1
|
Maldonado C, Peyraube R, Fagiolino P, Oricchio F, Cuñetti L, Vázquez M. Human Data on Pharmacokinetic Interactions of Cannabinoids: A Narrative Review. Curr Pharm Des 2024; 30:241-254. [PMID: 38288797 DOI: 10.2174/0113816128288510240113170116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/02/2024] [Indexed: 05/08/2024]
Abstract
Concomitant use of cannabinoids with other drugs may result in pharmacokinetic drug-drug interactions, mainly due to the mechanism involving Phase I and Phase II enzymes and/or efflux transporters. Cannabinoids are not only substrates but also inhibitors or inducers of some of these enzymes and/or transporters. This narrative review aims to provide the available information reported in the literature regarding human data on the pharmacokinetic interactions of cannabinoids with other medications. A search on Pubmed/Medline, Google Scholar, and Cochrane Library was performed. Some studies were identified with Google search. Additional articles of interest were obtained through cross-referencing of published literature. All original research papers discussing interactions between cannabinoids, used for medical or recreational/adult-use purposes, and other medications in humans were included. Thirty-two studies with medicinal or recreational/adult-use cannabis were identified (seventeen case reports/series, thirteen clinical trials, and two retrospective analyses). In three of these studies, a bidirectional pharmacokinetic drug-drug interaction was reported. In the rest of the studies, cannabinoids were the perpetrators, as in most of them, concentrations of cannabinoids were not measured. In light of the widespread use of prescribed and non-prescribed cannabinoids with other medications, pharmacokinetic interactions are likely to occur. Physicians should be aware of these potential interactions and closely monitor drug levels and/or responses. The existing literature regarding pharmacokinetic interactions is limited, and for some drugs, studies have relatively small cohorts or are only case reports. Therefore, there is a need for high-quality pharmacological studies on cannabinoid-drug interactions.
Collapse
Affiliation(s)
- Cecilia Maldonado
- Department of Pharmaceutical Sciences, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Raquel Peyraube
- Instituto de Investigaciones Biológicas Clemente Estable - MEC, Montevideo, Uruguay
| | - Pietro Fagiolino
- Department of Pharmaceutical Sciences, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Florencia Oricchio
- Department of Pharmaceutical Sciences, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Leticia Cuñetti
- Kidney Transplant Unit, Nephrology and Urology Institute, Montevideo, Uruguay
| | - Marta Vázquez
- Department of Pharmaceutical Sciences, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
2
|
Hadjis AD, Nunes NS, Khan SM, Fletcher RE, Pohl ADP, Venzon DJ, Eckhaus MA, Kanakry CG. Post-Transplantation Cyclophosphamide Uniquely Restrains Alloreactive CD4 + T-Cell Proliferation and Differentiation After Murine MHC-Haploidentical Hematopoietic Cell Transplantation. Front Immunol 2022; 13:796349. [PMID: 35242129 PMCID: PMC8886236 DOI: 10.3389/fimmu.2022.796349] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/06/2022] [Indexed: 12/25/2022] Open
Abstract
Post-transplantation cyclophosphamide (PTCy) reduces the incidence and severity of graft-versus-host disease (GVHD), thereby improving the safety and accessibility of allogeneic hematopoietic cell transplantation (HCT). We have shown that PTCy works by inducing functional impairment and suppression of alloreactive T cells. We also have identified that reduced proliferation of alloreactive CD4+ T cells at day +7 and preferential recovery of CD4+CD25+Foxp3+ regulatory T cells (Tregs) at day +21 are potential biomarkers associated with optimal PTCy dosing and timing in our B6C3F1→B6D2F1 MHC-haploidentical murine HCT model. To understand whether the effects of PTCy are unique and also to understand better the biology of GVHD prevention by PTCy, here we tested the relative impact of cyclophosphamide compared with five other optimally dosed chemotherapeutics (methotrexate, bendamustine, paclitaxel, vincristine, and cytarabine) that vary in mechanisms of action and drug resistance. Only cyclophosphamide, methotrexate, and cytarabine were effective in preventing fatal GVHD, but cyclophosphamide was superior in ameliorating both clinical and histopathological GVHD. Flow cytometric analyses of blood and spleens revealed that these three chemotherapeutics were distinct in constraining conventional T-cell numerical recovery and facilitating preferential Treg recovery at day +21. However, cyclophosphamide was unique in consistently reducing proliferation and expression of the activation marker CD25 by alloreactive CD4+Foxp3- conventional T cells at day +7. Furthermore, cyclophosphamide restrained the differentiation of alloreactive CD4+Foxp3- conventional T cells at both days +7 and +21, whereas methotrexate and cytarabine only restrained differentiation at day +7. No chemotherapeutic selectively eliminated alloreactive T cells. These data suggest that constrained alloreactive CD4+Foxp3- conventional T-cell numerical recovery and associated preferential CD4+CD25+Foxp3+ Treg reconstitution at day +21 may be potential biomarkers of effective GVHD prevention. Additionally, these results reveal that PTCy uniquely restrains alloreactive CD4+Foxp3- conventional T-cell proliferation and differentiation, which may explain the superior effects of PTCy in preventing GVHD. Further study is needed to determine whether these findings also hold true in clinical HCT.
Collapse
Affiliation(s)
- Ashley D. Hadjis
- Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Natalia S. Nunes
- Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shanzay M. Khan
- Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Rochelle E. Fletcher
- Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Alessandra de Paula Pohl
- Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - David J. Venzon
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Michael A. Eckhaus
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, United States
| | - Christopher G. Kanakry
- Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Expression Analyses of Genes Related to Multixenobiotic Resistance in Mytilus galloprovincialis after Exposure to Okadaic Acid-Producing Dinophysis acuminata. Toxins (Basel) 2021; 13:toxins13090614. [PMID: 34564618 PMCID: PMC8471661 DOI: 10.3390/toxins13090614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022] Open
Abstract
The mussel Mytilus galloprovincialis is one of the most important aquaculture species in Europe. Its main production problem is the accumulation of toxins during coastal blooms, which prevents mussel commercialization. P-glycoprotein (ABCB1/MDR1/P-gp) is part of the multixenobiotic resistance system in aquatic organisms, and okadaic acid, the main DSP toxin, is probably a substrate of the P-gp-mediated efflux. In this study, the presence and possible role of P-gp in the okadaic acid detoxification process was studied in M. galloprovincialis. We identified, cloned, and characterized two complete cDNAs of mdr1 and mdr2 genes. MgMDR1 and MgMDR2 predicted proteins had the structure organization of ABCB full transporters, and were identified as P-gp/MDR/ABCB proteins. Furthermore, the expression of mdr genes was monitored in gills, digestive gland, and mantle during a cycle of accumulation-elimination of okadaic acid. Mdr1 significantly increased its expression in the digestive gland and gills, supporting the idea of an important role of the MDR1 protein in okadaic acid efflux out of cells in these tissues. The expression of M. galloprovincialismrp2, a multidrug associated protein (MRP/ABCC), was also monitored. As in the case of mdr1, there was a significant induction in the expression of mrp2 in the digestive gland, as the content of okadaic acid increased. Thus, P-gp and MRP might constitute a functional defense network against xenobiotics, and might be involved in the resistance mechanisms to DSP toxins.
