1
|
Mohammed Bakheet M, Mohssin Ali H, Jalil Talab T. Evaluation of some proinflammatory cytokines and biochemical parameters in pre and postmenopausal breast cancer women. Cytokine 2024; 179:156632. [PMID: 38701734 DOI: 10.1016/j.cyto.2024.156632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
The study was planned to evaluate the differences in certain proinflammatory cytokines(IL-6, TNF-α) with CRP and biochemical parameters (E2, D3, LDH, GGT, TSB, Ca, Ph, uric acid), between women with pre- and postmenopausal breast cancer and seemingly healthy women in Iraqi women as controls; at medical city in teaching Oncology hospital,70 breast cancer patients women their ages ranged (47.51 ± 1.18) and 20 healthy women with age (44.45 ± 2.66) begun from September (2020) to February (2021). The aims of this study to investigate the evaluation of chemotherapy effects especially doxorubicin and cyclophosphamide only use in this study in pre and postmenopausal breast cancer women on proinflammatory cytokines(IL-6, TNF-α) with CRP and on biochemical parameters(E2, D3, LDH, GGT, TSB, Ca, Ph, uric acid) in pre and postmenapausal breast cancer women. The patients were divided into five groups and each group contains 14 patients women with breast cancer during pre and postmenopausal periods. The control groups were divided into 10 pre and 10 postmenopausal women(Fig. 1). The results of proinflammatory cytokines of and biochemical parameters in premenopausal groups were as the levels of IL-6 (pg/ml),TNF-α(pg/ml) and CRP (ng/ml) showed significant increase differences (P < 0.01)among breast cancer treated (BCT) groups in comparison with control groups,While the Liver enzymes GGT,LDH and TSB showed highly significant increase (P < 0.01) in BCT groups, Estrogen levels (pg/ml) and D3(ng/ml) increased significantly (P < 0.01)among BCT groups. Blood serum calcium and phosphorus with uric acid levels (mg/dl) showed significant difference (P < 0.01); While the result in postmenopausal of IL-6(pg/ml), TNF-α (pg/ml) and CRP (ng/ml) showed highly significant differences (P < 0.01)among BCT groups.While GGT(IU/L), LDH(IU/L) and TSB (mg/dl) enzymes were increased significantly (p < 0.01), Estrogen (pg/ml) and D3(ng/ml) levels showed significant increase (P < 0.01) among BCT groups.Blood calcium and phosphorus showed significant increase (P < 0.01) while uric acid was non-significant increase (P > 0.05).
Collapse
Affiliation(s)
| | - Hiba Mohssin Ali
- Department of Biology, College of Science, Mustansiriyah University, Bagdad, Iraq.
| | - Tabarak Jalil Talab
- Department of Biology, College of Science, Mustansiriyah University, Bagdad, Iraq.
| |
Collapse
|
2
|
Baker Frost D, Savchenko A, Takamura N, Wolf B, Fierkens R, King K, Feghali-Bostwick C. A Positive Feedback Loop Exists between Estradiol and IL-6 and Contributes to Dermal Fibrosis. Int J Mol Sci 2024; 25:7227. [PMID: 39000334 PMCID: PMC11241801 DOI: 10.3390/ijms25137227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Systemic sclerosis (SSc) is characterized by dermal fibrosis with a female predominance, suggesting a hormonal influence. Patients with SSc have elevated interleukin (IL)-6 levels, and post-menopausal women and older men also have high estradiol (E2) levels. In the skin, IL-6 increases the enzymatic activity of aromatase, thereby amplifying the conversion of testosterone to E2. Therefore, we hypothesized that an interplay between E2 and IL-6 contributes to dermal fibrosis. We used primary dermal fibroblasts from healthy donors and patients with diffuse cutaneous (dc)SSc, and healthy donor skin tissues stimulated with recombinant IL-6 and its soluble receptor (sIL-6R) or E2. Primary human dermal fibroblasts and tissues from healthy donors stimulated with IL-6+sIL-6R produced E2, while E2-stimulated dermal tissues and fibroblasts produced IL-6. Primary dermal fibroblasts from healthy donors treated with IL-6+sIL-6R and the aromatase inhibitor anastrozole (ANA) and dcSSc fibroblasts treated with ANA produced less fibronectin (FN), type III collagen A1 (Col IIIA1), and type V collagen A1 (Col VA1). Finally, dcSSc dermal fibroblasts treated with the estrogen receptor inhibitor fulvestrant also generated less FN, Col IIIA1, and Col VA1. Our data show that IL-6 exerts its pro-fibrotic influence in human skin in part through E2 and establish a positive feedback loop between E2 and IL-6.
