thompson, Kim A. Margolin, and Shailender Bhatia, Seattle Cancer Care Alliance and University of Washington, Seattle WA; and Jedd D. Wolchok, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Heather L Sloan
- Aude G. Chapuis, Ilana M. Roberts, Sylvia M. Lee, Heather L. Sloan, Ivy P. Lai, Erik A. Farrar, Felecia Wagener, Kendall C. Shibuya, Jianhong Cao, Philip D. Greenberg, and Cassian Yee, Fred Hutchinson Cancer Research Center; John A. Thompson, Kim A. Margolin, and Shailender Bhatia, Seattle Cancer Care Alliance and University of Washington, Seattle WA; and Jedd D. Wolchok, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ivy P Lai
- Aude G. Chapuis, Ilana M. Roberts, Sylvia M. Lee, Heather L. Sloan, Ivy P. Lai, Erik A. Farrar, Felecia Wagener, Kendall C. Shibuya, Jianhong Cao, Philip D. Greenberg, and Cassian Yee, Fred Hutchinson Cancer Research Center; John A. Thompson, Kim A. Margolin, and Shailender Bhatia, Seattle Cancer Care Alliance and University of Washington, Seattle WA; and Jedd D. Wolchok, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Erik A Farrar
- Aude G. Chapuis, Ilana M. Roberts, Sylvia M. Lee, Heather L. Sloan, Ivy P. Lai, Erik A. Farrar, Felecia Wagener, Kendall C. Shibuya, Jianhong Cao, Philip D. Greenberg, and Cassian Yee, Fred Hutchinson Cancer Research Center; John A. Thompson, Kim A. Margolin, and Shailender Bhatia, Seattle Cancer Care Alliance and University of Washington, Seattle WA; and Jedd D. Wolchok, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Felecia Wagener
- Aude G. Chapuis, Ilana M. Roberts, Sylvia M. Lee, Heather L. Sloan, Ivy P. Lai, Erik A. Farrar, Felecia Wagener, Kendall C. Shibuya, Jianhong Cao, Philip D. Greenberg, and Cassian Yee, Fred Hutchinson Cancer Research Center; John A. Thompson, Kim A. Margolin, and Shailender Bhatia, Seattle Cancer Care Alliance and University of Washington, Seattle WA; and Jedd D. Wolchok, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kendall C Shibuya
- Aude G. Chapuis, Ilana M. Roberts, Sylvia M. Lee, Heather L. Sloan, Ivy P. Lai, Erik A. Farrar, Felecia Wagener, Kendall C. Shibuya, Jianhong Cao, Philip D. Greenberg, and Cassian Yee, Fred Hutchinson Cancer Research Center; John A. Thompson, Kim A. Margolin, and Shailender Bhatia, Seattle Cancer Care Alliance and University of Washington, Seattle WA; and Jedd D. Wolchok, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jianhong Cao
- Aude G. Chapuis, Ilana M. Roberts, Sylvia M. Lee, Heather L. Sloan, Ivy P. Lai, Erik A. Farrar, Felecia Wagener, Kendall C. Shibuya, Jianhong Cao, Philip D. Greenberg, and Cassian Yee, Fred Hutchinson Cancer Research Center; John A. Thompson, Kim A. Margolin, and Shailender Bhatia, Seattle Cancer Care Alliance and University of Washington, Seattle WA; and Jedd D. Wolchok, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jedd D Wolchok
- Aude G. Chapuis, Ilana M. Roberts, Sylvia M. Lee, Heather L. Sloan, Ivy P. Lai, Erik A. Farrar, Felecia Wagener, Kendall C. Shibuya, Jianhong Cao, Philip D. Greenberg, and Cassian Yee, Fred Hutchinson Cancer Research Center; John A. Thompson, Kim A. Margolin, and Shailender Bhatia, Seattle Cancer Care Alliance and University of Washington, Seattle WA; and Jedd D. Wolchok, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Philip D Greenberg
- Aude G. Chapuis, Ilana M. Roberts, Sylvia M. Lee, Heather L. Sloan, Ivy P. Lai, Erik A. Farrar, Felecia Wagener, Kendall C. Shibuya, Jianhong Cao, Philip D. Greenberg, and Cassian Yee, Fred Hutchinson Cancer Research Center; John A. Thompson, Kim A. Margolin, and Shailender Bhatia, Seattle Cancer Care Alliance and University of Washington, Seattle WA; and Jedd D. Wolchok, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Cassian Yee
- Aude G. Chapuis, Ilana M. Roberts, Sylvia M. Lee, Heather L. Sloan, Ivy P. Lai, Erik A. Farrar, Felecia Wagener, Kendall C. Shibuya, Jianhong Cao, Philip D. Greenberg, and Cassian Yee, Fred Hutchinson Cancer Research Center; John A. Thompson, Kim A. Margolin, and Shailender Bhatia, Seattle Cancer Care Alliance and University of Washington, Seattle WA; and Jedd D. Wolchok, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
16
|
Costantini F, Barbieri G. The HLA-DR mediated signalling increases the migration and invasion of melanoma cells, the expression and lipid raft recruitment of adhesion receptors, PD-L1 and signal transduction proteins. Cell Signal 2017; 36:189-203. [PMID: 28495591 DOI: 10.1016/j.cellsig.2017.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/25/2017] [Accepted: 05/06/2017] [Indexed: 02/04/2023]
Abstract
The constitutive expression of Major Histocompatibility Complex (MHC) class II molecules is restricted to professional Antigen-Presenting Cells (APCs), nevertheless almost 50% of melanomas express constitutively the MHC class II molecules. Therefore, in two MHC class II constitutive expressing melanoma cell lines we studied the signalling mediated by the HLA-DR molecules in the aim to understand the consequence of class II mediated signalling on metastatic dissemination of melanoma. In particular, we reported that the HLA-DR mediated signalling play a new role in melanoma progression, increasing the migration and invasion of melanoma cells. Furthermore, we showed that the HLA-DR mediated signalling increases the expression and the lipid raft localisation of class II molecules, PD-L1 receptor, Integrin and CAM adhesion receptors, FAK, AKT and STAT3 signalling proteins. We also showed that the HLA-DR mediated signalling increases the activation of FAK, AKT, ERK, PKC and STAT3 signalling proteins and the expression of ILK, PAX, BRAF, ERK and PKC. Indeed, the results showed suggest that the HLA-DR mediated signalling provides a platform useful to frustrate an effective anti-tumour response and to increase melanoma migration and metastatic dissemination of this cancer.