Collapse
|
4
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Morrish E, Copeland A, Moujalled DM, Powell JA, Silke N, Lin A, Jarman KE, Sandow JJ, Ebert G, Mackiewicz L, Beach JA, Christie EL, Lewis AC, Pomilio G, Fischer KC, MacPherson L, Bowtell DDL, Webb AI, Pellegrini M, Dawson MA, Pitson SM, Wei AH, Silke J, Brumatti G. Clinical MDR1 inhibitors enhance Smac-mimetic bioavailability to kill murine LSCs and improve survival in AML models. Blood Adv 2020; 4:5062-5077. [PMID: 33080008 PMCID: PMC7594394 DOI: 10.1182/bloodadvances.2020001576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/21/2020] [Indexed: 01/02/2023] Open
Abstract
The specific targeting of inhibitor of apoptosis (IAP) proteins by Smac-mimetic (SM) drugs, such as birinapant, has been tested in clinical trials of acute myeloid leukemia (AML) and certain solid cancers. Despite their promising safety profile, SMs have had variable and limited success. Using a library of more than 5700 bioactive compounds, we screened for approaches that could sensitize AML cells to birinapant and identified multidrug resistance protein 1 inhibitors (MDR1i) as a class of clinically approved drugs that can enhance the efficacy of SM therapy. Genetic or pharmacological inhibition of MDR1 increased intracellular levels of birinapant and sensitized AML cells from leukemia murine models, human leukemia cell lines, and primary AML samples to killing by birinapant. The combination of clinical MDR1 and IAP inhibitors was well tolerated in vivo and more effective against leukemic cells, compared with normal hematopoietic progenitors. Importantly, birinapant combined with third-generation MDR1i effectively killed murine leukemic stem cells (LSCs) and prolonged survival of AML-burdened mice, suggesting a therapeutic opportunity for AML. This study identified a drug combination strategy that, by efficiently killing LSCs, may have the potential to improve outcomes in patients with AML.
Collapse
Affiliation(s)
- Emma Morrish
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Anthony Copeland
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Donia M Moujalled
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Jason A Powell
- Molecular Signalling Laboratory, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide SA, Australia
| | - Natasha Silke
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Ann Lin
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Kate E Jarman
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Jarrod J Sandow
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Gregor Ebert
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Liana Mackiewicz
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Jessica A Beach
- Peter MacCallum Cancer Centre, Melbourne, VIC Australia; and
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Elizabeth L Christie
- Peter MacCallum Cancer Centre, Melbourne, VIC Australia; and
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Alexander C Lewis
- Molecular Signalling Laboratory, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Giovanna Pomilio
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Karla C Fischer
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Laura MacPherson
- Peter MacCallum Cancer Centre, Melbourne, VIC Australia; and
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, VIC Australia; and
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew I Webb
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Marc Pellegrini
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC Australia; and
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Stuart M Pitson
- Molecular Signalling Laboratory, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide SA, Australia
| | - Andrew H Wei
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, VIC, Australia
| | - John Silke
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Gabriela Brumatti
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Abstract
The transport of specific molecules across lipid membranes is an essential function of all living organisms. The processes are usually mediated by specific transporters. One of the largest transporter families is the ATP-binding cassette (ABC) family. More than 40 ABC transporters have been identified in human, which are divided into 7 subfamilies (ABCA to ABCG) based on their gene structure, amino acid sequence, domain organization, and phylogenetic analysis. Of them, at least 11 ABC transporters including P-glycoprotein (P-GP/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) are involved in multidrug resistance (MDR) development. These ABC transporters are expressed in various tissues such as the liver, intestine, kidney, and brain, playing important roles in absorption, distribution, and excretion of drugs. Some ABC transporters are also involved in diverse cellular processes such as maintenance of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid trafficking. Several human diseases such as cystic fibrosis, sitosterolemia, Tangier disease, intrahepatic cholestasis, and retinal degeneration are associated with mutations in corresponding transporters. This chapter will describe function and expression of several ABC transporters (such as P-GP, BCRP, and MRPs), their substrates and inhibitors, as well as their clinical significance.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
7
|
Waghray D, Zhang Q. Inhibit or Evade Multidrug Resistance P-Glycoprotein in Cancer Treatment. J Med Chem 2017; 61:5108-5121. [PMID: 29251920 DOI: 10.1021/acs.jmedchem.7b01457] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) is a major cause of failure in cancer chemotherapy. P-glycoprotein (P-gp), a promiscuous drug efflux pump, has been extensively studied for its association with MDR due to overexpression in cancer cells. Several P-gp inhibitors or modulators have been investigated in clinical trials in hope of circumventing MDR, with only limited success. Alternative strategies are actively pursued, such as the modification of existing drugs, development of new drugs, or combination of novel drug delivery agents to evade P-gp-dependent efflux. Despite the importance and numerous studies, these efforts have mostly been undertaken without a priori knowledge of how drugs interact with P-gp at the molecular level. This review highlights and discusses progress toward and challenges impeding drug development for inhibiting or evading P-gp in the context of our improved understanding of the structural basis and mechanism of P-gp-mediated MDR.
