1
|
Chang X, Tamauchi S, Yoshida K, Yoshihara M, Yokoi A, Shimizu Y, Ikeda Y, Yoshikawa N, Kiyono T, Yamamoto Y, Kajiyama H. Downregulating vaccinia-related kinase 1 by luteolin suppresses ovarian cancer cell proliferation by activating the p53 signaling pathway. Gynecol Oncol 2023; 173:31-40. [PMID: 37075494 DOI: 10.1016/j.ygyno.2023.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVES Ovarian cancer constitutes one of the most common causes of cancer-related deaths, and preventing chemotherapy resistance and recurrence in patients with ovarian cancer remains a challenge. Herein, we aimed to identify the effect of luteolin, a novel therapeutic agent targeting vaccinia-related kinase 1 (VRK1), on high-grade serous ovarian cancer (HGSOC). METHODS Phosphokinase array, RNA sequencing, and cell cycle and apoptosis assays were conducted to determine the underlying mechanism of the effect of luteolin on HGSOC cells. The anticancer effects of oral and intraperitoneal luteolin administration were assessed in patient-derived xenograft models via several methods, including the assessment of tumor size and immunohistochemistry of phospho-p53, phosphor-HistoneH3 and cleaved caspase 3. RESULTS Luteolin reduced HGSOC cell proliferation and increased apoptosis and cell cycle arrest at G2/M. Compared with controls, several genes were dysregulated in luteolin-treated cells, and luteolin activated the p53 signaling pathway. The human phosphokinase array revealed distinct p53 upregulation in luteolin-treated cells, as confirmed by p53 phosphorylation at ser15 and ser46 using western blot analysis. In patient-derived xenograft models, oral or intraperitoneal luteolin administration substantially suppressed tumor growth. Moreover, combination treatment involving luteolin and cisplatin inhibited tumor cell proliferation, especially in cisplatin-resistant HGSOC cell lines. CONCLUSIONS Luteolin demonstrated considerable anticancer effect on HGSOC cells, reduced VRK1 expression, and activated the p53 signaling pathway, thereby inducing apoptosis and cell cycle arrest in G2/M and inhibiting cell proliferation. Furthermore, luteolin exhibited a synergistic effect with cisplatin both in vivo and in vitro. Thus, luteolin can be considered a promising cotreatment option for HGSOC.
Collapse
Affiliation(s)
- Xuboya Chang
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan
| | - Yusuke Shimizu
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshiki Ikeda
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, Chiba 277-8577, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
2
|
A Redoxable Mn Porphyrin, MnTnBuOE-2-PyP5+, Synergizes with Carboplatin in Treatment of Chemoresistant Ovarian Cell Line. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9664636. [PMID: 35898616 PMCID: PMC9313984 DOI: 10.1155/2022/9664636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
Abstract
We have employed a redox-active MnP (MnTnBuOE-2-PyP5+, Mn(III) meso-tetrakis (N-n-butoxyethylpyridinium-2-yl) porphyrin) frequently identified as superoxide dismutase mimic or BMX-001, to explore the redox status of normal ovarian cell in relation to two ovarian cancer cell lines: OV90 human serous ovarian cancer cell and chemotherapy-resistant OV90 cell (OVCD). We identified that OVCD cells are under oxidative stress due to high hydrogen peroxide (H2O2) levels and low glutathione peroxidase and thioredoxin 1. Furthermore, OVCD cells have increased glycolysis activity and mitochondrial respiration when compared to immortalized ovarian cells (hTER7) and parental cancer cells (OV90). Our goal was to study how ovarian cell growth depends upon the redox state of the cell; hence, we used MnP (BMX-001), a redox-active MnSOD mimetic, as a molecular tool to alter ovarian cancer redox state. Interestingly, OVCD cells preferentially uptake MnP relative to OV90 cells which led to increased inhibition of cell growth, glycolytic activity, OXPHOS, and ATP, in OVCD cells. These effects were further increased when MnP was combined with carboplatin. The effects were discussed with regard to the elevation in H2O2 levels, increased oxidative stress, and reduced Nrf2 levels and its downstream targets when cells were exposed to either MnP or MnP/carboplatin. It is significant to emphasize that MnP protects normal ovarian cell line, hTER7, against carboplatin toxicity. Our data demonstrate that the addition of MnP-based redox-active drugs may be used (via increasing excessively the oxidative stress of serous ovarian cancer cells) to improve cancer patients' chemotherapy outcomes, which develop resistance to platinum-based drugs.
Collapse
|
3
|
Ganapathi RN, Norris EJ, Sutker AP, Klotz KE, Ganapathi MK. Targeting Aurora A Kinase (AAK) in Platinum-Resistant High Grade Serous Ovarian Cancer. Front Oncol 2020; 10:1354. [PMID: 32974133 PMCID: PMC7466726 DOI: 10.3389/fonc.2020.01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/29/2020] [Indexed: 11/13/2022] Open
Abstract
Aurora A kinase (AAK) involved in G2-M transition is functionally involved in centrosome maturation and maintaining an active spindle assembly checkpoint. We tested the hypothesis that in platinum-taxane resistant high grade serous ovarian cancer (HGSOC) inhibition of AAK involved in G2-M transition would enhance the anti-tumor activity of cisplatin (CP) or paclitaxel (PT). Using HGSOC cell lines from platinum-taxane refractory patients that do not harbor BRCA1/2 mutations, we tested the anti-tumor activity of CP, or PT alone or in combination with the AAK inhibitor alisertib (AL). Treatment with CP for 3 h or PT for 6 h followed sequentially by AL for 48 h led to a significant decrease in cell survival (p < 0.001) compared to treatment with either drug alone in HGSOC cells but not in immortalized normal human ovarian surface epithelium or normal human fallopian tube secretory epithelium cells. The treatment with CP or PT followed by AL also led to a significant increase in reactive oxygen species (p < 0.05), apoptosis (p < 0.001) and accumulation of cells in G2/M that was accompanied by a modest increase in expression of AAK. Downregulation of AAK, but not aurora B kinase, with targeted siRNAs also significantly enhanced apoptosis by CP or PT, suggesting that AL specifically targeted AAK. In summary, in HGSOC without BRCA1/2 mutations, CP, or PT resistance can potentially be circumvented by sequential treatment with AL that inhibits AAK involved in G2-M transition.