Collapse
Affiliation(s)
- Francesca Costantini
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Giovanna Barbieri
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
17
|
de Charette M, Marabelle A, Houot R. Turning tumour cells into antigen presenting cells: The next step to improve cancer immunotherapy? Eur J Cancer 2016; 68:134-147. [PMID: 27755997 DOI: 10.1016/j.ejca.2016.09.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 12/31/2022]
Abstract
Downregulation/loss of the antigen presentation is a major immune escape mechanism in cancer. It allows tumour cells to become 'invisible' and avoid immune attack by antitumour T cells. In tumour harbouring properties of professional antigen presenting cells (i.e. tumour B cells in lymphoma), downregulation/loss of the antigen presentation may also prevent direct priming of naïve T cells by tumour cells. Here, we review treatments that may induce/restore antigen presentation by the tumour cells. These treatments may increase the generation of antitumour T cells and/or their capacity to recognise and eliminate tumour cells. By forcing tumour cells to present their antigens, these treatments may sensitise patients to T cell-based immunotherapies, including checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Aurélien Marabelle
- Gustave Roussy, Université Paris-Saclay, Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, F-94805, France; INSERM U1015, Villejuif, F-94805, France
| | - Roch Houot
- CHU Rennes, Service Hématologie Clinique, F-35033, Rennes, France; INSERM, U917, F-35043, Rennes, France.
| |
Collapse
|
18
|
Johnson DB, Estrada MV, Salgado R, Sanchez V, Doxie DB, Opalenik SR, Vilgelm AE, Feld E, Johnson AS, Greenplate AR, Sanders ME, Lovly CM, Frederick DT, Kelley MC, Richmond A, Irish JM, Shyr Y, Sullivan RJ, Puzanov I, Sosman JA, Balko JM. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun 2016; 7:10582. [PMID: 26822383 PMCID: PMC4740184 DOI: 10.1038/ncomms10582] [Citation(s) in RCA: 401] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/31/2015] [Indexed: 12/18/2022] Open
Abstract
Anti-PD-1 therapy yields objective clinical responses in 30-40% of advanced melanoma patients. Since most patients do not respond, predictive biomarkers to guide treatment selection are needed. We hypothesize that MHC-I/II expression is required for tumour antigen presentation and may predict anti-PD-1 therapy response. In this study, across 60 melanoma cell lines, we find bimodal expression patterns of MHC-II, while MHC-I expression was ubiquitous. A unique subset of melanomas are capable of expressing MHC-II under basal or IFNγ-stimulated conditions. Using pathway analysis, we show that MHC-II(+) cell lines demonstrate signatures of 'PD-1 signalling', 'allograft rejection' and 'T-cell receptor signalling', among others. In two independent cohorts of anti-PD-1-treated melanoma patients, MHC-II positivity on tumour cells is associated with therapeutic response, progression-free and overall survival, as well as CD4(+) and CD8(+) tumour infiltrate. MHC-II(+) tumours can be identified by melanoma-specific immunohistochemistry using commercially available antibodies for HLA-DR to improve anti-PD-1 patient selection.
Collapse
Affiliation(s)
- Douglas B. Johnson
- Department of Medicine, Vanderbilt University, Nashville, 37232 Tennessee, USA,
| | - Monica V. Estrada
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Roberto Salgado
- Department of Pathology, Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Boulevard de Waterloo 121, Brussels 1000, Belgium
| | - Violeta Sanchez
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Deon B. Doxie
- Department of Cancer Biology, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Susan R. Opalenik
- Department of Medicine, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Anna E. Vilgelm
- Department of Cancer Biology, Vanderbilt University, Nashville, 37232 Tennessee, USA,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, 37232 Tennessee, USA
| | - Emily Feld
- Department of Medicine, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Adam S. Johnson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Allison R. Greenplate
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, 37232 Tennessee, USA,Department of Cancer Biology, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Melinda E. Sanders
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Christine M. Lovly
- Department of Medicine, Vanderbilt University, Nashville, 37232 Tennessee, USA,Department of Cancer Biology, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Dennie T. Frederick
- Department of Medicine, Massachusetts General Hospital, Boston, 02114 Massachusetts, USA
| | - Mark C. Kelley
- Department of Surgical Oncology, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Ann Richmond
- Department of Cancer Biology, Vanderbilt University, Nashville, 37232 Tennessee, USA,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, 37232 Tennessee, USA
| | - Jonathan M. Irish
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, 37232 Tennessee, USA,Department of Cancer Biology, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Ryan J. Sullivan
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, 37232 Tennessee, USA
| | - Igor Puzanov
- Department of Medicine, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Jeffrey A. Sosman
- Department of Medicine, Vanderbilt University, Nashville, 37232 Tennessee, USA
| | - Justin M. Balko
- Department of Medicine, Vanderbilt University, Nashville, 37232 Tennessee, USA,Department of Cancer Biology, Vanderbilt University, Nashville, 37232 Tennessee, USA,
| |
Collapse
|
19
|
Ferrone S, Campoli M. A fresh look at an old story: revisiting HLA class II antigen expression by melanoma cells. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.1.6.805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Li MC, Liu QQ, Lu XY, Zhang YL, Wang LL. Heterologous expression of human costimulatory molecule B7-2 and construction of B7-2 immobilized polyhydroxyalkanoate nanoparticles for use as an immune activation agent. BMC Biotechnol 2012; 12:43. [PMID: 22846711 PMCID: PMC3468374 DOI: 10.1186/1472-6750-12-43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/25/2012] [Indexed: 11/10/2022] Open
Abstract
Background Costimulation of T cells via costimulatory molecules such as B7 is important for eliciting cell-mediated antitumor immunity. Presenting costimulation molecules by immobilizing recombinant B7 on the surface of nanovectors is a novel strategy for complementary therapy. Polyhydroxyalkanoates (PHAs) are a family of biodegradable, non-toxic, biocompatible polyesters, which can be used as a nonspecific immobilizing matrix for protein presentation. Recombinant protein fusion with PHA granule binding protein phasin (PhaP) can be easily immobilized on the surface of PHA nanoparticles through hydrophobic interactions between PhaP and PHA, and therefore provides a low-cost protein presenting strategy. Results In this study, the extracellular domain of the B7-2 molecule (also named as CD86) was fused with PhaP at its N-terminal and heterogeneously expressed in recombinant Escherichia coli strain BL21 (DE3). The purified B7-2-PhaP protein was immobilized on the surface of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx)-based nanoparticles. Loading of 240 μg (3.2 pMol) of B7-2-PhaP protein per mg nanoparticles was achieved. Immobilized B7-2-PhaP on PHBHHx nanoparticles induced T cell activation and proliferation in vitro. Conclusions A PHA nanoparticle-based B7-2 costimulation molecule-presenting system was constructed. The PHA-based B7 presenting nanosystem provided costimulation signals to induce T cell activation and expansion in vitro. The B7-2-PhaP immobilized PHA nanosystem is a novel strategy for costimulation molecule presentation and may be used for costimulatory molecule complementary therapy.