Collapse
Affiliation(s)
- DeAnna Baker Frost
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 822, MSC 637, Charleston, SC 29425, USA;
| | - Alisa Savchenko
- College of Osteopathic Medicine, Rocky Vista University, 4130 Rocky Vista Way, Billings, MT 59106, USA;
| | - Naoko Takamura
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan;
| | - Bethany Wolf
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street, Room 305F, Charleston, SC 29425, USA;
| | - Roselyn Fierkens
- Barabara Davis Center, Department of Pediatrics, University of Colorado, School of Medicine, M20-3201N, 1775 Aurora Court, Aurora, CO 80045, USA;
| | - Kimberly King
- School of Medicine, Morehouse College, 720 Westview Drive, Atlanta, GA 30310, USA;
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 822, MSC 637, Charleston, SC 29425, USA;
| |
Collapse
|
3
|
Dou T, Li J, Zhang Y, Pei W, Zhang B, Wang B, Wang Y, Jia H. The cellular composition of the tumor microenvironment is an important marker for predicting therapeutic efficacy in breast cancer. Front Immunol 2024; 15:1368687. [PMID: 38487526 PMCID: PMC10937353 DOI: 10.3389/fimmu.2024.1368687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
At present, the incidence rate of breast cancer ranks first among new-onset malignant tumors in women. The tumor microenvironment is a hot topic in tumor research. There are abundant cells in the tumor microenvironment that play a protumor or antitumor role in breast cancer. During the treatment of breast cancer, different cells have different influences on the therapeutic response. And after treatment, the cellular composition in the tumor microenvironment will change too. In this review, we summarize the interactions between different cell compositions (such as immune cells, fibroblasts, endothelial cells, and adipocytes) in the tumor microenvironment and the treatment mechanism of breast cancer. We believe that detecting the cellular composition of the tumor microenvironment is able to predict the therapeutic efficacy of treatments for breast cancer and benefit to combination administration of breast cancer.
Collapse
Affiliation(s)
- Tingyao Dou
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaochen Zhang
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Wanru Pei
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Binyue Zhang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bin Wang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Hongyan Jia
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Salemme V, Centonze G, Avalle L, Natalini D, Piccolantonio A, Arina P, Morellato A, Ala U, Taverna D, Turco E, Defilippi P. The role of tumor microenvironment in drug resistance: emerging technologies to unravel breast cancer heterogeneity. Front Oncol 2023; 13:1170264. [PMID: 37265795 PMCID: PMC10229846 DOI: 10.3389/fonc.2023.1170264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Breast cancer is a highly heterogeneous disease, at both inter- and intra-tumor levels, and this heterogeneity is a crucial determinant of malignant progression and response to treatments. In addition to genetic diversity and plasticity of cancer cells, the tumor microenvironment contributes to tumor heterogeneity shaping the physical and biological surroundings of the tumor. The activity of certain types of immune, endothelial or mesenchymal cells in the microenvironment can change the effectiveness of cancer therapies via a plethora of different mechanisms. Therefore, deciphering the interactions between the distinct cell types, their spatial organization and their specific contribution to tumor growth and drug sensitivity is still a major challenge. Dissecting intra-tumor heterogeneity is currently an urgent need to better define breast cancer biology and to develop therapeutic strategies targeting the microenvironment as helpful tools for combined and personalized treatment. In this review, we analyze the mechanisms by which the tumor microenvironment affects the characteristics of tumor heterogeneity that ultimately result in drug resistance, and we outline state of the art preclinical models and emerging technologies that will be instrumental in unraveling the impact of the tumor microenvironment on resistance to therapies.