Collapse
Affiliation(s)
- Deepali Waghray
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Qinghai Zhang
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
8
|
Relationship between ABCB1 gene polymorphisms and severe neutropenia in patients with breast cancer treated with doxorubicin/cyclophosphamide chemotherapy. Drug Metab Pharmacokinet 2015; 30:149-53. [DOI: 10.1016/j.dmpk.2014.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/17/2014] [Accepted: 10/27/2014] [Indexed: 01/02/2023]
|
9
|
Silva R, Vilas-Boas V, Carmo H, Dinis-Oliveira RJ, Carvalho F, de Lourdes Bastos M, Remião F. Modulation of P-glycoprotein efflux pump: induction and activation as a therapeutic strategy. Pharmacol Ther 2014; 149:1-123. [PMID: 25435018 DOI: 10.1016/j.pharmthera.2014.11.013] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 01/03/2023]
Abstract
P-glycoprotein (P-gp) is an ATP-dependent efflux pump encoded by the MDR1 gene in humans, known to mediate multidrug resistance of neoplastic cells to cancer therapy. For several decades, P-gp inhibition has drawn many significant research efforts in an attempt to overcome this phenomenon. However, P-gp is also constitutively expressed in normal human epithelial tissues and, due to its broad substrate specificity, to its cellular polarized expression in many excretory and barrier tissues, and to its great efflux capacity, it can play a crucial role in limiting the absorption and distribution of harmful xenobiotics, by decreasing their intracellular accumulation. Such a defense mechanism can be of particular relevance at the intestinal level, by significantly reducing the intestinal absorption of the xenobiotic and, consequently, avoiding its access to the target organs. In this review, the current knowledge on this important efflux pump is summarized, and a new focus is brought on the therapeutic interest of inducing and/or activating P-gp for limiting the toxicity caused by its substrates. Several in vivo and in vitro studies validating the use of such a therapeutic strategy are discussed. An extensive literature search for reported P-gp inducers/activators and for the experimental models used in their characterization was conducted. Those studies demonstrate that effective antidotal pathways can be achieved by efficiently promoting the P-gp-mediated efflux of deleterious xenobiotics, resulting in a significant reduction in their intracellular levels and, consequently, in a significant reduction of their toxicity.
Collapse
Affiliation(s)
- Renata Silva
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Vânia Vilas-Boas
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Helena Carmo
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Ricardo Jorge Dinis-Oliveira
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; INFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, Advanced Institute of Health Sciences - North (ISCS-N), CESPU, CRL, Gandra, Portugal; Department of Legal Medicine and Forensic Sciences, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
10
|
Huang L, Wang J, Chen WC, Li HY, Liu JS, Yang WD. P-glycoprotein expression in Perna viridis after exposure to Prorocentrum lima, a dinoflagellate producing DSP toxins. FISH & SHELLFISH IMMUNOLOGY 2014; 39:254-262. [PMID: 24811006 DOI: 10.1016/j.fsi.2014.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 04/06/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
Bivalves naturally exposed to toxic algae have mechanisms to prevent from harmful effects of diarrhetic shellfish poisoning (DSP) toxins. However, quite few studies have examined the mechanisms associated, and the information currently available is still insufficient. Multixenobiotic resistance (MXR) is ubiquitous in aquatic invertebrates and plays an important role in defense against xenobiotics. Here, to explore the roles of P-glycoprotein (P-gp) in the DSP toxins resistance in shellfish, complete cDNA of P-gp gene in the mussel Perna viridis was cloned and analyzed. The accumulation of okadaic acid (OA), a main component of DSP toxins, MXR activity and expression of P-gp in gills of P. viridis were detected after exposure to Prorocentrum lima, a dinoflagellate producing DSP toxins in the presence or absence of P-gp inhibitors PGP-4008, verapamil (VER) and cyclosporin A (CsA). The mussel P. viridis P-gp closely matches MDR/P-gp/ABCB protein from various organisms, having a typical sequence organization as full transporters from the ABCB family. After exposure to P. lima, OA accumulation, MXR activity and P-gp expression significantly increased in gills of P. viridis. The addition of P-gp-specific inhibitors PGP-4008 and VER decreased MXR activity induced by P. lima, but had no effect on the OA accumulation in gills of P. viridis. However, CsA, a broad-spectrum inhibitor of ABC transporter not only decreased MXR activity, but also increased OA accumulation in gills of P. viridis. Together with the ubiquitous presence of other ABC transporters such as MRP/ABCC in bivalves and potential compensatory mechanism in P-gp and MRP-mediated resistance, we speculated that besides P-gp, other ABC transporters, especially MRP might be involved in the resistance mechanisms to DSP toxins.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/immunology
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Acetanilides/metabolism
- Animals
- Base Sequence
- Blotting, Western
- Cloning, Molecular
- Cyclosporine/metabolism
- DNA Primers/genetics
- DNA, Complementary/genetics
- Dinoflagellida/chemistry
- Dinoflagellida/immunology
- Gills/metabolism
- Marine Toxins/immunology
- Molecular Sequence Data
- Okadaic Acid/metabolism
- Perna/immunology
- Perna/metabolism
- Pyrroles/metabolism
- Quinolines/metabolism
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Verapamil/metabolism
Collapse
Affiliation(s)
- Lu Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Guangzhou 510632, China
| | - Jie Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Guangzhou 510632, China
| | - Wen-Chang Chen
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Guangzhou 510632, China
| | - Hong-Ye Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Guangzhou 510632, China
| | - Jie-Sheng Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Guangzhou 510632, China
| | - Wei-Dong Yang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Guangzhou 510632, China.
| |
Collapse
|
11
|
Cole SPC. Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future. Annu Rev Pharmacol Toxicol 2013; 54:95-117. [PMID: 24050699 DOI: 10.1146/annurev-pharmtox-011613-135959] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human ATP-binding cassette transporter multidrug resistance protein 1 (MRP1), encoded by ABCC1, was initially identified because of its ability to confer multidrug resistance in lung cancer cells. It is now established that MRP1 plays a role in protecting certain tissues from xenobiotic insults and that it mediates the cellular efflux of the proinflammatory cysteinyl leukotriene C4 as well as a vast array of other endo- and xenobiotic organic anions. Many of these are glutathione (GSH) or glucuronide conjugates, the products of Phase II drug metabolism. MRP1 also plays a role in the cellular efflux of the reduced and oxidized forms of GSH and thus contributes to the many physiological and pathophysiological processes influenced by these small peptides, including oxidative stress. In this review, the pharmacological and physiological aspects of MRP1 are considered in the context of the current status and future prospects of pharmacological and genetic modulation of MRP1 activity.