Collapse
Affiliation(s)
- Ram N Ganapathi
- Carolinas Medical Center, Levine Cancer Institute, Charlotte, NC, United States
| | - Eric J Norris
- Carolinas Medical Center, Levine Cancer Institute, Charlotte, NC, United States
| | - Ashley P Sutker
- Carolinas Medical Center, Levine Cancer Institute, Charlotte, NC, United States
| | - Kaitlin E Klotz
- Carolinas Medical Center, Levine Cancer Institute, Charlotte, NC, United States
| | - Mahrukh K Ganapathi
- Carolinas Medical Center, Levine Cancer Institute, Charlotte, NC, United States
| |
Collapse
|
4
|
Shen YA, Hong J, Asaka R, Asaka S, Hsu FC, Suryo Rahmanto Y, Jung JG, Chen YW, Yen TT, Tomaszewski A, Zhang C, Attarwala N, DeMarzo AM, Davidson B, Chuang CM, Chen X, Gaillard S, Le A, Shih IM, Wang TL. Inhibition of the MYC-Regulated Glutaminase Metabolic Axis Is an Effective Synthetic Lethal Approach for Treating Chemoresistant Ovarian Cancers. Cancer Res 2020; 80:4514-4526. [PMID: 32859605 DOI: 10.1158/0008-5472.can-19-3971] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 06/21/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
Abstract
Amplification and overexpression of the MYC oncogene in tumor cells, including ovarian cancer cells, correlates with poor responses to chemotherapy. As MYC is not directly targetable, we have analyzed molecular pathways downstream of MYC to identify potential therapeutic targets. Here we report that ovarian cancer cells overexpressing glutaminase (GLS), a target of MYC and a key enzyme in glutaminolysis, are intrinsically resistant to platinum-based chemotherapy and are enriched with intracellular antioxidant glutathione. Deprivation of glutamine by glutamine-withdrawal, GLS knockdown, or exposure to the GLS inhibitor CB-839 resulted in robust induction of reactive oxygen species in high GLS-expressing but not in low GLS-expressing ovarian cancer cells. Treatment with CB-839 rendered GLShigh cells vulnerable to the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib, and prolonged survival in tumor-bearing mice. These findings suggest consideration of applying a combined therapy of GLS inhibitor and PARP inhibitor to treat chemoresistant ovarian cancers, especially those with high GLS expression. SIGNIFICANCE: Targeting glutaminase disturbs redox homeostasis and nucleotide synthesis and causes replication stress in cancer cells, representing an exploitable vulnerability for the development of effective therapeutics. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/20/4514/F1.large.jpg.
Collapse
Affiliation(s)
- Yao-An Shen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jiaxin Hong
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ryoichi Asaka
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shiho Asaka
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fang-Chi Hsu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Yohan Suryo Rahmanto
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jin-Gyoung Jung
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yu-Wei Chen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ting-Tai Yen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alicja Tomaszewski
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nabeel Attarwala
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angelo M DeMarzo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ben Davidson
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, and Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Chi-Mu Chuang
- College of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Xi Chen
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, Virginia
| | - Stephanie Gaillard
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ie-Ming Shih
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tian-Li Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Alzamil L, Nikolakopoulou K, Turco MY. Organoid systems to study the human female reproductive tract and pregnancy. Cell Death Differ 2020; 28:35-51. [PMID: 32494027 PMCID: PMC7852529 DOI: 10.1038/s41418-020-0565-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022] Open
Abstract
Both the proper functioning of the female reproductive tract (FRT) and normal placental development are essential for women’s health, wellbeing, and pregnancy outcome. The study of the FRT in humans has been challenging due to limitations in the in vitro and in vivo tools available. Recent developments in 3D organoid technology that model the different regions of the FRT include organoids of the ovaries, fallopian tubes, endometrium and cervix, as well as placental trophoblast. These models are opening up new avenues to investigate the normal biology and pathology of the FRT. In this review, we discuss the advances, potential, and limitations of organoid cultures of the human FRT. ■. ![]()
Collapse
Affiliation(s)
- Lama Alzamil
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | | | - Margherita Y Turco
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. .,Centre for Trophoblast Research, Downing Street, Cambridge, CB2 3EG, UK.
| |
Collapse
|
6
|
Yin B, Song Q, Chen L, Li X, Han Y, Wang X, Dai J, Sun X. Establishment of an immortalized intestinal epithelial cell line from tree shrews by lentivirus-mediated hTERT gene transduction. Cytotechnology 2019; 71:107-116. [PMID: 30603916 PMCID: PMC6368523 DOI: 10.1007/s10616-018-0270-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/16/2018] [Indexed: 11/28/2022] Open
Abstract
The intestinal epithelium has an average lifespan of 4–5 days. Normally, primary intestinal epithelial cells can be cultured for about 15 days in vitro. The aim of this study was to explore methods to isolate and immortalize intestinal epithelial cells (IECs) of tree shrews in order to establish a new resource of experimental material and to provide a cell model for drug development and infection mechanism research. Tissue from the small intestine of tree shrews was digested with collagenase XI, neutral protease I, and dithiothreitol. The human telomerase reverse transcriptase gene (hTERT) was transferred into tree shrew IECs using the pHBLV-CMVIE-ZsGreen-Puro vector. The level of hTERT mRNA was detected by quantitative reverse transcription polymerase chain reaction. Immunofluorescence and western blot assays were performed to detect biochemical markers of IECs. The micromorphology of cells was observed with electron microscopy. We then conducted experiments to assess proliferative activity and analyze the karyotype of isolated cells. The results showed the immortalized cell line that we established and screened, maintained the characteristics and biochemical markers of primary IECs. Our results showed that the cell line we established can be considered an alternative cell model for intestinal drug research and for studies on intestinal infection and cell signaling.
Collapse
Affiliation(s)
- Bowen Yin
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science, Peking Union Medical College, Jiaoling Road 935, Kunming, 650118, China.
| | - Qingkai Song
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science, Peking Union Medical College, Jiaoling Road 935, Kunming, 650118, China
| | - Lingxia Chen
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science, Peking Union Medical College, Jiaoling Road 935, Kunming, 650118, China
| | - Xiaofei Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science, Peking Union Medical College, Jiaoling Road 935, Kunming, 650118, China
| | - Yuanyuan Han
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science, Peking Union Medical College, Jiaoling Road 935, Kunming, 650118, China
| | - Xuan Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science, Peking Union Medical College, Jiaoling Road 935, Kunming, 650118, China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science, Peking Union Medical College, Jiaoling Road 935, Kunming, 650118, China
| | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science, Peking Union Medical College, Jiaoling Road 935, Kunming, 650118, China.
| |
Collapse
|
7
|
Suppression of ABHD2, identified through a functional genomics screen, causes anoikis resistance, chemoresistance and poor prognosis in ovarian cancer. Oncotarget 2018; 7:47620-47636. [PMID: 27323405 PMCID: PMC5216966 DOI: 10.18632/oncotarget.9951] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/28/2016] [Indexed: 01/06/2023] Open
Abstract
Anoikis resistance is a hallmark of cancer, and relates to malignant phenotypes, including chemoresistance, cancer stem like phenotypes and dissemination. The aim of this study was to identify key factors contributing to anoikis resistance in ovarian cancer using a functional genomics screen. A library of 81 000 shRNAs targeting 15 000 genes was transduced into OVCA420 cells, followed by incubation in soft agar and colony selection. We found shRNAs directed to ABHD2, ELAC2 and CYB5R3 caused reproducible anoikis resistance. These three genes are deleted in many serous ovarian cancers according to The Cancer Genome Atlas data. Suppression of ABHD2 in OVCA420 cells increased phosphorylated p38 and ERK, platinum resistance, and side population cells (p<0.01, respectively). Conversely, overexpression of ABHD2 decreased resistance to anoikis (p<0.05) and the amount of phosphorylated p38 and ERK in OVCA420 and SKOV3 cells. In clinical serous ovarian cancer specimens, low expression of ABHD2 was associated with platinum resistance and poor prognosis (p<0.05, respectively). In conclusion, we found three novel genes relevant to anoikis resistance in ovarian cancer using a functional genomics screen. Suppression of ABHD2 may promote a malignant phenotype and poor prognosis for women with serous ovarian cancer.