Collapse
Affiliation(s)
- Ming-Chuan Li
- Department of Biological Science and Bioengineering, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R, China
| | | | | | | | | |
Collapse
|
21
|
Dendritic cells loaded with mRNA encoding full-length tumor antigens prime CD4+ and CD8+ T cells in melanoma patients. Mol Ther 2012; 20:1063-74. [PMID: 22371843 DOI: 10.1038/mt.2012.11] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is generally thought that dendritic cells (DCs) loaded with full-length tumor antigen could improve immunotherapy by stimulating broad T-cell responses and by allowing treatment irrespective of the patient's human leukocyte antigen (HLA) type. To investigate this, we determined the specificity of T cells from melanoma patients treated with DCs loaded with mRNA encoding a full-length tumor antigen fused to a signal peptide and an HLA class II sorting signal, allowing presentation in HLA class I and II. In delayed-type hypersensitive (DTH)-biopsies and blood, we found functional CD8(+) and CD4(+) T cells recognizing novel treatment-antigen-derived epitopes, presented by several HLA types. Additionally, we identified a CD8(+) response specific for the signal peptide incorporated to elicit presentation by HLA class II and a CD4(+) response specific for the fusion region of the signal peptide and one of the antigens. This demonstrates that the fusion proteins contain newly created immunogenic sequences and provides evidence that ex vivo-generated mRNA-modified DCs can induce effector CD8(+) and CD4(+) T cells from the naive T-cell repertoire of melanoma patients. Thus, this work provides definitive proof that DCs presenting the full antigenic spectrum of tumor antigens can induce T cells specific for novel epitopes and can be administered to patients irrespective of their HLA type.
Collapse
|
22
|
Enhancement of HLA class II-restricted CD4+ T cell recognition of human melanoma cells following treatment with bryostatin-1. Cell Immunol 2011; 271:392-400. [PMID: 21903207 DOI: 10.1016/j.cellimm.2011.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 12/31/2022]
Abstract
The majority of melanoma cells express detectable levels of HLA class II proteins, and an increased threshold of cell surface class II is crucial for the stimulation of CD4+ T cells. Bryostatin-1, a protein kinase C (PKC) activator, has been considered as a potent chemotherapeutic agent in a variety of in vitro tumor models. Little is known about the role of bryostatin-1 in HLA class II Ag presentation and immune activation in malignant tumors, especially in melanoma. In this study, we show that bryostatin-1 treatment enhances CD4+ T cell recognition of melanoma cells in the context of HLA class II molecules. We also show that bryostatin-1 treatment of melanoma cells increases class II protein levels by upregulating the class II transactivator (CIITA) gene. Flow cytometry and confocal microscopic analyses revealed that bryostatin-1 treatment upregulated the expression of costimulatory molecules (CD80 and CD86) in melanoma cells, which could prolong the interaction of immune cells and tumors. Bryostatin-1 also induced cellular differentiation in melanoma cells, and reduced tumorigenic factors such as pro-cathepsins and matrix-metalloproteinase-9. These data suggest that bryostatin-1 could be used as a chemo-immunotherapeutic agent for reducing tumorigenic potential of melanoma cells while enhancing CD4+ T cell recognition to prevent tumor recurrence.
Collapse
|
23
|
Nardin A, Wong WC, Tow C, Molina TJ, Tissier F, Audebourg A, Garcette M, Caignard A, Avril MF, Abastado JP, Prévost-Blondel A. Dacarbazine promotes stromal remodeling and lymphocyte infiltration in cutaneous melanoma lesions. J Invest Dermatol 2011; 131:1896-905. [PMID: 21654834 DOI: 10.1038/jid.2011.128] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dacarbazine (DTIC) is the standard first-line drug for advanced stage melanoma, but it induces objective clinical responses in only 15% of patients. This study was designed to identify molecular changes specifically induced by treatment in chemo-sensitive lesions. Using global transcriptome analysis and immunohistochemistry, we analyzed cutaneous metastases resected from patients with melanoma before and after DTIC treatment. The treatment induced similar functional changes in different lesions from the same patient. Stromal and immune response-related genes were the most frequently upregulated, particularly in lesions that responded to treatment by stabilizing or regressing. T-cell infiltration and enhanced major histocompatibility complex class II expression were observed in a subset of patients. Stable, chemo-sensitive lesions exhibited activation of genetic programs related to extracellular matrix remodeling, including increased expression of secreted protein acidic and rich in cysteine (SPARC) by tumor cells. These events were associated with local response to treatment and with superior survival in our group of patients. In contrast, SPARC expression was downregulated in lesions resistant to DTIC. Thus, chemotherapy drugs originally selected for their direct cytotoxicity to tumor cells may also influence disease progression by inducing changes in the tumor microenvironment.
Collapse
|
24
|
Insights into the Role of GILT in HLA Class II Antigen Processing and Presentation by Melanoma. JOURNAL OF ONCOLOGY 2009; 2009:142959. [PMID: 20016802 PMCID: PMC2792950 DOI: 10.1155/2009/142959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 09/12/2009] [Indexed: 01/05/2023]
Abstract
Metastatic melanoma is one of the deadliest of skin cancers and is increasing in incidence. Since current treatment regimens are ineffective at controlling and/or curing the disease, novel approaches, such as immunotherapy, for treating this malignant disease are being explored. In this review, we discuss potential melanoma antigens (Ags) and their role in utilizing the HLA class II pathway to elicit tumor Ag-specific CD4+ T cell responses in order to effectively induce long-lasting CD8+ antitumor memory. We also discuss the role of endolysosomal cathepsins and Gamma-Interferon-inducible Lysosomal Thiol reductase (GILT) in Ag processing and presentation, and at enhancing CD4+ T cell recognition of melanoma cells. This review also summarizes our current knowledge on GILT and highlights a novel mechanism of GILT-mediated immune responses against melanoma cells. At the end, we propose a strategy employing GILT in the development of a potential whole cell vaccine for combating metastatic melanoma.
