1
|
Yoon HJ, Jin R, Yoon HS, Choi JS, Kim Y, Pan SH, Chang I, Li L, Li Y, Kim J, Yoon KC. Bacillus-Derived Manganese Superoxide Dismutase Relieves Ocular-Surface Inflammation and Damage by Reducing Oxidative Stress and Apoptosis in Dry Eye. Invest Ophthalmol Vis Sci 2023; 64:30. [PMID: 37721740 PMCID: PMC10511021 DOI: 10.1167/iovs.64.12.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose We hypothesized that antioxidative enzymes supplementation could be a treatment option for dry eye. We investigated the efficacy of oral administration of Bacillus-derived superoxide dismutase (Bd-SOD) in a murine experimental dry eye (EDE). Methods In part I, mice were randomly assigned to normal control, EDE, and mice groups that were treated with oral Bd-SOD after induction of EDE (EDE + Bd-SOD group; four mice in each group). Expression of SOD2, a major antioxidant enzyme with manganese as a cofactor, was assessed by immunofluorescence staining. In part II, mice were divided into seven groups (six mice in each group): normal control, EDE, vehicle-treated, topical 0.05% cyclosporin A (CsA)-treated, and oral Bd-SOD-treated (2.5, 5.0, and 10.0 mg/kg Bd-SOD) groups. Tear volume, tear-film break-up time (TBUT), and corneal fluorescein-staining scores (CFS) were measured at zero, five, and 10 days after treatment. Ten days after treatment, 2',7'-dichlorodihydrofluorescein diacetate for reactive oxygen species (ROS), enzyme-linked immunosorbent for malondialdehyde, and TUNEL assays for corneal apoptosis, flow cytometry inflammatory T cells, and histological assessment were performed. Results Compared to the normal control group in part I, the EDE group showed significantly decreased SOD2 expression by immunofluorescence staining. However, the EDE + Bd-SOD group recovered similar to the normal control group. In part II, ROS, malondialdehyde, and corneal apoptosis were decreased in CsA and all Bd-SOD-treated groups. Corneal and conjunctival inflammatory T cells decreased, and conjunctival goblet cell density increased in CsA-treated and Bd-SOD-treated groups. Compared to the CsA-treated group, the 2.5 mg/kg Bd-SOD-treated group showed increased TBUT and decreased inflammatory T cells, and the 5.0 mg/kg Bd-SOD-treated group showed decreased CFS and increased conjunctival goblet cells. Conclusions Oral Bd-SOD administration might increase autogenous SOD2 expression in ocular surface tissue in EDE and could be developed as a complementary treatment for DE in the future.
Collapse
Affiliation(s)
- Hyeon-Jeong Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Rujun Jin
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Hee Su Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Ji Suk Choi
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Yenny Kim
- R&D Center, BiomLogic, Inc., Seoul, South Korea
| | | | - Inik Chang
- R&D Center, BiomLogic, Inc., Seoul, South Korea
| | - Lan Li
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Ying Li
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Jonghwa Kim
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| |
Collapse
|
2
|
Chen L, Liu Y, Zhang Y, Zhang Y, Wang W, Han H, Yang C, Dong X. Superoxide dismutase ameliorates oxidative stress and regulates liver transcriptomics to provide therapeutic benefits in hepatic inflammation. PeerJ 2023; 11:e15829. [PMID: 37583908 PMCID: PMC10424669 DOI: 10.7717/peerj.15829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Background Oxidative stress refers to the imbalance between oxidants and antioxidants in organisms and often induces hepatic inflammation. Supplementing exogenous superoxide dismutase is an effective way to alleviate oxidative stress; however, the effects and mechanisms by which superoxide dismutase alleviates hepatic inflammation remain unclear. Methods This study established a Kunming mouse model to verify and investigate the oxidative stress and hepatic inflammation-alleviating effects of the superoxide dismutase oral supplement that was prepared by our research group in a previous study. Results The superoxide dismutase product significantly restored the body weight and liver alanine transaminase, aspartate aminotransferase, superoxide dismutase, catalase, glutathione, and glutathione peroxidase levels of oxidative stress induced mice. Moreover, exogenous superoxide dismutase significantly inhibited interleukin 1β and interleukin 6 mRNA expression in the livers of mice with hepatic inflammation. Transcriptomic analysis indicated that superoxide dismutase had a significant inhibitory effect on Endog expression, alleviating oxidative stress damage, and mediating liver cell apoptosis by regulating the expression of Rab5if, Hnrnpab, and Ifit1. Conclusion Our research verified the oxidative stress remediation effects of superoxide dismutase and its therapeutic role against hepatic inflammation. This study can lay a foundation for investigating the mechanism by which superoxide dismutase alleviates hepatic disease.