Collapse
Affiliation(s)
- Susan P C Cole
- Department of Pathology and Molecular Medicine, and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario K7L 3N6, Canada;
| |
Collapse
|
12
|
Ji L, Li H, Gao P, Shang G, Zhang DD, Zhang N, Jiang T. Nrf2 pathway regulates multidrug-resistance-associated protein 1 in small cell lung cancer. PLoS One 2013; 8:e63404. [PMID: 23667609 PMCID: PMC3646742 DOI: 10.1371/journal.pone.0063404] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 04/02/2013] [Indexed: 12/02/2022] Open
Abstract
Although multidrug-resistance-associated protein-1 (MRP1) is a major contributor to multi-drug resistance (MDR), the regulatory mechanism of Mrp1 still remains unclear. Nrf2 is a transcription factor that regulates cellular defense response through antioxidant response elements (AREs) in normal tissues. Recently, Nrf2 has emerged as an important contributor to chemo-resistance in tumor tissues. In the present study, the role of Nrf2-ARE pathway on regulation of Mrp1 was investigated. Compared with H69 lung cancer cells, H69AR cells with MDR showed significantly higher Nrf2-ARE pathway activity and expression of Mrp1 as well. When Nrf2 was knocked down in H69AR cells, MRP1's expression decreased accordingly. Moreover, those H69AR cells with reduced Nrf2 level restored sensitivity to chemo-drugs. To explore how Nrf2-ARE pathway regulates Mrp1, the promoter of Mrp1 gene was searched, and two putative AREs—ARE1 and ARE2—were found. Using reporter gene and ChIP assay, both ARE1 and ARE2 showed response to and interaction with Nrf2. In 40 cases of cancer tissues, the expression of Nrf2 and MRP1 was measured by immunohistochemistry (IHC). As the quantitive data of IHC indicated, both Nrf2 and MRP1 showed significantly higher expression in tumor tissue than adjacent non-tumor tissue. And more important, the correlation analysis of the two genes proved that their expression was correlative. Taken together, theses data suggested that Nrf2-ARE pathway is required for the regulatory expression of Mrp1 and implicated Nrf2 as a new therapeutic target for MDR.
Collapse
Affiliation(s)
- Lili Ji
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Hui Li
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pan Gao
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoguo Shang
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States of America
| | - Nong Zhang
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (NZ); (TJ)
| | - Tao Jiang
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail: (NZ); (TJ)
| |
Collapse
|
13
|
Coyne CP, Jones T, Bear R. Anti-Neoplastic Cytotoxicity of Gemcitabine-(C 4- amide)-[anti-HER2/ neu] in Combination with Griseofulvin against Chemotherapeutic-Resistant Mammary Adenocarcinoma (SKBr-3). Med Chem 2013. [PMID: 26225219 PMCID: PMC4516389 DOI: 10.4172/2161-0444.1000141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction Gemcitabine is a pyrimidine nucleoside analog that becomes triphosphorylated and in this form it competitively inhibits cytidine incorporation into DNA strands. Diphosphorylated gemcitabine irreversibly inhibits ribonucleotide reductase thereby preventing deoxyribonucleotide synthesis. Functioning as a potent chemotherapeutic, gemcitabine decreases neoplastic cell proliferation and induces apoptosis which accounts for its effectiveness in the clinical treatment of several leukemia and carcinoma cell types. A brief plasma half-life due to rapid deamination, chemotherapeuticresistance and sequelae restricts gemcitabine utility in clinical oncology. Selective “targeted” gemcitabine delivery represents a molecular strategy for prolonging its plasma half-life and minimizing innocent tissue/organ exposure. Methods A previously described organic chemistry scheme was applied to synthesize a UV-photoactivated gemcitabine intermediate for production of gemcitabine-(C4-amide)-[anti-HER2/neu]. Immunodetection analysis (Western-blot) was applied to detect the presence of any degradative fragmentation or polymerization. Detection of retained binding-avidity for gemcitabine-(C4-amide)-[anti-HER2/neu] was determined by cell-ELISA using populations of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) that highly over-express the HER2/neu trophic membrane receptor. Anti-neoplastic cytotoxicity of gemcitabine-(C4-amide)-[anti-HER2/neu] and the tubulin/microtubule inhibitor, griseofulvin was established against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3). Related investigations evaluated the potential for gemcitabine-(C4-amide)-[anti-HER2/neu] in dual combination with griseofulvin to evoke increased levels of anti-neoplastic cytotoxicity compared to gemcitabine-(C4-amide)-[anti-HER2/neu]. Results Covalent gemcitabine-(C4-amide)-[anti-HER2/neu] immunochemotherapeutic and griseofulvin exerted anti-neoplastic cytotoxicity against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3). Covalent gemcitabine-(C4-amide)-[anti-HER2/neu] immunochemotherapeutic or gemcitabine in dual combination with griseofulvin created increased levels of anti-neoplastic cytotoxicity that were greater than was attainable with gemcitabine-(C4-amide)-[anti-HER2/neu] or gemcitabine alone. Conclusion Gemcitabine-(C4-amide)-[anti-HER2/neu] in dual combination with griseofulvin can produce enhanced levels of anti-neoplastic cytotoxicity and potentially provide a basis for treatment regimens with a wider margin-of-safety. Such benefits would be possible through the collective properties of; [i] selective “targeted” gemcitabine delivery; [ii] relatively lower toxicity of griseofulvin compared to many if not most conventional chemotherapeutics; [iii] reduced total dosage requirements faciliated by additive or synergistic anti-cancer properties; and [iv] differences in sequelae for gemcitabine-(C4-amide)-[anti-HER2/neu] compared to griseofulvin functioning as a tubulin/microtubule inhibitor.