Collapse
|
25
|
Campoli M, Ferrone S. HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene 2008; 27:5869-85. [PMID: 18836468 DOI: 10.1038/onc.2008.273] [Citation(s) in RCA: 313] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Changes in classical and nonclassical HLA class I as well as HLA class II antigens have been identified in malignant lesions. These changes, which are described in this review are believed to play a major role in the clinical course of the disease since both HLA class I and class II antigens are critical to the interaction between tumor cells and components of both innate and adaptive immune system. Abnormalities in HLA antigen expression in malignant cells, which range in frequency from 0-90%, are caused by distinct mechanisms. They include defects in beta(2)-microglobulin (beta(2)m) synthesis, loss of the gene(s) encoding HLA antigen heavy chain(s), mutations, which inhibit HLA antigen heavy chain transcription or translation, defects in the regulatory mechanisms, which control HLA antigen expression and/or abnormalities in one or more of the antigen processing, machinery (APM) components. More recently, epigenetic events associated with tumor development and progression have been found to underlie changes in HLA antigen, APM component, costimulatory molecule and tumor antigen (TA) expression in malignant cells. The types of epigenetic modifications that may occur in normal and malignant cells as well as their role in changes in HLA antigen expression by malignant cells have been reviewed. The epigenetic events associated with alterations in HLA antigen expression may be clinically relevant as, in some cases, they have been shown to impair the recognition of tumor cells by components of the adaptive immune system. The functional relevance and potential clinical significance of these epigenetic alterations have been addressed. Finally, unlike genetic alterations, epigenetic modifications can, in some cases, be reversed with pharmacologic agents that induce DNA hypomethylation or inhibit histone deacetylation. Therefore, strategies to overcome epigenetic modifications underlying changes in HLA antigen expression in malignant cells have been discussed.
Collapse
Affiliation(s)
- M Campoli
- Department of Dermatology, University of Colorado Health Science Center, Denver, CO, USA
| | | |
Collapse
|
26
|
Campoli M, Ferrone S. Tumor escape mechanisms: potential role of soluble HLA antigens and NK cells activating ligands. ACTA ACUST UNITED AC 2008; 72:321-34. [PMID: 18700879 DOI: 10.1111/j.1399-0039.2008.01106.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crucial role played by human leukocyte antigen (HLA) antigens and natural killer (NK)-cell-activating ligands in the interactions of malignant cells with components of the host's immune system has stimulated interest in the characterization of their expression by malignant cells. Convincing evidence generated by the immunohistochemical staining of surgically removed malignant lesions with monoclonal antibodies recognizing HLA antigens and NK-cell-activating ligands indicates that the surface expression of these molecules is frequently altered on malignant cells. These changes appear to have clinical significance because in some types of malignant disease they are associated with the histopathological characteristics of the lesions as well as with disease-free interval and survival. These associations have been suggested to reflect the effect of HLA antigen and NK-cell-activating ligand abnormalities on the interactions of tumor cells with antigen-specific cytotoxic T lymphocytes (CTL) and with NK cells. Nevertheless, there are examples in which disease progresses in the face of appropriate HLA antigen and/or NK-cell-activating ligand as well as tumor antigen expression by malignant cells and of functional antigen-specific CTL in the investigated patient. In such scenarios, it is likely that the tumor microenvironment is unfavorable for CTL and NK cell activity and contributes to tumor immune escape. Many distinct escape mechanisms have been shown to protect malignant cells from immune recognition and destruction in the tumor microenvironment. In this article, following the description of the structural and functional characteristics of soluble HLA antigens and NK-cell-activating ligands, we will review changes in their serum level in malignant disease and discuss their potential role in the escape mechanisms used by tumor cells to avoid recognition and destruction.
Collapse
Affiliation(s)
- M Campoli
- Department of Dermatology, University of Colorado Health Science Center, Denver, CO, USA
| | | |
Collapse
|
27
|
van Houdt IS, Sluijter BJ, Moesbergen LM, Vos WM, de Gruijl TD, Molenkamp BG, van den Eertwegh AJ, Hooijberg E, van Leeuwen PA, Meijer CJ, Oudejans JJ. Favorable outcome in clinically stage II melanoma patients is associated with the presence of activated tumor infiltrating T-lymphocytes and preserved MHC class I antigen expression. Int J Cancer 2008; 123:609-15. [DOI: 10.1002/ijc.23543] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
28
|
Sousa JF, Espreafico EM. Suppression subtractive hybridization profiles of radial growth phase and metastatic melanoma cell lines reveal novel potential targets. BMC Cancer 2008; 8:19. [PMID: 18211678 PMCID: PMC2267200 DOI: 10.1186/1471-2407-8-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 01/22/2008] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Melanoma progression occurs through three major stages: radial growth phase (RGP), confined to the epidermis; vertical growth phase (VGP), when the tumor has invaded into the dermis; and metastasis. In this work, we used suppression subtractive hybridization (SSH) to investigate the molecular signature of melanoma progression, by comparing a group of metastatic cell lines with an RGP-like cell line showing characteristics of early neoplastic lesions including expression of the metastasis suppressor KISS1, lack of alphavbeta3-integrin and low levels of RHOC. METHODS Two subtracted cDNA collections were obtained, one (RGP library) by subtracting the RGP cell line (WM1552C) cDNA from a cDNA pool from four metastatic cell lines (WM9, WM852, 1205Lu and WM1617), and the other (Met library) by the reverse subtraction. Clones were sequenced and annotated, and expression validation was done by Northern blot and RT-PCR. Gene Ontology annotation and searches in large-scale melanoma expression studies were done for the genes identified. RESULTS We identified 367 clones from the RGP library and 386 from the Met library, of which 351 and 368, respectively, match human mRNA sequences, representing 288 and 217 annotated genes. We confirmed the differential expression of all genes selected for validation. In the Met library, we found an enrichment of genes in the growth factors/receptor, adhesion and motility categories whereas in the RGP library, enriched categories were nucleotide biosynthesis, DNA packing/repair, and macromolecular/vesicular trafficking. Interestingly, 19% of the genes from the RGP library map to chromosome 1 against 4% of the ones from Met library. CONCLUSION This study identifies two populations of genes differentially expressed between melanoma cell lines from two tumor stages and suggests that these sets of genes represent profiles of less aggressive versus metastatic melanomas. A search for expression profiles of melanoma in available expression study databases allowed us to point to a great potential of involvement in tumor progression for several of the genes identified here. A few sequences obtained here may also contribute to extend annotated mRNAs or to the identification of novel transcripts.