Collapse
Affiliation(s)
- Vincenzo Salemme
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Giorgia Centonze
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Dora Natalini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Alessio Piccolantonio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Pietro Arina
- UCL, Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| |
Collapse
|
5
|
Ghasemi K, Ghasemi K. Evaluation of the Tocilizumab therapy in human cancers: Latest evidence and clinical potential. J Clin Pharm Ther 2022; 47:2360-2368. [PMID: 36271617 DOI: 10.1111/jcpt.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/20/2022] [Accepted: 09/04/2022] [Indexed: 12/24/2022]
Abstract
Tocilizumab (Actemra®), as the first human interleukin-6 receptor (IL-6R) antagonist, has been used in treating moderate to severe active rheumatoid arthritis (RA) patients who were undertreatment with one or more disease-modifying anti-rheumatic drugs (DMARDs) and did not improve significantly. Tocilizumab also has been administrated and confirmed in several inflammatory-based diseases. Recently, tocilizumab has been prescribed to treat patients with advanced coronavirus disease (COVID-19) and is used as one of the effective drugs in reducing the increased inflammation in these patients. On the other hand, cancer treatment has been considered by researchers one of the most important challenges to human health. Regarding inflammatory-associated malignancies, it has been shown that inflammatory mediators such as interleukin-1 beta (IL-1β), IL-6, and tumour necrosis factor-alpha (TNF-α) may play a role in tumorigenesis, thus targeting these cytokines as evidence suggested can be useful in the treatment of these types of cancers. This review summarized the role of the IL-6/IL-6R axis in inflammation-based cancers and discussed the effectiveness and challenges of treating cancer with tocilizumab.
Collapse
Affiliation(s)
- Kimia Ghasemi
- Department of Pharmacology and Toxicology, School of Pharmacy; Fertility and Infertility Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kosar Ghasemi
- Department of Pharmacology and Toxicology, School of Pharmacy; Cellular and Molecular Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Xiao M, He J, Yin L, Chen X, Zu X, Shen Y. Tumor-Associated Macrophages: Critical Players in Drug Resistance of Breast Cancer. Front Immunol 2022; 12:799428. [PMID: 34992609 PMCID: PMC8724912 DOI: 10.3389/fimmu.2021.799428] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Drug resistance is one of the most critical challenges in breast cancer (BC) treatment. The occurrence and development of drug resistance are closely related to the tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs), the most important immune cells in TIME, are essential for drug resistance in BC treatment. In this article, we summarize the effects of TAMs on the resistance of various drugs in endocrine therapy, chemotherapy, targeted therapy, and immunotherapy, and their underlying mechanisms. Based on the current overview of the key role of TAMs in drug resistance, we discuss the potential possibility for targeting TAMs to reduce drug resistance in BC treatment, By inhibiting the recruitment of TAMs, depleting the number of TAMs, regulating the polarization of TAMs and enhancing the phagocytosis of TAMs. Evidences in our review support it is important to develop novel therapeutic strategies to target TAMs in BC to overcome the treatment of resistance.
Collapse
Affiliation(s)
- Maoyu Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun He
- Department of Spine Surgery, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Liyang Yin
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiguan Chen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yingying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
7
|
Molehin D, Rasha F, Rahman RL, Pruitt K. Regulation of aromatase in cancer. Mol Cell Biochem 2021; 476:2449-2464. [PMID: 33599895 DOI: 10.1007/s11010-021-04099-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
The regulation of aromatase, an enzyme involved in the biosynthesis of estrogen in normal and cancer cells, has been associated with growth factor signaling and immune response modulation. The tissue-specific regulatory roles of these factors are of particular importance as local aromatase expression is strongly linked to cancer development/progression and disease outcomes in patients. Therefore, aromatase has become a chemotherapeutic target and aromatase inhibitors (AIs) are used in the clinic for treating hormone-dependent cancers. Although AIs have shown promising results in the treatment of cancers, the emerging increase in AI-resistance necessitates the development of new and improved targeted therapies. This review discusses the role of tumor and stromal-derived growth factors and immune cell modulators in regulating aromatase. Current single-agent and combination therapies with or without AIs targeting growth factors and immune checkpoints are also discussed. This review highlights recent studies that show new connections between growth factors, mediators of immune response, and aromatase regulation.