Collapse
Affiliation(s)
- C P Coyne
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Ryan Bear
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| |
Collapse
|
14
|
Coyne CP, Jones T, Bear R. Influence of Alternative Tubulin Inhibitors on the Potency of a Epirubicin-Immunochemotherapeutic Synthesized with an Ultra Violet Light-Activated Intermediate: Influence of incorporating an internal/integral disulfide bond structure and Alternative Tubulin/Microtubule Inhibitors on the Cytotoxic Anti-Neoplastic Potency of Epirubicin-(C 3-amide)-Anti-HER2/neu Synthesized Utilizing a UV-Photoactivated Anthracycline Intermediate. CANCER AND CLINICAL ONCOLOGY 2012. [PMID: 26225190 DOI: 10.5539/cco.v1n2p49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Immunochemotherapeutics, epirubicin-(C3-amide)-SS-[anti-HER2/neu] with an internal disulfide bond, and epirubicin-(C3-amide)-[anti-HER2/neu] were synthesized utilizing succinimidyl 2-[(4,4'-azipentanamido) ethyl]-1,3'-dithioproprionate or succinimidyl 4,4-azipentanoate respectively. Western blot analysis was used to determine the presence of any immunoglobulin fragmentation or IgG-IgG polymerization. Retained HER2/neu binding characteristics of epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu] were validated by cell-ELISA using a mammary adenocarcinoma (SKBr-3) population that highly over-expresses trophic HER2/neu receptor complexes. Cytotoxic anti-neoplastic potency of epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu] between epirubicin-equivalent concentrations of 10-10 M and 10-6 M was determined by measuring the vitality/proliferation of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3 cell type). Cytotoxic anti-neoplastic potency of benzimidazoles (albendazole, flubendazole, membendazole) and griseofulvin were assessed between 0-to-2 μg/ml and 0-to-100 μg/ml respectively while mebendazole and griseofulvin were analyzed at fixed concentrations of 0.35 μg/ml and 35 g/ml respectively in dual combination with gradient concentrations of epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu]. Cytotoxic anti-neoplastic potency for epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu] against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) was nearly identical at epirubicin-equivalent concentrations of 10-10 M and 10-6 M. The benzimadazoles also possessed cytotoxic anti-neoplastic activity with flubendazole and albendazole being the most and least potent respectively. Similarly, griseofulvin had cytotoxic anti-neoplastic activity and was more potent than methylselenocysteine. Both mebendazole and griseofulvin when applied in dual combination with either epirubicin-(C3-amide)-[anti-HER2/neu] or epirubicin-(C3-amide)-SS-[anti-HER2/neu] produced enhanced levels of cytotoxic anti-neoplatic potency.
Collapse
Affiliation(s)
- C P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, USA
| | - Ryan Bear
- College of Veterinary Medicine, Mississippi State University, USA
| |
Collapse
|
15
|
Bhatia P, Bernier M, Sanghvi M, Moaddel R, Schwarting R, Ramamoorthy A, Wainer IW. Breast cancer resistance protein (BCRP/ABCG2) localises to the nucleus in glioblastoma multiforme cells. Xenobiotica 2012; 42:748-55. [PMID: 22401348 DOI: 10.3109/00498254.2012.662726] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The breast cancer resistance protein (BCRP), an ATP binding cassette (ABC) efflux transporter, plays a role in multiple drug resistance (MDR). Previous studies of the subcellular location of the ABC transporter P-glycoprotein indicated that this protein is expressed in nuclear membranes. This study examines the nuclear distribution of BCRP in seven human-derived glioblastoma (GBM) and astrocytoma cell lines. BCRP expression was observed in the nuclear extracts of 6/7 cell lines. Using the GBM LN229 cell line as a model, nuclear BCRP protein was detected by immunoblotting and confocal laser microscopy. Importantly, nuclear BCRP staining was found in a subpopulation of tumour cells in a human brain GBM biopsy. Mitoxantrone cytotoxicity in the LN229 cell line was determined with and without the BCRP inhibitor fumitremorgin C (FTC) and after downregulation of BCRP with small interfering RNA (siRNA). FTC inhibition of BCRP increased mitoxantrone cytotoxicity with a ~7-fold reduction in the IC₅₀ and this effect was further potentiated in the siRNA-treated cells. In conclusion, BCRP is expressed in the nuclear extracts of select GBM and astrocytoma cell lines and in a human GBM tumour biopsy. Its presence in the nucleus of cancer cells suggests new role for BCRP in MDR.
Collapse
Affiliation(s)
- Prateek Bhatia
- Laboratory of Clinical Investigation, National Institute on Aging-NIA/NIH, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Wang F, Zhou F, Kruh GD, Gallo JM. Influence of blood-brain barrier efflux pumps on the distribution of vincristine in brain and brain tumors. Neuro Oncol 2010; 12:1043-9. [PMID: 20501632 DOI: 10.1093/neuonc/noq056] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vincristine (VCR) is efficacious in some but not all brain cancers and an established substrate of Pgp and Mrp1. However, the extent to which such transporters affect the VCR penetration through the blood-brain barrier (BBB) is poorly understood. To evaluate the role of Pgp and Mrp1 in VCR CNS distribution, VCR concentrations were analyzed under steady-state conditions in normal brain, brain tumor, and bone marrow in wild-type (WT), Mrp1 ko (mrp1-/-), Pgp ko (mdr1a-/-:mdr1b-/-), and TKO (mdr1a-/-:mdr1b-/-:mrp1-/-) mice. VCR normal brain partition coefficients (i.e. tissue/plasma VCR concentrations) in TKO mice were greater than those in WT mice at both targeted 10 and 50 ng/mL plasma VCR concentrations, and ranged from 1.3- to 3.6-fold. VCR brain tumor partition coefficients in Mrp1 mice were greater than WT mice at both doses, being 1.5- and 2.4-fold higher at low and high doses, respectively. TKO mice also showed elevated VCR brain tumor penetration with a brain tumor partition coefficient of 1.9-fold greater than that in WT mice at the high-dose level. The bone marrow partition coefficient in Mrp1 ko mice was 1.65-fold greater than that in WT mice. Within strain comparisons revealed that VCR brain tumor concentrations were significantly greater than normal brain in all strains, ranging from 9- to 40-fold. These findings indicate that disruption of the BBB caused the largest enhancement in VCR tumor concentrations, yet the absence of Mrp1 on the brain tumor vasculature could enhance the penetration compared with that in normal brain.