Collapse
Affiliation(s)
- Josane F Sousa
- Department of Cellular and Molecular Biology and Pathogenic Bioagents of Faculty of Medicine of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | |
Collapse
|
29
|
Ortiz-Sánchez E, Chávez-Olmos P, Piña-Sánchez P, Salcedo M, Garrido E. Expression of the costimulatory molecule CD86, but not CD80, in keratinocytes of normal cervical epithelium and human papillomavirus-16 positive low squamous intraepithelial lesions. Int J Gynecol Cancer 2007; 17:571-80. [PMID: 17386046 DOI: 10.1111/j.1525-1438.2007.00904.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Keratinocytes have been traditionally considered as nonprofessional antigen presenting cells, since multipassaged cells from skin biopsies of healthy individuals do not constitutively express major histocompatibility complex (MHC) class II or costimulatory molecules, but can be induced to do so after exposure to interferon-gamma. In normal and human papillomavirus (HPV)-infected cervical epithelium, keratinocytes are affected by a variety of soluble mediators that could modulate the expression of molecules including costimulatory proteins; however, the presence of these molecules within the cervix has been poorly studied. Therefore, our aim was to further explore the presence of costimulatory molecules on normal cervical epithelium and HPV-16 positive low squamous intraepithelial lesions (LSIL). We found in situ CD86 (but not CD80) displayed on the surface of normal keratinocytes from the spinous layer of human cervical epithelium. The presence of the protein and its messenger RNA level (evaluated by in situ hybridization) was diminished in HPV-16 positive LSILs. Although downregulation of costimulatory molecules is frequently related to cytokines expression, we did not observe differences in the presence of interleukin-10, the main cytokine that inhibits CD86 expression. Expression of CD86 on keratinocytes from normal cervical epithelium could indicate the potentiality of these cells to activate cytotoxic T cells, while the shut-off of this molecule in HPV-16 positive lesions could be a mechanism for evading host immune surveillance, resulting in the persistent HPV infection and probable progression of cervical lesions.
Collapse
Affiliation(s)
- E Ortiz-Sánchez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF
| | | | | | | | | |
Collapse
|
30
|
Geranmayeh F, Scheithauer BW, Spitzer C, Meyer FB, Svensson-Engwall AC, Graeber MB. MICROGLIA IN GEMISTOCYTIC ASTROCYTOMAS. Neurosurgery 2007; 60:159-66; discussion 166. [PMID: 17228265 DOI: 10.1227/01.neu.0000249192.30786.67] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Although gemistocytic astrocytomas are graded as World Health Organization II astrocytomas, they behave more aggressively than other astrocytomas. Their proliferative potential is low, and it remains an intriguing question why these tumors are so biologically "successful." They show a high mutation rate of the P53 gene, cytological abnormalities, and frequent perivascular mononuclear infiltrates. Microglial cells, a feature of this astrocytoma variant, are of increasing interest in the context of glioma growth. METHODS We selected 23 tumor biopsies from 201 samples obtained from patients with gemistocytic astrocytomas operated at Mayo Clinic between 1985 and 1998. These tumors were formerly analyzed for P53 mutations, p53 protein, and proliferative activity (). Immunolabeling for three microglial markers, including CR3/43, Ki-M1P, and iba1, was performed on adjacent tissue sections. In addition, in situ hybridization for the alpha-chain of the major histocompatibility complex (MHC) Class II molecule recognized by the CR3/43 monoclonal antibody was performed. RESULTS A high number of microglia was detected in gemistocytic astrocytomas. More microglia were present if the fraction of gemistocytic tumor cells was high (correlation coefficient = 0.699; P < 0.0002). Interestingly, a number of gemistocytes were immunoreactive for MHC Class II molecules, an observation confirmed by in situ hybridization. Importantly, the higher the number of Class II immunoreactive gemistocytes, the fewer Class II positive microglial cells could be detected (correlation coefficient = -0.5649; P < 0.005). CONCLUSION Our results support the view that gemistocytic astrocytomas contain unusually high numbers of microglial cells. We propose that the finding of aberrant MHC Class II expression by gemistocytic tumor cells correlates with a loss of immune-competent MHC Class II-expressing microglia. This may be related to the especially poor prognosis of gemistocytic astrocytomas for which induction of T cell anergy could provide one explanation.
Collapse
Affiliation(s)
- Fatemeh Geranmayeh
- University Department of Neuropathology, Imperial College London, Faculty of Medicine, Division of Neuroscience and Mental Health, Hammersmith Hospitals Trust, London, England
| | | | | | | | | | | |
Collapse
|
31
|
Mandruzzato S, Callegaro A, Turcatel G, Francescato S, Montesco MC, Chiarion-Sileni V, Mocellin S, Rossi CR, Bicciato S, Wang E, Marincola FM, Zanovello P. A gene expression signature associated with survival in metastatic melanoma. J Transl Med 2006; 4:50. [PMID: 17129373 PMCID: PMC1697826 DOI: 10.1186/1479-5876-4-50] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 11/27/2006] [Indexed: 01/28/2023] Open
Abstract
Background Current clinical and histopathological criteria used to define the prognosis of melanoma patients are inadequate for accurate prediction of clinical outcome. We investigated whether genome screening by means of high-throughput gene microarray might provide clinically useful information on patient survival. Methods Forty-three tumor tissues from 38 patients with stage III and stage IV melanoma were profiled with a 17,500 element cDNA microarray. Expression data were analyzed using significance analysis of microarrays (SAM) to identify genes associated with patient survival, and supervised principal components (SPC) to determine survival prediction. Results SAM analysis revealed a set of 80 probes, corresponding to 70 genes, associated with survival, i.e. 45 probes characterizing longer and 35 shorter survival times, respectively. These transcripts were included in a survival prediction model designed using SPC and cross-validation which allowed identifying 30 predicting probes out of the 80 associated with survival. Conclusion The longer-survival group of genes included those expressed in immune cells, both innate and acquired, confirming the interplay between immunological mechanisms and the natural history of melanoma. Genes linked to immune cells were totally lacking in the poor-survival group, which was instead associated with a number of genes related to highly proliferative and invasive tumor cells.