Collapse
Affiliation(s)
- Longyan Chen
- Qilu Hospital of Shandong University, Jinan, China
| | - Yang Liu
- QiLu University of Technology, Jinan, China
| | | | | | - Wei Wang
- QiLu University of Technology, Jinan, China
| | - Hongyu Han
- QiLu University of Technology, Jinan, China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xueqian Dong
- QiLu University of Technology, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Prevention of tumor progression in inflammation-related carcinogenesis by anti-inflammatory and anti-mutagenic effects brought about by ingesting fermented brown rice and rice bran with Aspergillus oryzae (FBRA). J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
4
|
Islam MN, Rauf A, Fahad FI, Emran TB, Mitra S, Olatunde A, Shariati MA, Rebezov M, Rengasamy KRR, Mubarak MS. Superoxide dismutase: an updated review on its health benefits and industrial applications. Crit Rev Food Sci Nutr 2021; 62:7282-7300. [PMID: 33905274 DOI: 10.1080/10408398.2021.1913400] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many short-lived and highly reactive oxygen species, such as superoxide anion (O2-) and hydrogen peroxide (H2O2), are toxic or can create oxidative stress in cells, a response involved in the pathogenesis of numerous diseases depending on their concentration, location, and cellular conditions. Superoxide dismutase (SOD) activities as an endogenous and exogenous cell defense mechanism include the potential use in treating various diseases, improving the potential use in treating various diseases, and improving food-stuffs preparation dietary supplements human nutrition. Published work indicates that SOD regulates oxidative stress, lipid metabolism, inflammation, and oxidation in cells. It can prevent lipid peroxidation, the oxidation of low-density lipoprotein in macrophages, lipid droplets' formation, and the adhesion of inflammatory cells into endothelial monolayers. It also expresses antioxidant effects in numerous cancer-related processes. Additionally, different forms of SOD may also augment food processing and pharmaceutical applications, exhibit anticancer, antioxidant, and anti-inflammatory effects, and prevent arterial problems by protecting the proliferation of vascular smooth muscle cells. Many investigations in this review have reported the therapeutic ability and physiological importance of SOD. Because of their antioxidative effects, SODs are of great potential in the medicinal, cosmetic, food, farming and chemical industries. This review discusses the findings of human and animal studies that support the advantages of SOD enzyme regulations to reduce the formation of oxidative stress in various ways.
Collapse
Affiliation(s)
- Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Fowzul Islam Fahad
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Saikat Mitra
- Faculty of Pharmacy, Department of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Maksim Rebezov
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation.,Prokhorov General Physics Institute of the Russian Academy of Science, Moscow, Russian Federation
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, South Africa
| | | |
Collapse
|
5
|
Stephenie S, Chang YP, Gnanasekaran A, Esa NM, Gnanaraj C. An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103917] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
6
|
Kanda Y, Osaki M, Okada F. Chemopreventive Strategies for Inflammation-Related Carcinogenesis: Current Status and Future Direction. Int J Mol Sci 2017; 18:E867. [PMID: 28422073 PMCID: PMC5412448 DOI: 10.3390/ijms18040867] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023] Open
Abstract
A sustained and chronically-inflamed environment is characterized by the presence of heterogeneous inflammatory cellular components, including neutrophils, macrophages, lymphocytes and fibroblasts. These infiltrated cells produce growth stimulating mediators (inflammatory cytokines and growth factors), chemotactic factors (chemokines) and genotoxic substances (reactive oxygen species and nitrogen oxide) and induce DNA damage and methylation. Therefore, chronic inflammation serves as an intrinsic niche for carcinogenesis and tumor progression. In this article, we summarize the up-to-date findings regarding definitive/possible causes and mechanisms of inflammation-related carcinogenesis derived from experimental and clinical studies. We also propose 10 strategies, as well as candidate agents for the prevention of inflammation-related carcinogenesis.