Collapse
Affiliation(s)
- Fan Wang
- James M. Gallo, Pharm.D., PhD, Department of Pharmacology and System Therapeutics Mount Sinai School of Medicine One Gustave L. Levy Pl Box 1603 New York, NY 10029, USA
| | | | | | | |
Collapse
|
17
|
SIVILS JEFFREYC, GONZALEZ IVEN, BAIN LISAJ. Mice lacking Mrp1 have reduced testicular steroid hormone levels and alterations in steroid biosynthetic enzymes. Gen Comp Endocrinol 2010; 167:51-9. [PMID: 20178799 PMCID: PMC2862834 DOI: 10.1016/j.ygcen.2010.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/18/2010] [Accepted: 02/19/2010] [Indexed: 10/19/2022]
Abstract
The multidrug resistance-associated protein 1 (MRP1/ABCC1) is a member of the ABC active transporter family that can transport several steroid hormone conjugates, including 17beta-estradiol glucuronide, dehydroepiandrosterone sulfate (DHEAS), and estrone 3-sulfate. The present study investigated the role that MRP1 plays in maintaining proper hormone levels in the serum and testes. Serum and testicular steroid hormone levels were examined in both wild-type mice and Mrp1 null mice. Serum testosterone levels were reduced 5-fold in mice lacking Mrp1, while testicular androstenedione, testosterone, estradiol, and dehydroepiandrosterone (DHEA) were significantly reduced by 1.7- to 4.5-fold in Mrp1 knockout mice. Investigating the mechanisms responsible for the reduction in steroid hormones in Mrp1-/- mice revealed no differences in the expression or activity of enzymes that inactivate steroids, the sulfotransferases or glucuronosyltransferases. However, steroid biosynthetic enzyme levels in the testes were altered. Cyp17 protein levels were increased by 1.6-fold, while Cyp17 activity using progesterone as a substrate was also increased by 1.4- to 2.0-fold in mice lacking Mrp1. Additionally, the ratio of 17beta-hydroxysteroid dehydrogenase to 3beta-hydroxysteroid dehydrogenase, and steroidogenic factor 1 to 3beta-hydroxysteroid dehydrogenase were significantly increased in the testes of Mrp1-/- mice. These results indicate that Mrp1-/- mice have lowered steroid hormones levels, and suggests that upregulation of steroid biosynthetic enzymes may be an attempt to maintain proper steroid hormone homeostasis.
Collapse
Affiliation(s)
- JEFFREY C. SIVILS
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - IVEN GONZALEZ
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - LISA J. BAIN
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Address correspondence to: Lisa Bain, Clemson University, 132 Long Hall, Clemson, SC 29634. Phone: 1-864-656-5050; FAX: 1-864- 656-0435;
| |
Collapse
|
18
|
Eckford PDW, Sharom FJ. ABC efflux pump-based resistance to chemotherapy drugs. Chem Rev 2009; 109:2989-3011. [PMID: 19583429 DOI: 10.1021/cr9000226] [Citation(s) in RCA: 459] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Paul D W Eckford
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
19
|
Kuppens IELM, Breedveld P, Beijnen JH, Schellens JHM. Modulation of Oral Drug Bioavailability: From Preclinical Mechanism to Therapeutic Application. Cancer Invest 2009; 23:443-64. [PMID: 16193644 DOI: 10.1081/cnv-58823] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Currently, more than one fourth of all anticancer drugs are developed as oral formulations, and it is expected that this number will increase substantially in the near future. To enable oral drug therapy, adequate oral bioavailability must be achieved. Factors that have proved to be important in limiting the oral bioavailability are the presence of ATP-binding cassette drug transporters (ABC transporters) and the cytochrome P450 enzymes. We discuss the tissues distribution and physiological function of the ABC transporters in the human body, their expression in tumors, currently known polymorphisms and drugs that are able to inhibit their function as transporter. Furthermore, the role of the ABC transporters and drug-metabolizing enzymes as mechanisms to modulate the pharmacokinetics of anticancer agents, will be reviewed. Finally, some clinical examples of oral drug modulation are discussed. Among these examples are the coadministration of paclitaxel with CsA, a CYP3A4 substrate with P-glycoprotein (P-gp) modulating activity, and topotecan combined with the BCRP/P-gp transport inhibitor elacridar. Both are good examples of improvement of oral drug bioavailability by temporary inhibition of drug transporters in the gut epithelium.
Collapse
Affiliation(s)
- Isa E L M Kuppens
- Department of Medical Oncology, Antoni van Leeuwenhoek Hospital/The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
20
|
Yano R, Tani D, Watanabe K, Tsukamoto H, Igarashi T, Nakamura T, Masada M. Evaluation of potential interaction between vinorelbine and clarithromycin. Ann Pharmacother 2009; 43:453-8. [PMID: 19261952 DOI: 10.1345/aph.1l432] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Myelotoxicity, a major toxicity of vinorelbine. may be related to the degree of one's exposure to vinorelbine. In theory, clarithromycin has the potential to alter vinorelbine's pharmacokinetics by inhibiting CYP3A and/or P-glycoprotein; this may result in massive exposure to vinorelbine and severe toxicity. To date, macrolide-vinorelbine drug interactions have not been reported. OBJECTIVE To estimate the clinical risk of a interaction between vinorelbine and clarithromycin. METHODS In a retrospective cohort study, we searched computerized medical records of patients who had been administered vinorelbine in the University of Fukui Hospital. The study cohort was defined as all patients with non-small-cell lung cancer who received vinorelbine between May 30, 2003, and January 31, 2008. The treatment courses were classified according to whether or not clarithromycin was concomitantly administered with vinorelbine. Nadir neutrophil counts were recorded as the major outcomes. Vinorelbine-clarithromycin interaction was defined as a significant increase in the risk of severe neutropenia when the 2 drugs were administered concomitantly. RESULTS A total of 12 (63.2%) and 11 (27.5%) episodes of grade 3/4 neutropenia occurred among the patients who were and were not administered clarithromycin, respectively. The incidence of grade 4 neutropenia was higher in the group administered clarithromycin than in those who did not receive it (31.6% vs 2.5%; p = 0.0033). Vinorelbine dose, concomitant clarithromycin administration, and female sex were significantly correlated with severe neutropenia, with unadjusted odds ratios of 0.07 (95% CI 0.01 to 0.59), 4.52 (95% CI 1.41 to 14.45), and 4.55 (95% CI 1.39 to 14.29), respectively. CONCLUSIONS Compared with patients who are administered vinorelbine alone, patients who are administered clarithromycin during chemotherapy with vinorelbine are at a higher risk for severe neutropenia. Physicians should educate their patients about this interaction. If possible, clarithromycin administration should be avoided in patients who will undergo chemotherapy with vinorelbine in the near future. However, further prospective pharmacokinetic studies are required to confirm this interaction.