Collapse
Affiliation(s)
- Deborah Molehin
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Fahmida Rasha
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Kevin Pruitt
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA. .,Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430-6591, USA.
| |
Collapse
|
8
|
Ibrahim SA, El-Ghonaimy EA, Hassan H, Mahana N, Mahmoud MA, El-Mamlouk T, El-Shinawi M, Mohamed MM. Hormonal-receptor positive breast cancer: IL-6 augments invasion and lymph node metastasis via stimulating cathepsin B expression. J Adv Res 2016; 7:661-70. [PMID: 27482469 PMCID: PMC4957008 DOI: 10.1016/j.jare.2016.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/18/2016] [Accepted: 06/24/2016] [Indexed: 01/17/2023] Open
Abstract
Hormonal-receptor positive (HRP) breast cancer patients with positive metastatic axillary lymph nodes are characterized by poor prognosis and increased mortality rate. The mechanisms by which cancer cells invade lymph nodes have not yet been fully explored. Several studies have shown that expression of IL-6 and the proteolytic enzyme cathepsin B (CTSB) was associated with breast cancer poor prognosis. In the present study, the effect of different concentrations of recombinant human IL-6 on the invasiveness capacity of HRP breast cancer cell line MCF-7 was tested using an in vitro invasion chamber assay. The impact of IL-6 on expression and activity of CTSB was also investigated. IL-6 treatment promoted the invasiveness potential of MCF-7 cells in a dose-dependent manner. Furthermore, MCF-7 cells displayed elevated CTSB expression and activity associated with loss of E-cadherin and upregulation of vimentin protein levels upon IL-6 stimulation. To validate these results in vivo, the level of expression of IL-6 and CTSB in the carcinoma tissues of HRP-breast cancer patients with positive and negative axillary metastatic lymph nodes (pLNs and nLNs) was assessed. Western blot and immunohistochemical staining data showed that expression of IL-6 and CTSB was higher in carcinoma tissues in HRP-breast cancer with pLNs than those with nLNs patients. ELISA results showed carcinoma tissues of HRP-breast cancer with pLNs exhibited significantly elevated IL-6 protein levels by approximately 2.8-fold compared with those with nLNs patients (P < 0.05). Interestingly, a significantly positive correlation between IL-6 and CTSB expression was detected in clinical samples of HRP-breast cancer patients with pLNs (r = 0.78, P < 0.01). Collectively, this study suggests that IL-6-induced CTSB may play a role in lymph node metastasis, and that may possess future therapeutic implications for HRP-breast cancer patients with pLNs. Further studies are necessary to fully identify IL-6/CTSB axis in different molecular subtypes of breast cancer.
Collapse
Affiliation(s)
- Sherif A Ibrahim
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Eslam A El-Ghonaimy
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Noha Mahana
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | - Tahani El-Mamlouk
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Mona M Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
9
|
Taskin MI, Gungor AC, Adali E, Yay A, Onder GO, Inceboz U. A Humanized Anti-Interleukin 6 Receptor Monoclonal Antibody, Tocilizumab, for the Treatment of Endometriosis in a Rat Model. Reprod Sci 2015; 23:662-9. [DOI: 10.1177/1933719115612134] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Mine Islimye Taskin
- Department of Obstetrics and Gynecology, Balikesir University Faculty of Medicine, Balikesir, Turkey
| | - Aysenur Cakir Gungor
- Department of Obstetrics and Gynecology, On Sekiz Mart University Faculty of Medicine, Canakkale, Turkey
| | - Ertan Adali
- Department of Obstetrics and Gynecology, Balikesir University Faculty of Medicine, Balikesir, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - Gozde Ozge Onder
- Department of Histology and Embryology, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - Umit Inceboz
- Special Irenb Department of Obstetrics and Birth Center, Izmir, Turkey
| |
Collapse
|
10
|
Leitner L, Jürets A, Itariu BK, Keck M, Prager G, Langer F, Grablowitz V, Zeyda M, Stulnig TM. Osteopontin promotes aromatase expression and estradiol production in human adipocytes. Breast Cancer Res Treat 2015; 154:63-9. [DOI: 10.1007/s10549-015-3603-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
|
11
|
Xu B, Yu DM, Liu FS. Effect of siRNA‑induced inhibition of IL‑6 expression in rat cerebral gliocytes on cerebral edema following traumatic brain injury. Mol Med Rep 2014; 10:1863-8. [PMID: 25109513 DOI: 10.3892/mmr.2014.2462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 04/25/2014] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effect of RNA interference (RNAi) on the inhibition of interleukin (IL)‑6 expression in rat cerebral gliocytes in vitro and rat cerebral traumatic tissues in vivo, as well as the effect of RNAi on cerebral edema. pSUPER vectors containing IL‑6 small hairpin RNA (pSUPER‑IL‑6 1‑5) were designed, constructed and transfected into C6 rat glioma cells using cationic liposomes. ELISA was used to select the plasmid with the strongest interference effect. A freefall method was used to generate a rat brain injury model and rats were randomly divided into treatment, empty plasmid and control groups (n=14/group). IL‑6 levels, water content and sodium content were determined in the brain tissues at 24 and 72 h post‑injury. pSUPER‑IL‑6 was effectively transfected into C6 cells and was found to inhibit the expression of IL‑6 rather than IL‑8. The pSUPER‑IL‑6 1 vector was most effective in inducing RNAi. In vivo, IL‑6 levels were observed to be lowest in the interference group and there were statistically significant differences in water and sodium content among the experimental groups (P<0.05). RNAi was found to inhibit IL‑6 expression in vivo and in vitro in rat cerebral gliocytes, and the reduction of the IL‑6 levels was found to reduce post‑traumatic cerebral edema.