Collapse
|
8
|
Makii C, Oda K, Ikeda Y, Sone K, Hasegawa K, Uehara Y, Nishijima A, Asada K, Koso T, Fukuda T, Inaba K, Oki S, Machino H, Kojima M, Kashiyama T, Mori-Uchino M, Arimoto T, Wada-Hiraike O, Kawana K, Yano T, Fujiwara K, Aburatani H, Osuga Y, Fujii T. MDM2 is a potential therapeutic target and prognostic factor for ovarian clear cell carcinomas with wild type TP53. Oncotarget 2018; 7:75328-75338. [PMID: 27659536 PMCID: PMC5342744 DOI: 10.18632/oncotarget.12175] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/02/2016] [Indexed: 01/10/2023] Open
Abstract
MDM2, a ubiquitin ligase, suppresses wild type TP53 via proteasome-mediated degradation. We evaluated the prognostic and therapeutic value of MDM2 in ovarian clear cell carcinoma. MDM2 expression in ovarian cancer tissues was analyzed by microarray and real-time PCR, and its relationship with prognosis was evaluated by Kaplan-Meier method and log-rank test. The anti-tumor activities of MDM2 siRNA and the MDM2 inhibitor RG7112 were assessed by cell viability assay, western blotting, and flow cytometry. The anti-tumor effects of RG7112 in vivo were examined in a mouse xenograft model. MDM2 expression was significantly higher in clear cell carcinoma than in ovarian high-grade serous carcinoma (P = 0.0092) and normal tissues (P = 0.035). High MDM2 expression determined by microarray was significantly associated with poor progression-free survival and poor overall survival (P = 0.0002, and P = 0.0008, respectively). Notably, RG7112 significantly suppressed cell viability in clear cell carcinoma cell lines with wild type TP53. RG7112 also strongly induced apoptosis, increased TP53 phosphorylation, and stimulated expression of the proapoptotic protein PUMA. Similarly, siRNA knockdown of MDM2 induced apoptosis. Finally, RG7112 significantly reduced the tumor volume of xenografted RMG-I clear cell carcinoma cells (P = 0.033), and the density of microvessels (P = 0.011). Our results highlight the prognostic value of MDM2 expression in clear cell carcinoma. Thus, MDM2 inhibitors such as RG7112 may constitute a class of potential therapeutics.
Collapse
Affiliation(s)
- Chinami Makii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Yuji Ikeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Yuriko Uehara
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan.,Division of Genome Science, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Akira Nishijima
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan.,Division of Genome Science, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kayo Asada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan.,Division of Genome Science, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Takahiro Koso
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan.,Division of Genome Science, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tomohiko Fukuda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kanako Inaba
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Shinya Oki
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Hidenori Machino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Machiko Kojima
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tomoko Kashiyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Mayuyo Mori-Uchino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Takahide Arimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tetsu Yano
- Department of Obstetrics and Gynecology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Keiichi Fujiwara
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Hiroyuki Aburatani
- Division of Genome Science, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
9
|
Chingwaru W, Glashoff RH, Vidmar J, Kapewangolo P, Sampson SL. Mammalian cell cultures as models for Mycobacterium tuberculosis-human immunodeficiency virus (HIV) interaction studies: A review. ASIAN PAC J TROP MED 2016; 9:832-838. [PMID: 27633294 DOI: 10.1016/j.apjtm.2016.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/16/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022] Open
Abstract
Mycobacterium tuberculosis and human immunodeficiency virus (HIV) co-infections have remained a major public health concern worldwide, particularly in Southern Africa. Yet our understanding of the molecular interactions between the pathogens has remained poor due to lack of suitable preclinical models for such studies. We reviewed the use, this far, of mammalian cell culture models in HIV-MTB interaction studies. Studies have described the use of primary human cell cultures, including (1) monocyte-derived macrophage (MDM) fractions of peripheral blood mononuclear cell (PBMC), alveolar macrophages (AM), (2) cell lines such as the monocyte-derived macrophage cell line (U937), T lymphocyte cell lines (CEMx174, ESAT-6-specific CD4(+) T-cells) and an alveolar epithelial cell line (A549) and (3) special models such as stem cells, three dimensional (3D) or organoid cell models (including a blood-brain barrier cell model) in HIV-MTB interaction studies. The use of cell cultures from other mammals, including: mouse cell lines [macrophage cell lines RAW 264.7 and J774.2, fibroblast cell lines (NIH 3T3, C3H clones), embryonic fibroblast cell lines and T-lymphoma cell lines (S1A.TB, TIMI.4 and R1.1)]; rat (T cells: Rat2, RGE, XC and HH16, and alveolar cells: NR8383) and primary guinea pigs derived AMs, in HIV-MTB studies is also described. Given the spectrum of the models available, cell cultures offer great potential for host-HIV-MTB interactions studies.
Collapse
Affiliation(s)
- Walter Chingwaru
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Institute Ceres/Zavod Ceres, Lahovna 16, 3000 Celje, Slovenia; Department of Biological Sciences, Faculty of Science, Bindura University Science Education, P. Bag 1020, Bindura, Zimbabwe.
| | - Richard H Glashoff
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jerneja Vidmar
- Institute Ceres/Zavod Ceres, Lahovna 16, 3000 Celje, Slovenia; Department of Biological Sciences, Faculty of Science, Bindura University Science Education, P. Bag 1020, Bindura, Zimbabwe; Department of Plastic and Reconstructive Surgery, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Petrina Kapewangolo
- Department of Chemistry and Biochemistry, Faculty of Science, University of Namibia, Windhoek, Namibia
| | - Samantha L Sampson
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
10
|
IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br J Cancer 2015. [PMID: 25867264 DOI: 10.1038/bjc.2015.101.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND PD-L1 (programmed cell death 1 ligand 1) on tumour cells suppresses host immunity through binding to its receptor PD-1 on lymphocytes, and promotes peritoneal dissemination in mouse models of ovarian cancer. However, how PD-L1 expression is regulated in ovarian cancer microenvironment remains unclear. METHODS The number of CD8-positive lymphocytes and PD-L1 expression in tumour cells was assessed in ovarian cancer clinical samples. PD-L1 expression and tumour progression in mouse models under conditions of altering IFN-γ signals was assessed. RESULTS The number of CD8-positive cells in cancer stroma was very high in peritoneally disseminated tumours, and was strongly correlated to PD-L1 expression on the tumour cells (P<0.001). In mouse models, depleting IFNGR1 (interferon-γ receptor 1) resulted in lower level of PD-L1 expression in tumour cells, increased the number of tumour-infiltrating CD8-positive lymphocytes, inhibition of peritoneal disseminated tumour growth and longer survival (P=0.02). The injection of IFN-γ into subcutaneous tumours induced PD-L1 expression and promoted tumour growth, and PD-L1 depletion completely abrogated tumour growth caused by IFN-γ injection (P=0.01). CONCLUSIONS Interferon-γ secreted by CD8-positive lymphocytes upregulates PD-L1 on ovarian cancer cells and promotes tumour growth. The lymphocyte infiltration and the IFN-γ status may be the key to effective anti-PD-1 or anti-PD-L1 therapy in ovarian cancer.