Collapse
Affiliation(s)
- Ryoichi Yano
- Department of Pharmacy, University of Fukui Hospital, Fukui, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Stanley LA, Horsburgh BC, Ross J, Scheer N, Wolf CR. Drug transporters: Gatekeepers controlling access of xenobiotics to the cellular interior. Drug Metab Rev 2009; 41:27-65. [DOI: 10.1080/03602530802605040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
Meijerman I, Beijnen JH, Schellens JH. Combined action and regulation of phase II enzymes and multidrug resistance proteins in multidrug resistance in cancer. Cancer Treat Rev 2008; 34:505-20. [DOI: 10.1016/j.ctrv.2008.03.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 02/11/2008] [Accepted: 03/01/2008] [Indexed: 01/16/2023]
|
23
|
Sharom FJ. ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 2008; 9:105-27. [PMID: 18154452 DOI: 10.2217/14622416.9.1.105] [Citation(s) in RCA: 695] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Three ATP-binding cassette (ABC)-superfamily multidrug efflux pumps are known to be responsible for chemoresistance; P-glycoprotein (ABCB1), MRP1 (ABCC1) and ABCG2 (BCRP). These transporters play an important role in normal physiology by protecting tissues from toxic xenobiotics and endogenous metabolites. Hydrophobic amphipathic compounds, including many clinically used drugs, interact with the substrate-binding pocket of these proteins via flexible hydrophobic and H-bonding interactions. These efflux pumps are expressed in many human tumors, where they likely contribute to resistance to chemotherapy treatment. However, the use of efflux-pump modulators in clinical cancer treatment has proved disappointing. Single nucleotide polymorphisms in ABC drug-efflux pumps may play a role in responses to drug therapy and disease susceptibility. The effect of various genotypes and haplotypes on the expression and function of these proteins is not yet clear, and their true impact remains controversial.
Collapse
Affiliation(s)
- Frances J Sharom
- University of Guelph, Department of Molecular & Cellular Biology, Guelph Ontario, N1G 2W1, Canada.
| |
Collapse
|
24
|
Huang RS, Murry DJ, Foster DR. Role of xenobiotic efflux transporters in resistance to vincristine. Biomed Pharmacother 2008; 62:59-64. [PMID: 17583464 DOI: 10.1016/j.biopha.2007.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 04/26/2007] [Indexed: 10/23/2022] Open
Abstract
This study characterized interactions between efflux transporters (P-glycoprotein (MDR1) and multidrug resistance associated proteins (MRPs1-3)) and vincristine (VCR), using cell lines with differential transporter expression, and studied effects of P-glycoprotein inhibition on VCR transport and toxicity. Caco2 (express MDR1, MRPs 1-3), LS174T (express MDR1, MRPs 1, 3), and A549 (express MRPs 1-3) cells were used. To study VCR transport (effective permeability, P(eff)), VCR (1-500 nM) was added to the donor chambers of permeable supports containing Caco2 monolayers, and receiving chamber concentrations were measured. Cytotoxicity experiments were conducted with escalating concentrations of VCR in all cell lines. To determine the contribution of MDR1, experiments were also conducted with LY335979, a specific MDR1 inhibitor. VCR P(eff) was 2 x 10(-6)cm/s in Caco2 cells. LY335979 increased P(eff) in a dose dependent manner (up to 7-fold with 1 microM LY335979) in Caco2 cells. Caco2 and LS174T cell viability decreased significantly when co-incubated with both VCR and LY335979 (1 microM) (P<0.05), however this was not observed in A549 cells. In summary, MDR1 plays an important role in VCR efflux; MDR1 inhibition increased VCR P(eff) in Caco2 cells, and increased VCR cytotoxicity in Caco2 and LS174T cells (both express MDR1), but not A549 cells (minimal MDR1 expression). Inhibition of MDR1 may be a viable strategy to overcome VCR resistance in tumors expressing MDR1, however the presence of other efflux transporters should also be considered, as this will influence the success of such strategies.
Collapse
Affiliation(s)
- Rong S Huang
- Department of Pharmacy Practice, Purdue University School of Pharmacy and Pharmaceutical Sciences, W7555 Myers Bldg., Wishard Memorial Hospital, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
25
|
Köck K, Grube M, Jedlitschky G, Oevermann L, Siegmund W, Ritter CA, Kroemer HK. Expression of adenosine triphosphate-binding cassette (ABC) drug transporters in peripheral blood cells: relevance for physiology and pharmacotherapy. Clin Pharmacokinet 2007; 46:449-70. [PMID: 17518506 DOI: 10.2165/00003088-200746060-00001] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adenosine triphosphate-binding cassette (ABC)-type transport proteins were initially described for their ability to reduce intracellular concentrations of anticancer compounds, thereby conferring drug resistance. In recent years, expression of this type of proteins has also been reported in numerous cell types under physiological conditions; here, these transporters are often reported to alter systemic and local drug disposition (e.g. in the brain or the gastrointestinal tract). In this context, peripheral blood cells have also been found to express several ABC-type transporters. While erythrocytes mainly express multidrug resistance protein (MRP) 1, MRP4 and MRP5, which are discussed with regard to their involvement in glutathione homeostasis (MRP1) and in the efflux of cyclic nucleotides (MRP4 and MRP5), leukocytes also express P-glycoprotein and breast cancer resistance protein. In the latter cell types, the main function of efflux transporters may be protection against toxins, as these cells demonstrate a very high turnover rate. In platelets, only two ABC transporters have been described so far. Besides MRP1, platelets express relatively high amounts of MRP4 not only in the plasma membrane but also in the membrane of dense granules, suggesting relevance for mediator storage. In addition to its physiological function, ABC transporter expression in these structures can be of pharmacological relevance since all systemic drugs reach their targets via circulation, thereby enabling interaction of the therapeutic agent with peripheral blood cells. Moreover, both intended effects and unwanted side effects occur in peripheral blood cells, and intracellular micropharmacokinetics can be affected by these transport proteins. The present review summarises the data available on expression of ABC transport proteins in peripheral blood cells.