Collapse
Affiliation(s)
- Bin Xu
- Department of Emergency, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Dong-Ming Yu
- Department of Emergency, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Fu-Sheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
12
|
Che Q, Liu BY, Liao Y, Zhang HJ, Yang TT, He YY, Xia YH, Lu W, He XY, Chen Z, Wang FY, Wan XP. Activation of a positive feedback loop involving IL-6 and aromatase promotes intratumoral 17β-estradiol biosynthesis in endometrial carcinoma microenvironment. Int J Cancer 2014; 135:282-94. [PMID: 24347287 DOI: 10.1002/ijc.28679] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/29/2013] [Accepted: 12/11/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Qi Che
- Department of Obstetrics and Gynecology; Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University; Shanghai China
| | - Bin-Ya Liu
- Department of Obstetrics and Gynecology; Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University; Shanghai China
| | - Yun Liao
- Department of Obstetrics and Gynecology; Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University; Shanghai China
| | - Hui-Juan Zhang
- Department of Pathology; International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Ting-Ting Yang
- Department of Obstetrics and Gynecology; Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University; Shanghai China
| | - Yin-Yan He
- Department of Obstetrics and Gynecology; Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University; Shanghai China
| | - Yu-Hong Xia
- Department of Obstetrics and Gynecology; International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Wen Lu
- Department of Obstetrics and Gynecology; Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University; Shanghai China
| | - Xiao-Ying He
- Department of Obstetrics and Gynecology; International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Zheng Chen
- Department of Obstetrics and Gynecology; Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University; Shanghai China
| | - Fang-Yuan Wang
- Department of Obstetrics and Gynecology; Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University; Shanghai China
| | - Xiao-Ping Wan
- Department of Obstetrics and Gynecology; Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|
13
|
Abstract
There are substantial experimental, epidemiological and clinical evidences that show that breast cancer pathology is influenced by endogenous estrogens. This knowledge is the foundation upon which endocrine deprivation therapy has been developed as a major modality for the management of breast cancer. Tamoxifen, which functions as a competitive partial agonist-inhibitor of estrogen at its receptor, has been widely used for more than three decades for adjuvant endocrine treatment in breast cancer. Currently, other effective drugs for endocrine therapy include raloxifene, different aromatase inhibitors (particularly third-generation agents) and luteinizing hormone-releasing hormone agonists. In recent years, a growing body of evidence suggests that these drugs can also act as immune modulators by altering the function of various leukocytes and the release of different cytokines. Moreover, there is evidence that anti-estrogens may prove to be beneficial in the treatment or prevention of some autoimmune diseases due to their effects on immune function. However, their immunopharmacological aspects in the present state of knowledge are not precisely comprehensible. Only a clear pathophysiological understanding could lead to an efficient strategy for breast cancer prevention and decrease in the mortality due to this disease.