Collapse
Affiliation(s)
- Susanna Mandruzzato
- Oncology Section, Department of Oncological and Surgical Sciences, University of Padova, Padova, Italy
| | - Andrea Callegaro
- Department of Chemical Process Engineering, University of Padova, Padova, Italy
| | - Gianluca Turcatel
- Oncology Section, Department of Oncological and Surgical Sciences, University of Padova, Padova, Italy
| | - Samuela Francescato
- Oncology Section, Department of Oncological and Surgical Sciences, University of Padova, Padova, Italy
| | - Maria C Montesco
- Pathology Section, Department of Oncological and Surgical Sciences, University of Padova, Padova, Italy
| | | | - Simone Mocellin
- Surgery Section, Department of Oncological and Surgical Sciences, University of Padova, Padova, Italy
| | - Carlo R Rossi
- Surgery Section, Department of Oncological and Surgical Sciences, University of Padova, Padova, Italy
| | - Silvio Bicciato
- Department of Chemical Process Engineering, University of Padova, Padova, Italy
| | - Ena Wang
- Department of Transfusion Medicine, Clinical Center, NIH, Bethesda MD, USA
| | | | - Paola Zanovello
- Oncology Section, Department of Oncological and Surgical Sciences, University of Padova, Padova, Italy
- Istituto Oncologico Veneto, Padova, Italy
| |
Collapse
|
32
|
Tirapu I, Huarte E, Guiducci C, Arina A, Zaratiegui M, Murillo O, Gonzalez A, Berasain C, Berraondo P, Fortes P, Prieto J, Colombo MP, Chen L, Melero I. Low surface expression of B7-1 (CD80) is an immunoescape mechanism of colon carcinoma. Cancer Res 2006; 66:2442-50. [PMID: 16489051 DOI: 10.1158/0008-5472.can-05-1681] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Artificially enforced expression of CD80 (B7-1) and CD86 (B7-2) on tumor cells renders them more immunogenic by triggering the CD28 receptor on T cells. The enigma is that such B7s interact with much higher affinity with CTLA-4 (CD152), an inhibitory receptor expressed by activated T cells. We show that unmutated CD80 is spontaneously expressed at low levels by mouse colon carcinoma cell lines and other transplantable tumor cell lines of various tissue origins. Silencing of CD80 by interfering RNA led to loss of tumorigenicity of CT26 colon carcinoma in immunocompetent mice, but not in immunodeficient Rag-/- mice. CT26 tumor cells bind CTLA-4Ig, but much more faintly with a similar CD28Ig chimeric protein, thus providing an explanation for the dominant inhibitory effects on tumor immunity displayed by CD80 at that expression level. Interestingly, CD80-negative tumor cell lines such as MC38 colon carcinoma and B16 melanoma express CD80 at dim levels during in vivo growth in syngeneic mice. Therefore, low CD80 surface expression seems to give an advantage to cancer cells against the immune system. Our findings are similar with the inhibitory role described for the dim CD80 expression on immature dendritic cells, providing an explanation for the low levels of CD80 expression described in various human malignancies.
Collapse
Affiliation(s)
- Iñigo Tirapu
- Gene Therapy Unit, Department of Medicine, Centro de Investigación Médica Aplicada and Clínica Universitaria, University of Navarra School of Medicine, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lepage S, Lapointe R. Melanosomal targeting sequences from gp100 are essential for MHC class II-restricted endogenous epitope presentation and mobilization to endosomal compartments. Cancer Res 2006; 66:2423-32. [PMID: 16489049 DOI: 10.1158/0008-5472.can-05-2516] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CD4+ T lymphocytes play an important role in CD8+ T cell-mediated responses against tumors. Considering that approximately 20% of melanomas express MHC class II, it is plausible that concomitant presentation by MHC class I and class II shapes positive (helper T cells) or negative (regulatory T cells) antitumor responses. Interestingly, gp100, a melanoma antigen, can be presented by both MHC class I and class II when expressed endogenously, suggesting that it can reach endosomal/MHC class II compartments (MIIC). Here, we showed that gp100 putative NH2-terminal signal sequence and the last 70 residues in COOH terminus are essential for MIIC localization and MHC class II presentation. Confocal microscopy analyses confirmed that gp100 was localized in LAMP-1+/HLA-DR+ endosomal/MIIC. Gp100 targeting sequences were characterized by deleting different sections in the COOH terminus (last 70 residues). Transfection in 293T cells, expressing MHC class I and class II molecules, revealed that specific deletions in COOH terminus resulted in decreased MHC class II presentation, without effects on class I presentation, suggesting a role in MIIC trafficking for these deleted sections. Then, we used these gp100 targeting sequences to mobilize green fluorescent protein to endosomal compartments and to allow MHC class II and class I presentation of minimal endogenous epitopes. We conclude that these specific sequences are MIIC-targeting motifs, which could be included in expression cassettes for endogenously expressed tumor or viral antigens for MHC class II and class I presentation and optimize in vivo T-cell responses or as an in vitro tool for characterization of new MHC class II epitopes.
Collapse
Affiliation(s)
- Stéphanie Lepage
- Research Centre, Centre Hospitalier de l'Université de Montréal, Hôpital Notre Dame, Université de Montréal and Institut du Cancer de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
34
|
Triozzi PL, Allen KO, Carlisle RR, Craig M, LoBuglio AF, Conry RM. Phase I study of the intratumoral administration of recombinant canarypox viruses expressing B7.1 and interleukin 12 in patients with metastatic melanoma. Clin Cancer Res 2005; 11:4168-75. [PMID: 15930353 DOI: 10.1158/1078-0432.ccr-04-2283] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of this study was to evaluate the safety and activity of the intratumoral administration of the immune costimulatory molecule, B7.1, encoded by a vector derived from the canarypox virus, ALVAC (ALVAC-B7.1), alone and with the intratumoral injection of ALVAC encoding the immune-stimulatory cytokine, interleukin 12 (ALVAC-IL-12). Fourteen patients with metastatic melanoma who had s.c. nodules received intratumoral injections on days 1, 4, 8, and 11. Nine patients were given escalating doses of up to 25 x 10(8) plaque-forming units of ALVAC-B7.1. Five patients were given 25 x 10(8) plaque-forming units of ALVAC-B7.1 combined with ALVAC-IL-12 50% tissue culture infective dose of 2 x 10(6). Toxicity was mild to moderate and consisted of inflammatory reactions at the injection site and fever, chills, myalgia, and fatigue. Higher levels of B7.1 mRNA were observed in ALVAC-B7.1-injected tumors compared with saline-injected control tumors. Higher levels of intratumoral vascular endothelial growth factor and IL-10, cytokines with immune suppressive activities, were also observed in ALVAC-B7.1- and ALVAC-IL-12-injected tumors compared with saline-injected controls. Serum levels of vascular endothelial growth factor increased at day 18 and returned to baseline at day 43. All patients developed antibody to ALVAC. Intratumoral IL-12 and IFN-gamma mRNA decreased. Changes in serum IL-12 and IFN-gamma levels were not observed. Tumor regressions were not observed. The intratumoral injections of ALVAC-B7.1 and ALVAC-IL-12 were well tolerated at these dose levels and at this schedule and resulted in measurable biological response. This response included the production of factors that may suppress the antitumor immunologic activity of these vectors.