Collapse
|
11
|
Abiko K, Matsumura N, Hamanishi J, Horikawa N, Murakami R, Yamaguchi K, Yoshioka Y, Baba T, Konishi I, Mandai M. IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br J Cancer 2015; 112:1501-9. [PMID: 25867264 PMCID: PMC4453666 DOI: 10.1038/bjc.2015.101] [Citation(s) in RCA: 516] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND PD-L1 (programmed cell death 1 ligand 1) on tumour cells suppresses host immunity through binding to its receptor PD-1 on lymphocytes, and promotes peritoneal dissemination in mouse models of ovarian cancer. However, how PD-L1 expression is regulated in ovarian cancer microenvironment remains unclear. METHODS The number of CD8-positive lymphocytes and PD-L1 expression in tumour cells was assessed in ovarian cancer clinical samples. PD-L1 expression and tumour progression in mouse models under conditions of altering IFN-γ signals was assessed. RESULTS The number of CD8-positive cells in cancer stroma was very high in peritoneally disseminated tumours, and was strongly correlated to PD-L1 expression on the tumour cells (P<0.001). In mouse models, depleting IFNGR1 (interferon-γ receptor 1) resulted in lower level of PD-L1 expression in tumour cells, increased the number of tumour-infiltrating CD8-positive lymphocytes, inhibition of peritoneal disseminated tumour growth and longer survival (P=0.02). The injection of IFN-γ into subcutaneous tumours induced PD-L1 expression and promoted tumour growth, and PD-L1 depletion completely abrogated tumour growth caused by IFN-γ injection (P=0.01). CONCLUSIONS Interferon-γ secreted by CD8-positive lymphocytes upregulates PD-L1 on ovarian cancer cells and promotes tumour growth. The lymphocyte infiltration and the IFN-γ status may be the key to effective anti-PD-1 or anti-PD-L1 therapy in ovarian cancer.
Collapse
Affiliation(s)
- K Abiko
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - N Matsumura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - J Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - N Horikawa
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - R Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - K Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Y Yoshioka
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - T Baba
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - I Konishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - M Mandai
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kinki University, 377-2 Onohigashi, Osakasayama, Osaka 589-0014, Japan
| |
Collapse
|
12
|
Yamaguchi K, Huang Z, Matsumura N, Mandai M, Okamoto T, Baba T, Konishi I, Berchuck A, Murphy SK. Epigenetic determinants of ovarian clear cell carcinoma biology. Int J Cancer 2014; 135:585-97. [PMID: 24382740 PMCID: PMC4522155 DOI: 10.1002/ijc.28701] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 12/04/2013] [Indexed: 01/31/2023]
Abstract
Targeted approaches have revealed frequent epigenetic alterations in ovarian cancer, but the scope and relation of these changes to histologic subtype of disease is unclear. Genome-wide methylation and expression data for 14 clear cell carcinoma (CCC), 32 non-CCC and four corresponding normal cell lines were generated to determine how methylation profiles differ between cells of different histological derivations of ovarian cancer. Consensus clustering showed that CCC is epigenetically distinct. Inverse relationships between expression and methylation in CCC were identified, suggesting functional regulation by methylation, and included 22 hypomethylated (UM) genes and 276 hypermethylated (HM) genes. Categorical and pathway analyses indicated that the CCC-specific UM genes were involved in response to stress and many contain hepatocyte nuclear factor (HNF) 1-binding sites, while the CCC-specific HM genes included members of the estrogen receptor alpha (ERalpha) network and genes involved in tumor development. We independently validated the methylation status of 17 of these pathway-specific genes, and confirmed increased expression of HNF1 network genes and repression of ERalpha pathway genes in CCC cell lines and primary cancer tissues relative to non-CCC specimens. Treatment of three CCC cell lines with the demethylating agent Decitabine significantly induced expression for all five genes analyzed. Coordinate changes in pathway expression were confirmed using two primary ovarian cancer datasets (p < 0.0001 for both). Our results suggest that methylation regulates specific pathways and biological functions in CCC, with hypomethylation influencing the characteristic biology of the disease while hypermethylation contributes to the carcinogenic process.
Collapse
Affiliation(s)
- Ken Yamaguchi
- Department of Obstetrics and Gynecology, Duke University
Medical Center, Durham NC, 27708 USA
- Department of Gynecology and Obstetrics, Graduate School
of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Duke University
Medical Center, Durham NC, 27708 USA
| | - Noriomi Matsumura
- Department of Gynecology and Obstetrics, Graduate School
of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School
of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Takako Okamoto
- Department of Obstetrics and Gynecology, Duke University
Medical Center, Durham NC, 27708 USA
| | - Tsukasa Baba
- Department of Gynecology and Obstetrics, Graduate School
of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Ikuo Konishi
- Department of Gynecology and Obstetrics, Graduate School
of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University
Medical Center, Durham NC, 27708 USA
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Duke University
Medical Center, Durham NC, 27708 USA
| |
Collapse
|
13
|
Fuller ES, Howell VM. Culture models to define key mediators of cancer matrix remodeling. Front Oncol 2014; 4:57. [PMID: 24724052 PMCID: PMC3971193 DOI: 10.3389/fonc.2014.00057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/11/2014] [Indexed: 11/18/2022] Open
Abstract
High grade serous epithelial ovarian cancer (HG-SOC) is one of the most devastating gynecological cancers affecting women worldwide, with a poor survival rate despite clinical treatment advances. HG-SOC commonly metastasizes within the peritoneal cavity, primarily to the mesothelial cells of the omentum, which regulate an extracellular matrix rich in collagens type I, III, and IV along with laminin, vitronectin, and fibronectin. Cancer cells depend on their ability to penetrate and invade secondary tissue sites to spread, however a detailed understanding of the molecular mechanisms underlying these processes remain largely unknown. Given the high metastatic potential of HG-SOC and the associated poor clinical outcome, it is extremely important to identify the pathways and the components of which that are responsible for the progression of this disease. In vitro methods of recapitulating human disease processes are the critical first step in such investigations. In this context, establishment of an in vitro “tumor-like” micro-environment, such as 3D culture, to study early disease and metastasis of human HG-SOC is an important and highly insightful method. In recent years, many such methods have been established to investigate the adhesion and invasion of human ovarian cancer cell lines. The aim of this review is to summarize recent developments in ovarian cancer culture systems and their use to investigate clinically relevant findings concerning the key players in driving human HG-SOC.