Collapse
|
14
|
Angelopoulou R, Lavranos G, Manolakou P. Sex determination strategies in 2012: towards a common regulatory model? Reprod Biol Endocrinol 2012; 10:13. [PMID: 22357269 PMCID: PMC3311596 DOI: 10.1186/1477-7827-10-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 02/22/2012] [Indexed: 12/21/2022] Open
Abstract
Sex determination is a complicated process involving large-scale modifications in gene expression affecting virtually every tissue in the body. Although the evolutionary origin of sex remains controversial, there is little doubt that it has developed as a process of optimizing metabolic control, as well as developmental and reproductive functions within a given setting of limited resources and environmental pressure. Evidence from various model organisms supports the view that sex determination may occur as a result of direct environmental induction or genetic regulation. The first process has been well documented in reptiles and fish, while the second is the classic case for avian species and mammals. Both of the latter have developed a variety of sex-specific/sex-related genes, which ultimately form a complete chromosome pair (sex chromosomes/gonosomes). Interestingly, combinations of environmental and genetic mechanisms have been described among different classes of animals, thus rendering the possibility of a unidirectional continuous evolutionary process from the one type of mechanism to the other unlikely. On the other hand, common elements appear throughout the animal kingdom, with regard to a) conserved key genes and b) a central role of sex steroid control as a prerequisite for ultimately normal sex differentiation. Studies in invertebrates also indicate a role of epigenetic chromatin modification, particularly with regard to alternative splicing options. This review summarizes current evidence from research in this hot field and signifies the need for further study of both normal hormonal regulators of sexual phenotype and patterns of environmental disruption.
Collapse
Affiliation(s)
- Roxani Angelopoulou
- Experimental Embryology Unit, Department of Histology and Embryology, Medical School, Athens University, Athens, Greece
| | - Giagkos Lavranos
- Experimental Embryology Unit, Department of Histology and Embryology, Medical School, Athens University, Athens, Greece
| | - Panagiota Manolakou
- Experimental Embryology Unit, Department of Histology and Embryology, Medical School, Athens University, Athens, Greece
| |
Collapse
|
15
|
Regulation of soluble interleukin-6 (IL-6) receptor release from corneal epithelial cells and its role in the ocular surface. Jpn J Ophthalmol 2011; 55:277-282. [PMID: 21523377 DOI: 10.1007/s10384-011-0002-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 12/10/2010] [Indexed: 02/02/2023]
Abstract
PURPOSE Interleukin (IL)-6 signaling through its soluble receptor (sIL-6R) (IL-6 trans-signaling) plays an important role in various inflammatory states. We investigated production of sIL-6R in the corneal epithelium and examined the role of IL-6 trans-signaling in the cornea. METHODS In-vitro experiments were performed using SV40-transformed human corneal epithelial cells (HCEC) and primary human corneal fibroblasts (HCF, keratocytes). Ectodomain shedding in HCEC was stimulated by adding phorbol myristate acetate (PMA, 3 μM: ) both with and without ectodomain shedding inhibition using TNF-α processing inhibitor-1 (TAPI-1, 250 ng/mL), and the concentration of sIL-6R in the culture medium was determined by enzyme-linked immunosorbent assay (ELISA). Expression of differential sIL-6R mRNA splicing (DS-sIL-6R) in HCEC was examined by using reverse transcription (RT)-PCR. The recombinant IL-6 or combination of recombinant IL-6/sIL-6R was added to HCF culture medium and phosphorylation of STAT3 was analyzed by Luminex assay. Tear fluid from patients with Sjögren syndrome was collected and analyzed by ELISA for sIL-6R concentration. RESULTS In HCEC culture medium, sIL-6R release was increased significantly (P < 0.01) by adding PMA and this increased release of sIL-6R was inhibited significantly by adding TAPI-1, indicating the participation of ectodomain shedding in sIL-6R production. In RT-PCR, DS-sIL-6R expression was noted in HCEC. IL-6/sIL-6R-induced STAT3 phosphorylation was recognized in cultured HCF, suggesting IL-6 trans-signaling induced inflammatory cellular signaling in HCF. In the tear fluid of the patients with Sjögren syndrome, sIL-6R expression was up-regulated (Sjögren syndrome; 2.38 ± 0.98 ng/mL, normal control; 0.16 ± 0.34 ng/mL). CONCLUSIONS Production of sIL-6R was induced by both ectodomain shedding and mRNA splicing in the corneal epithelium. IL-6 trans-signaling can induce an inflammatory response in corneal fibroblasts. The up-regulation of sIL-6R in inflamed ocular surfaces suggests a pivotal role of sIL-6R at the ocular surface.