Collapse
Affiliation(s)
- Pierre L Triozzi
- The University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, Alabama 35294-3300, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Ying-Tao Z, Yi-Ping G, Lu-Sheng S, Yi-Li W. Proteomic analysis of differentially expressed proteins between metastatic and non-metastatic human colorectal carcinoma cell lines. Eur J Gastroenterol Hepatol 2005; 17:725-32. [PMID: 15947549 DOI: 10.1097/00042737-200507000-00006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To explore the expressions of metastasis-related proteins between metastatic LS174T and non-metastatic SW480 human colorectal carcinoma cell lines. METHODS Two-dimensional gel electrophoresis (2-DE) was applied to separate the total proteins of cells. The silver-stained gels were analysed by 2-DE software Image Master 2D Elite. Selected differential protein spots were identified with peptide mass fingerprinting based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and database searching. RESULTS The protein endothelial cell growth factor 1 (platelet-derived), rhotekin protein (RTKN), septin 1, cyclin-dependent kinase 1, sialic acid binding Ig-like lectin 11, tyrosinase-related protein-2, translin-like protein, and DNA directed RNA polymerase II polypeptide J-related gene isoform 2 appeared in metastatic but were not detected in non-metastatic cell lines, whereas integrin-linked kinase-associated protein phosphatase 2C isoform 2, MHC class I promoter binding protein, protein phosphatase 2A regulatory subunit B' (PR 53), carboxypeptidase A5, paired box transcription factor, zinc finger protein 79, and apolipoprotein B-48 were detected in non-metastatic but were absent in metastatic cell lines. In addition, cyclin fold protein 1 variant A and pre-B-cell leukemia transcription factor 1 were lowly expressed in the non-metastatic cell line and were significantly upregulated in the metastatic cell line. These identified proteins were involved in cell growth, motility, invasion, adhesion, apoptosis and tumour immunity, which is associated with distinct aspects of tumour metastasis. CONCLUSIONS These data are valuable for the identification of differentially expressed proteins involved in human colorectal carcinoma carcinogenesis and metastasis.
Collapse
Affiliation(s)
- Zhang Ying-Tao
- The Key Laboratory of Biomedical Information Engineering of the Education Ministry, Institute for Cancer Research, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | | | | | | |
Collapse
|
36
|
Tilkin-Mariamé AF, Cormary C, Ferro N, Sarrabayrouse G, Lajoie-Mazenc I, Faye JC, Favre G. Geranylgeranyl transferase inhibition stimulates antimelanoma immune response through MHC class I and costimulatory molecule expression. FASEB J 2005; 19:1513-5. [PMID: 15990392 DOI: 10.1096/fj.04-3482fje] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Defective antitumor immune responses are frequent consequences of defects in the expression of major histocompatibility complex (MHC) class I and costimulatory molecules. We demonstrated that statins, inhibitors of HMGCoA reductase, enhance mIFN-gamma induced expression of MHC class I antigens on murine B16F10 melanoma. GGTI-298, a geranylgeranyl transferase I inhibitor, but not FTI-277, a farnesyl transferase inhibitor, mimics this effect of statins. This effect is related to peptide transporter protein TAP1 up-regulation. Simultaneously, GGTI-298 induces the expression of CD80 and CD86 costimulatory molecules. C3 exoenzyme, which selectively inactivates Rho proteins, phenocopies the effects of GGTI-298, indicating a role for Rho proteins in these events. Furthermore, the treatment of B16F10 cells with GGTI-298 or C3 exoenzyme associated with mIFN-gamma induces in vivo tumor growth slowing down in immunocompetent but not in nu/nu syngeneic mice. Both in vivo injections and in vitro restimulation of splenocytes with GGTI-298- and mIFN-gamma-treated B16F10 cells induces an enhancement of specific CD8 T lymphocytes labeled by TRP-2/H-2K(b) tetramers. Finally, these effects are not limited to mouse models since they were also reproduced in two human melanoma cell lines. These observations indicate that protein geranylgeranylation as well as Rho protein are critical for costimulatory and IFN-gamma-dependent MHC class I molecule expression in melanoma.
Collapse
Affiliation(s)
- A-F Tilkin-Mariamé
- INSERM U563 CPTP, Département Innovation thérapeutique et Oncologie Moléculaire, Toulouse, France.
| | | | | | | | | | | | | |
Collapse
|
37
|
Tarazona R, Casado JG, Soto R, DelaRosa O, Peralbo E, Rioja L, Peña J, Solana R. Expression of NK-associated receptors on cytotoxic T cells from melanoma patients: a two-edged sword? Cancer Immunol Immunother 2004; 53:911-24. [PMID: 15127235 PMCID: PMC11032847 DOI: 10.1007/s00262-004-0507-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 01/27/2004] [Indexed: 11/29/2022]
Abstract
The coexistence of tumor progression with a tumor-specific immune response constitutes a major paradox of tumor immunity. During the last decade, the presence of cytotoxic T lymphocytes (CTLs) recognising melanoma-associated antigens has been unequivocally demonstrated in numerous different in vivo and in vitro models. However, most often these melanoma-specific T lymphocytes do not control tumor growth. Several mechanisms that involve changes in melanoma phenotype and/or in T-cell differentiation and function could explain the inability of the immune response to control melanoma. In the last few years it has been demonstrated that cellular cytotoxicity is the result of a balance between activating signals triggered by the TCR and costimulatory molecules and inhibitory signals triggered by inhibitory receptors expressed by the CTL. Because the final outcome of the immune response against melanoma depends on the balance between activating and inhibitory signals, the expression de novo on melanoma cells of ligands for inhibitory NKRs and the down-regulation of costimulatory molecules may favor the escape of tumor cells from immunosurveillance. In this paper we review how altered expression of molecules required for T-cell costimulation could result in impaired lysis of melanoma. The modulation of antimelanoma T-cell responses by a group of receptors originally described on NK cells (NK-associated receptors) but which are now known also to be expressed on a subset of cytolytic effector cells is reviewed. We hypothesize that the expression of ligands for NKRs on melanoma cells may contribute to T-cell-mediated immune responses against melanoma either enhancing or inhibiting activation and differentiation to effector cells. Blocking inhibitory receptors or increasing activating receptors could result in new strategies to improve T-cell-mediated rejection of melanoma.