Collapse
Affiliation(s)
- Emily Suzanne Fuller
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney , St. Leonards, NSW , Australia
| | - Viive Maarika Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney , St. Leonards, NSW , Australia
| |
Collapse
|
14
|
Donai K, Kiyono T, Eitsuka T, Guo Y, Kuroda K, Sone H, Isogai E, Fukuda T. Bovine and porcine fibroblasts can be immortalized with intact karyotype by the expression of mutant cyclin dependent kinase 4, cyclin D, and telomerase. J Biotechnol 2014; 176:50-7. [PMID: 24589663 DOI: 10.1016/j.jbiotec.2014.02.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/14/2014] [Accepted: 02/19/2014] [Indexed: 01/13/2023]
Abstract
Cattle and pigs comprise the most economically important livestock. Despite their importance, cultured cells from these species, which are useful for physiological analyses, are quite limited in cell banks. One of the reasons for the limited number of cell lines is the difficulty in their establishment. To overcome limitations in cell-line establishment, we attempted to immortalize bovine and porcine fibroblasts by transduction of multiple cell cycle regulators (mutant cyclin dependent kinase 4, cyclin D and telomerase reverse transcriptase). The transduced cells continued to display a stable proliferation rate and did not show cellular senescence. Furthermore, cell cycle assays showed that induction of these exogenous genes enhanced turnover of the cell cycle, especially at the G1-S phase. Furthermore, our established cell lines maintained normal diploid karyotypes at 98-100%. Our study demonstrated that bypassing p16/Rb-mediated cell arrest and activation of telomerase activity enabled efficient establishment of immortalized bovine- and porcine-derived fibroblasts. The high efficiency of establishing cell lines suggests that the networks of cell cycle regulators, especially p16/Rb-associated cell cycle arrest, have been conserved during evolution of humans, cattle, and pigs.
Collapse
Affiliation(s)
- Kenichiro Donai
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Aoba-ku, Sendai 981-8555, Japan.
| | - Tohru Kiyono
- Division of Virology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Takahiro Eitsuka
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata 956-8603, Japan.
| | - Yijie Guo
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Aoba-ku, Sendai 981-8555, Japan.
| | - Kengo Kuroda
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Aoba-ku, Sendai 981-8555, Japan.
| | - Hideko Sone
- Environmental Exposure Research Section, Center for Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Emiko Isogai
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Aoba-ku, Sendai 981-8555, Japan.
| | - Tomokazu Fukuda
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Aoba-ku, Sendai 981-8555, Japan.
| |
Collapse
|
15
|
Pan WW, Yi FP, Cao LX, Liu XM, Shen ZF, Bu YQ, Xu Y, Fan HY, Song FZ. DAXX silencing suppresses mouse ovarian surface epithelial cell growth by inducing senescence and DNA damage. Gene 2013; 526:287-94. [DOI: 10.1016/j.gene.2013.03.103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/02/2013] [Accepted: 03/16/2013] [Indexed: 01/08/2023]
|
16
|
Stacey G. Current developments in cell culture technology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 745:1-13. [PMID: 22437809 DOI: 10.1007/978-1-4614-3055-1_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The ideal features of a cell culture system for in vitro investigation depend on what questions the system is to address. However, in general, highly valuable systems will replicate the characteristics and more specifically, the responses, of normal human tissues. Systems that can faithfully replicate different tissue types provide tremendous potential value for in vitro research and have been the subject of much research effort in this area over many years. Furthermore, a range of such systems that could mimic key genetic variations or diseases would have special value for toxicology and drug discovery. In the pursuit of such model systems, there are a number of significant practical issues to consider for their application, which includes ability to deliver with ease, the required quantities of cells at the time needed. In addition any cell culture assay will need to be robust and reliable and provide readily interpreted and quantified endpoints. Other general criteria for cell culture systems include scalability to provide the very large cell numbers that may be required for high throughput systems, with a high degree of reliability and reproducibility. The amenability of the cell culture for down-scaling may also be important, to permit the use of very small test samples (e.g., in 96-well arrays), even down to the level of single cell analysis. This chapter explores the range of new cell culture systems for scaling up cell cultures that will be needed for high throughput toxicology and drug discovery assays. It also reviews the increasing range of novel systems that enable high content analysis from small cell numbers or even single cells. The hopes and challenges for the use of human stem cell lines are also investigated in comparison with the range of eukaryotic cells types currently in use in toxicology.
Collapse
Affiliation(s)
- Glyn Stacey
- Division of Cell Biology and Imaging, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, UK.
| |
Collapse
|
17
|
Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci U S A 2011; 108:18708-13. [PMID: 22068913 DOI: 10.1073/pnas.1111840108] [Citation(s) in RCA: 329] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although in vitro models have been a cornerstone of anti-cancer drug development, their direct applicability to clinical cancer research has been uncertain. Using a state-of-the-art Taqman-based quantitative RT-PCR assay, we investigated the multidrug resistance (MDR) transcriptome of six cancer types, in established cancer cell lines (grown in monolayer, 3D scaffold, or in xenograft) and clinical samples, either containing >75% tumor cells or microdissected. The MDR transcriptome was determined a priori based on an extensive curation of the literature published during the last three decades, which led to the enumeration of 380 genes. No correlation was found between clinical samples and established cancer cell lines. As expected, we found up-regulation of genes that would facilitate survival across all cultured cancer cell lines evaluated. More troubling, however, were data showing that all of the cell lines, grown either in vitro or in vivo, bear more resemblance to each other, regardless of the tissue of origin, than to the clinical samples they are supposed to model. Although cultured cells can be used to study many aspects of cancer biology and response of cells to drugs, this study emphasizes the necessity for new in vitro cancer models and the use of primary tumor models in which gene expression can be manipulated and small molecules tested in a setting that more closely mimics the in vivo cancer microenvironment so as to avoid radical changes in gene expression profiles brought on by extended periods of cell culture.
Collapse
|
18
|
Takaishi K, Komohara Y, Tashiro H, Ohtake H, Nakagawa T, Katabuchi H, Takeya M. Involvement of M2-polarized macrophages in the ascites from advanced epithelial ovarian carcinoma in tumor progression via Stat3 activation. Cancer Sci 2010; 101:2128-36. [PMID: 20860602 PMCID: PMC11159803 DOI: 10.1111/j.1349-7006.2010.01652.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ascites macrophages in advanced epithelial ovarian cancer (AdEOC) are involved in cancer metastasis and progression by modifying the tumor microenvironment. However, the precise mechanisms of cell-to-cell interaction between macrophages and tumor cells are still unclear. This study focused on the activation of signal transducer and activator of transcription 3 (Stat3) which is a critical signal transduction molecule at a point of convergence for numerous oncogenic signaling pathways as well as controlling the M2-poralization of macrophages. AdEOC ascites, in which high concentration of interleukin (IL)-6, IL-10, growth-related oncogene-alpha and vascular endothelial growth factor were detected, stimulated the proliferation of SKOV3 cells, a human ovarian cancer cell line. The simultaneous blocking of IL-6 and IL-10 by neutralizing antibodies suppressed ascites-induced tumor cell proliferation. Stat3 activation in SKOV3 cells was induced by co-culture with macrophages especially with macrophage colony stimulating factor-primed M2 macrophages but lesser extent with granulocyte-macrophage colony stimulating factor-primed immature macrophages. Cyclin-D1 expression in SKOV3 cells was also significantly induced by co-culture with macrophages. Blocking of Stat3 in macrophages by small interfering RNA inhibited the production of IL-6 and IL-10 by macrophages, and suppressed Stat3 activation and cyclin-D1 induction in co-cultured SKOV3 cells. Stat3 activation in SKOV3 cells was abrogated by simultaneous neutralization of IL-6 and IL-10. These results indicate that Stat3 activation by IL-6 and IL-10 plays an important role in cell-to-cell interaction between tumor cells and macrophages in the ascites of AdEOC.