Collapse
|
16
|
Macciò A, Madeddu C, Gramignano G, Mulas C, Floris C, Massa D, Astara G, Chessa P, Mantovani G. Correlation of body mass index and leptin with tumor size and stage of disease in hormone-dependent postmenopausal breast cancer: preliminary results and therapeutic implications. J Mol Med (Berl) 2010; 88:677-86. [PMID: 20339829 DOI: 10.1007/s00109-010-0611-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/01/2010] [Accepted: 03/01/2010] [Indexed: 11/29/2022]
Abstract
Obesity is considered the most important risk and prognostic factor for estrogen-dependent breast cancer in postmenopausal women. Adipokines, in particular leptin, are at the center of the etiopathogenetic mechanisms by which obesity and related metabolic disorders influence breast cancer risk and its prognosis. The present prospective observational study aims to investigate the relationship between body mass index (BMI), serum levels of leptin and proinflammatory cytokines, and breast cancer prognostic factors. In the study, 98 postmenopausal and 82 premenopausal patients with ER-positive breast cancer participated. During the same study period, 221 control subjects were simultaneously recruited. Women underwent baseline measurements pre-operatively, before any surgical and systemic treatments. Pathologic characteristics of tumors were abstracted from pathology reports. Leptin and proinflammatory cytokines were assayed in stored fasting blood specimens. In postmenopausal breast cancer patients, BMI, leptin, and interleukin-6 significantly correlated with pathological tumor classification (pT) and TNM stage. Multivariate regression analysis showed that BMI and leptin, but not interleukin-6, were independent predictive variables of pT and TNM stage. Our results seem to suggest a twofold role of leptin in the etiopathogenesis of postmenopausal estrogen-positive breast cancer. Indeed, leptin reflects the total amount of fat mass, which correlates to aromatase activity and subsequent estrogens levels. Further studies are warranted to clarify the role of leptin and interleukin-6 in breast carcinogenesis and identify new therapeutic options, beyond the use of aromatase inhibitors, acting selectively on adipokine-driven pathways.
Collapse
Affiliation(s)
- Antonio Macciò
- Department of Obstetrics and Gynecology, Sirai Hospital, 09013 Carbonia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Manolakou P, Lavranos G, Angelopoulou R. Molecular patterns of sex determination in the animal kingdom: a comparative study of the biology of reproduction. Reprod Biol Endocrinol 2006; 4:59. [PMID: 17101057 PMCID: PMC1660543 DOI: 10.1186/1477-7827-4-59] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 11/13/2006] [Indexed: 11/29/2022] Open
Abstract
Determining sexual fate is an integral part of reproduction, used as a means to enrich the genome. A variety of such regulatory mechanisms have been described so far and some of the more extensively studied ones are being discussed. For the insect order of Hymenoptera, the choice lies between uniparental haploid males and biparental diploid females, originating from unfertilized and fertilized eggs accordingly. This mechanism is also known as single-locus complementary sex determination (slCSD). On the other hand, for Dipterans and Drosophila melanogaster, sex is determined by the ratio of X chromosomes to autosomes and the sex switching gene, sxl. Another model organism whose sex depends on the X:A ratio, Caenorhabditis elegans, has furthermore to provide for the brief period of spermatogenesis in hermaphrodites (XX) without the benefit of the "male" genes of the sex determination pathway. Many reptiles have no discernible sex determining genes. Their sexual fate is determined by the temperature of the environment during the thermosensitive period (TSP) of incubation, which regulates aromatase activity. Variable patterns of sex determination apply in fish and amphibians. In birds, while sex chromosomes do exist, females are the heterogametic (ZW) and males the homogametic sex (ZZ). However, we have yet to decipher which of the two (Z or W) is responsible for the choice between males and females. In mammals, sex determination is based on the presence of two identical (XX) or distinct (XY) gonosomes. This is believed to be the result of a lengthy evolutionary process, emerging from a common ancestral autosomal pair. Indeed, X and Y present different levels of homology in various mammals, supporting the argument of a gradual structural differentiation starting around the SRY region. The latter initiates a gene cascade that results in the formation of a male. Regulation of sex steroid production is also a major result of these genetic interactions. Similar observations have been described not only in mammals, but also in other vertebrates, emphasizing the need for further study of both normal hormonal regulators of sexual phenotype and patterns of epigenetic/environmental disruption.