Collapse
Affiliation(s)
- Raquel Tarazona
- Department of Physiology, Immunology Unit, Veterinary Faculty, University of Extremadura, Cáceres, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Aoudjit F, Guo W, Gagnon-Houde JV, Castaigne JG, Alcaide-Loridan C, Charron D, Al-Daccak R. HLA-DR signaling inhibits Fas-mediated apoptosis in A375 melanoma cells. Exp Cell Res 2004; 299:79-90. [PMID: 15302575 DOI: 10.1016/j.yexcr.2004.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 05/06/2004] [Indexed: 10/26/2022]
Abstract
Although melanocytes are devoid of the human major histocompatibility complex class II (HLA II) molecules, melanomas often display constitutive expression of these molecules, particularly HLA-DR. This constitutive expression of HLA-DR molecules is associated with tumor progression and poor prognosis but the molecular basis for this association remains poorly understood. Within the hypothesis of a role in immune escape, we analyzed the regulation of Fas-mediated apoptosis by HLA-DR signaling in the HLA-DR-positive malignant melanoma cell line A375. Our study demonstrates that engagement of HLA-DR molecules with anti-HLA-DR-specific monoclonal antibody L243 significantly reduces Fas-mediated apoptosis; DNA fragmentation and cell death were decreased by 50% and 40%, respectively. We found that while HLA-DR signaling does not affect Fas receptor expression, it significantly reduces Fas-induced activation of caspase-8 and Bid. Furthermore, inhibition studies and expression of dominant negative form of Mek-1 demonstrated that HLA-DR-mediated inhibition of caspase-8/Bid activation and apoptosis are dependent on the activation of the MAPK/Erk pathway. Together, our results provide evidence that HLA-DR signaling activates the MAPK/Erk pathway in A375 melanoma cells, which has a functional role in the resistance of these cells to Fas-mediated apoptosis. These observations underline the potential importance that HLA-DR signaling might have in melanoma immune escape and tumor progression.
Collapse
Affiliation(s)
- Fawzi Aoudjit
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Faculté de Médecine, Université Laval, Québec, Canada G1V 4G2
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Melanoma incidence is rising worldwide. Early diagnosis is very important, as the most effective treatment for melanoma still consists of excision of the tumour before onset of the metastatic growth phase. Immunohistochemistry is a valuable tool for (dermato)pathologists to aid establishing diagnosis. Melanoma markers can be classified into two main categories: melanocytic differentiation markers and melanoma progression markers. Melanocytic differentiation markers are mostly used to distinguish poorly differentiated melanomas from non-melanocytic tumours and for staging of melanocytic proliferative lesions. Melanoma progression markers are most suitable to determine the level of malignancy and/or aggressiveness of tumour cells. This review describes the classification of melanoma markers, including commonly used and recently identified antigens with potential marker function. We characterize their expression profile in melanocytic proliferative lesions and their potential usefulness for diagnosis, prognosis, microstaging, immunotherapeutic purposes and evaluation of therapies.
Collapse
Affiliation(s)
- N J W de Wit
- Department of Pathology, University Medical Centre St Radboud, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
40
|
Altomonte M, Visintin A, Tecce R, Leonardi A, Calabro L, Fonsatti E, Pucillo C, Maio M. Targeting of HLA-DR molecules transduces agonistic functional signals in cutaneous melanoma. J Cell Physiol 2004; 200:272-6. [PMID: 15174097 DOI: 10.1002/jcp.20015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The role of human leukocyte antigens (HLA) class II molecules in transducing intracellular signals in immune cells is well established. Solid tumors of different histotype can also express HLA class II antigens; however, their intracellular signaling ability is essentially unknown. Due to the frequent expression of HLA class II molecules in primary and metastatic lesions, cutaneous melanoma was utilized to investigate whether the engagement of HLA-DR molecules transduces functional intracellular signal(s). Triggering of HLA-DR molecules by the anti-HLA-DR monoclonal antibody (mAb) L243 induced a significant (P < 0.05) and dose-dependent growth-inhibition of metastatic melanoma cells Mel 120, as well as their homotypic aggregation. Furthermore, an increase in tyrosine phosphorylation of multiple cellular proteins with a molecular weight ranging from 66 to 130 kD, including p125 focal adhesion kinase, was observed. Lastly, the engagement of HLA-DR molecules by mAb L243 inhibited activator protein-1-DNA binding. Thus, HLA-DR molecules expressed on melanoma cells can transduce functional intracellular signals. This finding is consistent with evidences obtained in hematological malignancies, and suggests the potential usefulness of HLA-DR molecules to set-up new approaches of targeted therapy in metastatic melanoma.
Collapse
Affiliation(s)
- Maresa Altomonte
- Cancer Bioimmunotherapy Unit, Department of Medical Oncology, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Altomonte M, Fonsatti E, Visintin A, Maio M. Targeted therapy of solid malignancies via HLA class II antigens: a new biotherapeutic approach? Oncogene 2003; 22:6564-9. [PMID: 14528281 DOI: 10.1038/sj.onc.1206960] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intracellular signals, delivered in professional antigen-presenting cells following the engagement of major histocompatibility complex (MHC) class II molecules, activate a variety of cellular functions that also contribute to efficient antigen presentation. As far as human malignancies, the signaling ability of human leukocyte antigens (HLA) class II molecules is a rather well-characterized event in hematologic tumors; in contrast, very limited evidences are available in solid neoplasias of different histotypes that may constitutively express HLA class II antigens. Among solid malignancies, a significant proportion of human cutaneous melanomas have been shown to express HLA class II molecules, and cutaneous melanoma undoubtedly represents a 'model disease' to investigate tumor immunobiology, to unveil the molecular basis underlying the interactions between neoplastic cells and host's immune system, and ultimately to set up new bio-immunotherapeutic approaches. Upcoming preclinical evidences unveil a signaling potential of HLA-DR antigens expressed on melanoma cells, and suggest for the clinical implication of HLA class II molecules as novel therapeutic targets. Therefore, in this review, we will focus on the emerging role of HLA class II antigens as intracellular signal transducing elements in neoplastic cells of the melanocytic lineage, emphasizing their foreseeable role in targeted therapy of human melanoma and potentially of HLA class II antigens-positive tumors of different histology.
Collapse
Affiliation(s)
- Maresa Altomonte
- Cancer Bioimmunotherapy Unit, Department of Medical Oncology, Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, via Pedemontana Occ. le, 12, Aviano 33081, Italy.
| | | | | | | |
Collapse
|