Collapse
Affiliation(s)
- Kiyomi Takaishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Suh DH, Kim JW, Aziz MF, Devi UK, Ngan HYS, Nam JH, Kim SC, Kato T, Ryu HS, Fujii S, Lee YS, Kim JH, Kim TJ, Kim YT, Wang KL, Lee TS, Ushijima K, Shin SG, Chia YN, Wilailak S, Park SY, Katabuchi H, Kamura T, Kang SB. Asian society of gynecologic oncology workshop 2010. J Gynecol Oncol 2010; 21:137-50. [PMID: 20922136 DOI: 10.3802/jgo.2010.21.3.137] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 08/30/2010] [Indexed: 12/22/2022] Open
Abstract
This workshop was held on July 31-August 1, 2010 and was organized to promote the academic environment and to enhance the communication among Asian countries prior to the 2nd biennial meeting of Australian Society of Gynaecologic Oncologists (ASGO), which will be held on November 3-5, 2011. We summarized the whole contents presented at the workshop. Regarding cervical cancer screening in Asia, particularly in low resource settings, and an update on human papillomavirus (HPV) vaccination was described for prevention and radical surgery overview, fertility sparing and less radical surgery, nerve sparing radical surgery and primary chemoradiotherapy in locally advanced cervical cancer, were discussed for management. As to surgical techniques, nerve sparing radical hysterectomy, optimal staging in early ovarian cancer, laparoscopic radical hysterectomy, one-port surgery and robotic surgery were introduced. After three topics of endometrial cancer, laparoscopic surgery versus open surgery, role of lymphadenectomy and fertility sparing treatment, there was a special additional time for clinical trials in Asia. Finally, chemotherapy including neo-adjuvant chemotherapy, optimal surgical management, and the basis of targeted therapy in ovarian cancer were presented.
Collapse
Affiliation(s)
- Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Telomerase, an enzyme complex that binds the chromosome ends (telomeres) and maintains telomere length and integrity, is present in germ cells, proliferative granulosa cells, germline stem cells, and neoplastic cells in the ovary, but it is absent in differentiated or aged cells. Activation of telomerase in the ovary underpins both benign and malignant cell proliferation in several compartments, including the germ cells, membrana granulosa, and the ovarian surface epithelium. The difference in telomerase operation between normal and abnormal cell proliferations may lie in the mechanisms of telomerase activation in a deregulated manner. Recent studies have implicated telomerase activity in ovarian cancer as well as oogenesis and fertility. Inhibition of telomerase and the shortening of telomeres are seen in occult ovarian insufficiency. Studies of how telomerase operates and regulates ovary development may provide insight into the development of both germ cells for ovarian reproductive function and neoplastic cells in ovarian cancer. The current review summarizes the roles of telomerase in the development of oocytes and proliferation of granulosa cells during folliculogenesis and in the process of tumorigenesis. It also describes the regulation of telomerase by estrogen in the ovary.
Collapse
|
21
|
Motohara T, Tashiro H, Miyahara Y, Sakaguchi I, Ohtake H, Katabuchi H. Long-term oncological outcomes of ovarian serous carcinomas with psammoma bodies: a novel insight into the molecular pathogenesis of ovarian epithelial carcinoma. Cancer Sci 2010; 101:1550-6. [PMID: 20384630 PMCID: PMC11158184 DOI: 10.1111/j.1349-7006.2010.01556.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/25/2010] [Accepted: 02/26/2010] [Indexed: 11/27/2022] Open
Abstract
A two-tier system in which ovarian epithelial carcinomas are subdivided into type I and type II tumors has been proposed on the basis of recent molecular pathogenesis findings. Type I tumors, unrelated to tumor protein p53 (TP53) mutations, show favorable prognosis in a slow step-wise process, whereas type II tumors, related to TP53 mutations, contribute to poor prognosis. Ovarian serous carcinomas with excessive psammoma bodies behave like type I tumors. However, their etiology and prognostic significance remain obscure. The objective of the present study was to evaluate the characteristic features and potential relevance of psammoma bodies to the clinical outcome of 44 patients with serous carcinomas with long-term follow-up. The 5- and 10-year survival rates were significantly different between the serous carcinomas with less than 5% area of psammoma bodies and those at least 5% area (P < 0.01). All tumors with at least 5% area were both diploid and immunohistochemically negative for TP53 mutations. All patients with these tumors, including eight with International Federation of Gynecology and Obstetrics (FIGO) stages III or IV disease, survived more than 5 years and their 10-year survival rate was 76%. In multivariate analysis using clinical parameters, the apparent existence of psammoma bodies was an indication to view serous carcinomas as type I tumors with long-term survival. Our results suggested that the formation of psammoma bodies is associated with increased apoptotic tumor cell death related to normal TP53 function. The pathological findings of psammoma bodies might contribute to the consideration of pathogenesis and to the development of prognostic prediction rules for serous carcinomas.
Collapse
Affiliation(s)
- Takeshi Motohara
- Department of Gynecology and Reproductive Medicine and Surgery, Kumamoto University, Kumamoto City, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Identification of an ovarian clear cell carcinoma gene signature that reflects inherent disease biology and the carcinogenic processes. Oncogene 2010; 29:1741-52. [PMID: 20062075 DOI: 10.1038/onc.2009.470] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ovarian clear cell carcinoma (OCCC) shows unique clinical features including an association with endometriosis and poor prognosis. We previously reported that the contents of endometriotic cysts, especially high concentrations of free iron, are a possible cause of OCCC carcinogenesis through iron-induced persistent oxidative stress. In this study, we conducted gene expression microarray analysis using 38 ovarian cancer cell lines and identified genes commonly expressed in both OCCC cell lines and clinical samples, which comprise an OCCC gene signature. The OCCC signature reproducibly predicts OCCC specimens in other microarray data sets, suggesting that this gene profile reflects the inherent biological characteristics of OCCC. The OCCC signature contains known markers of OCCC, such as hepatocyte nuclear factor-1beta (HNF-1beta) and versican (VCAN), and other genes that reflect oxidative stress. Expression of OCCC signature genes was induced by treatment of immortalized ovarian surface epithelial cells with the contents of endometriotic cysts, indicating that the OCCC signature is largely dependent on the tumor microenvironment. Induction of OCCC signature genes is at least in part epigenetically regulated, as we found hypomethylation of HNF-1beta and VCAN in OCCC cell lines. This genome-wide study indicates that the tumor microenvironment induces specific gene expression profiles that contribute to the development of distinct cancer subtypes.