Collapse
Affiliation(s)
- Kathleen Köck
- Department of Pharmacology, Research Center of Pharmacology and Experimental Therapeutics, Ernst Moritz Arndt University, Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Raaijmakers MHGP. ATP-binding-cassette transporters in hematopoietic stem cells and their utility as therapeutical targets in acute and chronic myeloid leukemia. Leukemia 2007; 21:2094-102. [PMID: 17657220 DOI: 10.1038/sj.leu.2404859] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ATP-binding-cassette (ABC) transporters are evolutionary extremely well-conserved transmembrane proteins that are highly expressed in hematopoietic stem cells (HSCs). The physiological function in human stem cells is believed to be protection against genetic damage caused by both environmental and naturally occurring xenobiotics. Additionally, ABC transporters have been implicated in the maintenance of quiescence and cell fate decisions of stem cells. These physiological roles suggest a potential role in the pathogenesis and biology of stem cell-derived hematological malignancies such as acute and chronic myeloid leukemia. This paper reviews the (patho)physiological role of ABC transporters in human normal and malignant HSCs and discusses its implications for their utility as therapeutical targets to eradicate leukemic stem cells in these diseases.
Collapse
Affiliation(s)
- M H G P Raaijmakers
- Department of Hematology, University Medical Center Nijmegen St. Radboud, Nijmegen Center for Molecular Life Sciences, Nijmegen, The Netherlands.
| |
Collapse
|
27
|
Sugiura T, Kato Y, Tsuji A. Role of SLC xenobiotic transporters and their regulatory mechanisms PDZ proteins in drug delivery and disposition. J Control Release 2006; 116:238-46. [PMID: 16876283 DOI: 10.1016/j.jconrel.2006.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 06/06/2006] [Indexed: 01/09/2023]
Abstract
Various types of xenobiotic (or drug) transporters have been recently identified to play important roles as barriers against toxic compounds and influx pumps to take up nutrients into the body. Since those xenobiotic transporters generally have wide range of recognition specificity and accept various types of compounds as substrates, localization and functional expression of such transporters could be one of the critical factors that affect the disposition and subsequent biological activity of therapeutic agents. Identification and characterization of drug transporters have given us a scientific basis for understanding drug delivery and disposition, as well as the molecular mechanisms of drug interaction and inter-individual/inter-species differences. To precisely understand pharmacological roles of the transporters in the body, it is also important to clarify molecular mechanisms involved in regulation of the transporters. As a first step to clarify the regulatory mechanisms that govern cell-surface expression and/or function of these transporters, recent researches have focused on PDZ (PSD-95/Discs-large/ZO-1) binding motif localized on carboxylic terminus of several types of xenobiotic transporters. Most of the transporters showing direct interaction potential with the PDZ domain-containing proteins are expressed on apical membranes in epithelial cells of kidney and/or small intestine, implying that such protein-protein interaction may play a role in apical localization of the transporters. In this mini-review article, we summarize importance of transporters and their regulatory mechanisms in drug delivery and disposition, focusing on several aspects of transporter-mediated drug targeting.
Collapse
Affiliation(s)
- Tomoko Sugiura
- Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | |
Collapse
|
28
|
Huang R, Murry DJ, Kolwankar D, Hall SD, Foster DR. Vincristine transcriptional regulation of efflux drug transporters in carcinoma cell lines. Biochem Pharmacol 2006; 71:1695-704. [PMID: 16620787 DOI: 10.1016/j.bcp.2006.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 02/26/2006] [Accepted: 03/13/2006] [Indexed: 11/26/2022]
Abstract
The increased expression of drug transporters following cancer chemotherapy contributes to resistance. This may reflect transcriptional up-regulation and/or clonal selection. We quantified the expression of mRNA for ABCB1 (mdr1), ABCC1 (mrp1), ABCC2 (mrp2) and ABCC3 (mrp3) to evaluate the potential contribution of induction. ABCB1, ABCC1-3 mRNAs were quantified by real time RT-PCR and normalized to GAPDH. We used intestinal cells that express high pregnane X receptor (LS174T), low pregnane X receptor (Caco-2) and lung cells (A549) that express glucocorticoid receptor and low pregnane X receptor. Rifampin (10 microM) caused significant induction of ABCB1 (595+/-263%, p<0.05) in LS174T cells but induction was absent in Caco-2 or A549 cells. ABCC1 was not induced in any cell at 24, 48 and 72 h following rifampin treatment. In contrast, vincristine (10 nM and 100 nM), a ligand for ABCB1 and ABCC1-3 and a potential PXR/CAR ligand, induced ABCC2 and ABCC3 expression in LS174T cells at 48 h (372+/-87% and 303+/-42%, respectively, p<0.05). A similar induction of ABCC2 and ABCC3 genes was also seen with 10 nM VCR in A549 cells following 48 h treatment. In summary, there may be a significant contribution of transcriptional activation to multi-drug resistance. However, this is cell selective and is not necessarily dependent on PXR mediated effects.
Collapse
Affiliation(s)
- Rong Huang
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Purdue University, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
29
|
Boumendjel A, Baubichon-Cortay H, Trompier D, Perrotton T, Di Pietro A. Anticancer multidrug resistance mediated by MRP1: recent advances in the discovery of reversal agents. Med Res Rev 2005; 25:453-72. [PMID: 15834856 DOI: 10.1002/med.20032] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multidrug resistance protein 1 (MRP1) belongs to the ATP-binding cassette (ABC) transporter family. It is able to transport a broad range of anticancer drugs through cellular membranes, thus limiting their antiproliferative action. Since its discovery in 1992, MRP1 has been the most studied among MRP proteins, which now count nine members. Besides the biological work, which targets structure elucidation, binding sites location, and mode of action, most efforts have been focused on finding molecules which act as MRP1 inhibitors. In this review, we attempt to summarize and highlight studies dealing with modulators of MRP1-mediated multidrug resistance (MDR), which have been accomplished in the last 5 years. The reported MRP1 inhibitors are discussed according to their chemical class. Finally, we try to bring information on structure-activity relationship (SAR) aspects and how modulators might interact with MRP1. This study may facilitate the rational design of future modulators of MDR.
Collapse
Affiliation(s)
- Ahcène Boumendjel
- Département de Pharmacochimie Moléculaire, UMR 5063 CNRS/Université Joseph Fourier-Grenoble I, 5 Avenue de Verdun BP 138, 38243 Meylan, France. Ahcène.Boumendjelujf-grenoble.fr
| | | | | | | | | |
Collapse
|