Collapse
Affiliation(s)
- Panagiota Manolakou
- Experimental Embryology Unit, Department of Histology and Embryology, Medical School, Athens University, Greece
| | - Giagkos Lavranos
- Experimental Embryology Unit, Department of Histology and Embryology, Medical School, Athens University, Greece
| | - Roxani Angelopoulou
- Experimental Embryology Unit, Department of Histology and Embryology, Medical School, Athens University, Greece
| |
Collapse
|
18
|
Suzuki T, Sullivan DA. Estrogen Stimulation of Proinflammatory Cytokine and Matrix Metalloproteinase Gene Expression in Human Corneal Epithelial Cells. Cornea 2005; 24:1004-9. [PMID: 16227852 DOI: 10.1097/01.ico.0000160973.04072.a5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE Researchers have proposed that the secretion of proinflammatory cytokines and matrix metalloproteinases (MMPs) by corneal epithelial cells contributes to the development of ocular surface inflammation in dry eye syndromes. We hypothesize that this cytokine and MMP production is promoted by estrogens, given that dry eye syndromes occur predominantly in women and estrogen therapy is associated with an increase in dry eye signs and symptoms. Moreover, corneal epithelial cells contain estrogen receptors and estrogens are known to influence other aspects of corneal immunity. The purpose of this study was to test our hypothesis. METHODS Immortalized human corneal epithelial cells were exposed to vehicle, lipopolysaccharide (LPS), or varying concentrations of 17beta-estradiol. After 6 or 24 hours of hormone treatment, cells were harvested and processed for total RNA isolation, cDNA synthesis, and the analysis of cytokine and MMP mRNA levels by multiplex and real-time PCR methods. RESULTS Our results demonstrate that 17beta-estradiol upregulates the expression of proinflammatory cytokine and MMP genes in human corneal epithelial cells. Estrogen administration significantly increased the levels of IL-1beta, IL-6, IL-8, and GM-CSF mRNAs, as well as MMP 2, 7, and 9 mRNAs, compared with those of placebo-treated controls. This estrogen effect was found after 6 and/or 24 hours of hormone treatment. An analogous stimulation of gene expression was observed following cellular exposure to LPS. CONCLUSIONS Our findings show that 17beta-estradiol increases the expression of inflammatory genes in human corneal epithelial cells. This hormone action may play an etiologic role in the ocular surface inflammation of dry eye.
Collapse
Affiliation(s)
- Tomo Suzuki
- Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
19
|
Sonne-Hansen K, Lykkesfeldt AE. Endogenous aromatization of testosterone results in growth stimulation of the human MCF-7 breast cancer cell line. J Steroid Biochem Mol Biol 2005; 93:25-34. [PMID: 15748829 DOI: 10.1016/j.jsbmb.2004.11.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 11/23/2004] [Indexed: 11/24/2022]
Abstract
Estrogens produced within breast tumors may play a pivotal role in growth stimulation of the breast cancer cells. However, it is elusive whether the epithelial breast cancer cells themselves synthesize estrogens, or whether the surrounding tumor stromal cells synthesize and supply the cancer cells with estrogen. The aromatase enzyme catalyzes the estrogen production, aromatizing circulating androgens into estrogens. The aim of this study was to investigate aromatase expression and function in a model system of human breast cancer, using the estrogen responsive human MCF-7 breast cancer cell line. Cells were cultured in a low estrogen milieu and treated with estrogens, aromatizable androgens or non-aromatizable androgens. Cell proliferation, expression of estrogen-regulated proteins and aromatase activity were investigated. The MCF-7 cell line was observed to express sufficient aromatase enzyme activity in order to aromatize the androgen testosterone, resulting in a significant cell growth stimulation. The testosterone-mediated growth effect was completely inhibited by the aromatase inhibitors letrozole and 4-hydroxy-androstenedione. Expression studies of estrogen-regulated proteins confirmed that testosterone was aromatized to estrogen in the MCF-7 cells. Thus, the results indicate that epithelial breast cancer cells possess the ability to aromatize circulating androgens to estrogens.
Collapse
Affiliation(s)
- K Sonne-Hansen
- Department of Tumor Endocrinology, Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|