Collapse
|
23
|
Sasaki R, Narisawa-Saito M, Yugawa T, Fujita M, Tashiro H, Katabuchi H, Kiyono T. Oncogenic transformation of human ovarian surface epithelial cells with defined cellular oncogenes. Carcinogenesis 2009; 30:423-31. [PMID: 19126650 DOI: 10.1093/carcin/bgp007] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Ovarian surface epithelium (OSE) is considered to give rise to epithelial ovarian carcinomas (EOCs). To elucidate early processes contributing to the development of EOCs from the OSE, two batches of primary human OSE cells were transduced with non-viral human genes (mutant Cdk4, cyclinD1 and hTERT) so as to efficiently establish normal diploid OSE cells without chromosomal instability. Then defined genetic alterations frequently observed in EOCs were transduced into the OSE cells. A combination of p53 inactivation and oncogenic Kras transduction did not confer tumor-forming ability in immunodeficient mice, though additional transduction of Akt or combined transduction of c-myc with bcl-2 did result in tumor formation. In the latter case, tumors demonstrated phenotypes reminiscent of human EOCs, including cytokeratin expression, a highly aggressive phenotype, metastatic behavior and formation of ascites. These results indicate that inactivation of p53 and activation of the Ras pathway play critical roles in ovarian carcinogenesis in co-operation with the Akt or c-myc pathways. This first in vitro model system faithfully recapitulating the development of EOCs using normal human OSE cells should greatly facilitate further studies of EOCs.
Collapse
Affiliation(s)
- Rumi Sasaki
- Virology Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Cheung LWT, Wong AST. Gonadotropin-releasing hormone: GnRH receptor signaling in extrapituitary tissues. FEBS J 2008; 275:5479-95. [PMID: 18959738 DOI: 10.1111/j.1742-4658.2008.06677.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) has historically been known as a pituitary hormone; however, in the past few years, interest has been raised in locally produced, extrapituitary GnRH. GnRH receptor (GnRHR) was found to be expressed in normal human reproductive tissues (e.g. breast, endometrium, ovary, and prostate) and tumors derived from these tissues. Numerous studies have provided evidence for a role of GnRH in cell proliferation. More recently, we and others have reported a novel role for GnRH in other aspects of tumor progression, such as metastasis and angiogenesis. The multiple actions of GnRH could be linked to the divergence of signaling pathways that are activated by GnRHR. Recent observations also demonstrate cross-talk between GnRHR and growth factor receptors. Intriguingly, the classical G(alphaq)-11-phospholipase C signal transduction pathway, known to function in pituitary gonadotropes, is not involved in GnRH actions at nonpituitary targets. Herein, we review the key findings on the role of GnRH in the control of tumor growth, progression, and dissemination. The emerging role of GnRHR in actin cytoskeleton remodeling (small Rho GTPases), expression and/or activity of adhesion molecules (integrins), proteolytic enzymes (matrix metalloproteinases) and angiogenic factors is explored. The signal transduction mechanisms of GnRHR in mediating these activities is described. Finally, we discuss how a common GnRHR may mediate different, even opposite, responses to GnRH in the same tissue/cell type and whether an additional receptor(s) for GnRH exists.
Collapse
|
25
|
Hashimoto H, Sudo T, Mikami Y, Otani M, Takano M, Tsuda H, Itamochi H, Katabuchi H, Ito M, Nishimura R. Germ cell specific protein VASA is over-expressed in epithelial ovarian cancer and disrupts DNA damage-induced G2 checkpoint. Gynecol Oncol 2008; 111:312-9. [PMID: 18805576 DOI: 10.1016/j.ygyno.2008.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/10/2008] [Accepted: 08/12/2008] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Cancer cells have characteristics, such as high telomerase activity and high levels of migration activity and proliferation, which are very similar to those of germ cell lineages. In this study, we examined the expression of VASA, a germ cell lineage specific marker and evaluated its clinical significance in epithelial ovarian cancer (EOC). METHODS We investigated VASA expression in 75 EOC tissues by immunohistochemistry, correlating results with clinicopathological factors. To clarify the effects of VASA on cellular phenotypes, we compared the protein expression profiles between SKOV-3 cells stably expressing VASA (SKOV-3-VASA) and vector-control cell lines by coupling 2D fingerprinting and identification of proteins by mass spectrometry. RESULTS VASA expression in tumor cells was found in 21 of 75 cases and was positively correlated with high age and serous histology. Significant down-regulation of 14-3-3sigma was observed in SKOV-3-VASA versus control cells. Over-expression of VASA abrogates the G2 checkpoint, induced by DNA damage, by down-regulating the expression of 14-3-3sigma. CONCLUSIONS These results suggest that VASA may either play a direct role in the progression of EOC or serve as a valuable marker of tumorigenesis.
Collapse
|
26
|
Woo MMM, Salamanca CM, Miller M, Symowicz J, Leung PCK, Oliveira C, Ehlen TG, Gilks CB, Huntsman D, Auersperg N. Serous borderline ovarian tumors in long-term culture: phenotypic and genotypic distinction from invasive ovarian carcinomas. Int J Gynecol Cancer 2008; 18:1234-47. [PMID: 18217967 DOI: 10.1111/j.1525-1438.2007.01171.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Serous borderline ovarian tumors (SBOTs) are differentiated, slow growing, noninvasive, and have a better prognosis than their invasive counterparts, but recurrence and progression to invasive carcinomas are common, and unlike high-grade serous carcinomas, they tend to be nonresponsive to chemotherapy. However, due to a lack of culture systems and animal models, information about the properties of SBOT and their changes with neoplastic progression is extremely limited. Our objective was to establish a cell culture model for SBOTs and to characterize their phenotype and genotype. We compared cultures derived from two SBOTs, one of which was a short-term culture containing a BRAF mutation but few other cytogenetic changes while the other culture developed into a spontaneously immortalized permanent cell line and had numerical and structural chromosomal abnormalities but lacked RAS/BRAF mutations. Both cultures formed whorl-like epithelial colonies and resembled low-grade invasive carcinomas by their secretion of CA125 and oviduct-specific glycoprotein, production of matrix metalloproteinases, E-cadherin expression, and telomerase activity. Other characteristics associated with neoplastic transformation, including invasiveness, anchorage-independent growth, and tumorigenicity, were not observed. Importantly, cell motility was reduced in both lines, likely contributing to the lack of invasiveness. The results reveal a striking phenotypic similarity between the two cell lines, regardless of their cytogenetic diversity, which suggests that their characteristic phenotype is regulated to a large degree by epigenetic and environmental factors. In conclusion, we have established the first permanent SBOT cell line, which provides a new model to elucidate the undefined relationship of SBOTs to invasive ovarian carcinomas.
Collapse
Affiliation(s)
- M M M Woo
- Department of Obstetrics and Gynecology, University of British Columbia, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Li NF, Broad S, Lu YJ, Yang JS, Watson R, Hagemann T, Wilbanks G, Jacobs I, Balkwill F, Dafou D, Gayther SA. Human ovarian surface epithelial cells immortalized with hTERT maintain functional pRb and p53 expression. Cell Prolif 2007; 40:780-94. [PMID: 17877616 PMCID: PMC6495942 DOI: 10.1111/j.1365-2184.2007.00462.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 04/16/2007] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Cell immortalization is considered to be a prerequisite status for carcinogenesis. Normal human ovarian surface epithelial (OSE) cells, which are thought to be the origin of most of human ovarian carcinomas, have a very limited lifespan in culture. Establishment of immortalized OSE cell lines has, in the past, required inactivation of pRb and p53 functions. However, this often leads to increased chromosome instability during prolonged culture. MATERIALS AND METHODS In this study, we have used a retroviral infection method to overexpress human telomerase reverse transcriptase (hTERT) gene, in primary normal OSE cells, under optimized culture conditions. RESULTS In vitro and in vivo analysis of hTERT-immortalized cell lines confirmed their normal epithelial characteristics. Gene expression profiles and functional analysis of p16(INK4A), p15(INK4B), pRb and p53 confirmed the presence of their intact functions. Our study suggests that inactivation of pRb and p53 is not necessary for OSE immortalization. Furthermore, down-regulation of p15(INK4B) in the immortalized cells may indicate a functional role for this protein in them. CONCLUSION These immortal OSE cell lines are likely to be an important tool for studying human OSE biology and carcinogenesis.
Collapse
Affiliation(s)
- N F Li
- Centre for Translational Oncology, Barts and the London, Queen Mary's School of Medicine and Dentistry, Charterhouse Square, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Haga K, Ohno SI, Yugawa T, Narisawa-Saito M, Fujita M, Sakamoto M, Galloway DA, Kiyono T. Efficient immortalization of primary human cells by p16INK4a-specific short hairpin RNA or Bmi-1, combined with introduction of hTERT. Cancer Sci 2007; 98:147-54. [PMID: 17233832 PMCID: PMC11158394 DOI: 10.1111/j.1349-7006.2006.00373.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Activation of telomerase is sufficient for immortalization of some types of human cells but additional factors may also be essential. It has been proposed that stress imposed by inadequate culture conditions induces senescence due to accumulation of p16(INK4a). Here, we present evidence that many human cell types undergo senescence by activation of the p16(INK4a)/Rb pathway, and that introduction of Bmi-1 can inhibit p16(INK4a) expression and extend the life span of human epithelial cells derived from skin, mammary gland and lung. Introduction of p16(INK4a)-specific short hairpin RNA, as well as Bmi-1, suppressed p16(INK4a) expression in human mammary epithelial cells without promoter methylation, and extended their life span. Subsequent introduction of hTERT, the telomerase catalytic subunit, into cells with low p16(INK4a) levels resulted in efficient immortalization of three cell types without crisis or growth arrest. The majority of the human mammary epithelial cells thus immortalized showed almost normal ploidy as judged by G-banding and spectral karyotyping analysis. Our data suggest that inhibition of p16(INK4a) and introduction of hTERT can immortalize many human cell types with little chromosomal instability.
Collapse
Affiliation(s)
- Kei Haga
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuoku 104-0045, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Shima Y, Okamoto T, Aoyama T, Yasura K, Ishibe T, Nishijo K, Shibata KR, Kohno Y, Fukiage K, Otsuka S, Uejima D, Nakayama T, Nakamura T, Kiyono T, Toguchida J. In vitro transformation of mesenchymal stem cells by oncogenic H-rasVal12. Biochem Biophys Res Commun 2006; 353:60-6. [PMID: 17173860 DOI: 10.1016/j.bbrc.2006.11.137] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 11/18/2006] [Indexed: 12/19/2022]
Abstract
Tissue stem cells may serve as progenitors for malignant tumors derived from the same tissue. Here, we report the establishment of immortalized human mesenchymal stem cells (ihMSC) and tested the feasibility of using ihMSC as presarcomatous cells. Immortalization was achieved by introducing the genes for human telomerase reverse transcriptase and Bmi1. ihMSC retained the potential for multi-directional differentiation of the original MSC. To transform ihMSC, we introduced an oncogenic H-ras(Val12) gene, and established the cell line ihMSC-ras. ihMSC-ras had the phenotype of fully transformed cells and retained adipogenic and chondrogenic, but not osteogenic, potential. Interestingly, ihMSC-ras demonstrated morphological features of autophagy, and inhibition of the ERK pathway suppressed the production of autophagosomes, indicating that ras/ERK signaling is responsible for the induction of autophagy. Thus ihMSC will serve as a material with which to analyze the tumorigenic and differentiation-modifying effects of candidate oncogenes involved in the development of sarcomas.
Collapse
Affiliation(s)
- Yasuko Shima
- Institute for Frontier Medical Sciences, Kyoto University, Shogoin, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Okamura H, Katabuchi H, Nitta M, Ohtake H. Structural changes and cell properties of human ovarian surface epithelium in ovarian pathophysiology. Microsc Res Tech 2006; 69:469-81. [PMID: 16718660 DOI: 10.1002/jemt.20306] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The surface epithelial cells of the ovary, which are modified peritoneal cells, form a single, focally pseudostratified layer. The Müllerian ducts differentiate after invagination of the coelomic mesothelium over the gonadal ridges during the 6th week of embryonic life. On the basis of the embryologically putative Müllerian potential of this epithelium, endometriosis can be explained by coelomic metaplasia from the peritoneum, including ovarian surface epithelium. Some pelvic endometriosis specimens have shown that epithelial cells on the ovary or pelvis are serially changed to endometriotic gland cells. Immunohistochemistry as well as scanning electron microscopy also reinforce the light-microscopical findings. A three-dimensional culture system demonstrated that human ovarian surface epithelial cells exhibited a glandular-stromal structure when they were cocultured with endometrial stromal cells in an estrogen-rich environment. Ovarian carcinomas in the epithelial-stromal category are thought to arise from the surface epithelium and its inclusions. The ovarian surface epithelium is physiologically involved in follicular rupture, oocyte release, and the subsequent repair of follicle wall during reproductive age. Simultaneously, ovulation may cause a loss of integrity of the surface epithelium, followed by accumulation of multiple mutations. The cortical invagination, surface stromal proliferation, and Müllerian differentiation of these cells are likely not to be an early step in the cancer development. However, the inclusion cysts are closely related with carcinogenesis because they are significantly more common in ovaries contralateral to those containing epithelial cancers than in control ovaries. As an in vitro study, ovarian carcinoma cell lines were established from simian virus 40 large T antigen-transformed human surface epithelial cells of the ovary. Further investigations of these cell lines may lead to insights into the preneoplastic and early stages of carcinomas. To clarify the pathogenesis of endometriosis and epithelial ovarian cancer, specifically designed studies of ovarian surface epithelium are required.
Collapse
Affiliation(s)
- Hitoshi Okamura
- Department of Reproductive Medicine, Kumamoto University, Kumamoto 860-8556, Japan.
| | | | | | | |
Collapse
|