Collapse
Affiliation(s)
- Yusuke Kanda
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Tottori 683-8503, Japan.
| | - Mitsuhiko Osaki
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Tottori 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori 683-8503, Japan.
| | - Futoshi Okada
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Tottori 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori 683-8503, Japan.
| |
Collapse
|
7
|
Onuma K, Kanda Y, Suzuki Ikeda S, Sakaki R, Nonomura T, Kobayashi M, Osaki M, Shikanai M, Kobayashi H, Okada F. Fermented Brown Rice and Rice Bran with Aspergillus oryzae (FBRA) Prevents Inflammation-Related Carcinogenesis in Mice, through Inhibition of Inflammatory Cell Infiltration. Nutrients 2015; 7:10237-50. [PMID: 26670250 PMCID: PMC4690083 DOI: 10.3390/nu7125531] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/13/2015] [Accepted: 11/26/2015] [Indexed: 12/17/2022] Open
Abstract
We have established an inflammation-related carcinogenesis model in mouse, in which regressive QR-32 cells subcutaneously co-implanted with a foreign body—gelatin sponge—convert themselves into lethal tumors due to massive infiltration of inflammatory cells into the sponge. Animals were fed with a diet containing 5% or 10% fermented brown rice and rice bran with Aspergillus oryzae (FBRA). In 5% and 10% FBRA diet groups, tumor incidences were lower (35% and 20%, respectively) than in the non-treated group (70%). We found that FBRA reduced the number of inflammatory cells infiltrating into the sponge. FBRA administration did not cause myelosuppression, which indicated that the anti-inflammatory effects of FBRA took place at the inflammatory lesion. FBRA did not have antitumor effects on the implanted QRsP-11 tumor cells, which is a tumorigenic cell line established from a tumor arisen after co-implantation of QR-32 cells with sponge. FBRA did not reduce formation of 8-hydroxy-2′-deoxyguanine adducts, a marker of oxidative DNA damage in the inflammatory lesion; however, it reduced expression of inflammation-related genes such as TNF-α, Mac-1, CCL3 and CXCL2. These results suggest that FBRA will be an effective chemopreventive agent against inflammation-related carcinogenesis that acts by inhibiting inflammatory cell infiltration into inflammatory lesions.
Collapse
Affiliation(s)
- Kunishige Onuma
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Tottori 683-8503, Japan.
| | - Yusuke Kanda
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Tottori 683-8503, Japan.
| | | | - Ryuta Sakaki
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Tottori 683-8503, Japan.
| | - Takuya Nonomura
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Tottori 683-8503, Japan.
| | - Masanobu Kobayashi
- School of Nursing and Social Services, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| | - Mitsuhiko Osaki
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Tottori 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, Tottori 683-8503, Japan.
| | | | - Hiroshi Kobayashi
- Sapporo Cancer Seminar Foundation, Sapporo, Hokkaido 001-0012, Japan.
| | - Futoshi Okada
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Tottori 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, Tottori 683-8503, Japan.
| |
Collapse
|
8
|
Sources of marine superoxide dismutases: Characteristics and applications. Int J Biol Macromol 2015; 79:627-37. [DOI: 10.1016/j.ijbiomac.2015.05.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/20/2015] [Accepted: 05/30/2015] [Indexed: 12/26/2022]
|
9
|
Chronic oxidative stress causes estrogen-independent aggressive phenotype, and epigenetic inactivation of estrogen receptor alpha in MCF-7 breast cancer cells. Breast Cancer Res Treat 2015. [DOI: 10.1007/s10549-015-3514-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Therapeutic value of oral supplementation with melon superoxide dismutase and wheat gliadin combination. Nutrition 2015; 31:430-6. [DOI: 10.1016/j.nut.2014.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/16/2014] [Accepted: 10/18/2014] [Indexed: 01/10/2023]
|
11
|
Okada F. Inflammation-related carcinogenesis: current findings in epidemiological trends, causes and mechanisms. Yonago Acta Med 2014; 57:65-72. [PMID: 25324587 PMCID: PMC4198572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 05/29/2013] [Indexed: 06/04/2023]
Abstract
Inflammation is a definite cancer-causing factor as revealed by cumulative basic, clinical and epidemiological studies. It is mostly induced by infectious agents. For instance, infection with papillomaviruses associates with anogenital cancers, especially cervical cancers; Helicobacter pylori infection of the stomach tends to increase the risk of stomach cancer; chronic hepatitis B & C viruses and fluke infections of the liver increase liver cancers; autoimmune diseases, e.g., inflammatory bowel diseases, associate with development of colorectal cancer, and aerial irritants (foreign bodies) such as asbestos or fine particulate matter (PM2.5) in outdoor air increase malignant pleural mesotheliomas or lung cancers. These are typical examples of inflammation-related carcinogenesis. It is apparent that the pathogens to induce inflammatory reactions in specific organs are not related to each other. However, the underlying pathogenesis in common is to induce and/or sustain inflammation. In this article, I would like to review the up-to-date findings of epidemiological trends, causes and mechanisms of inflammation-related carcinogenesis.
Collapse
Affiliation(s)
- Futoshi Okada
- Division of Pathological Biochemistry, Department of Biomedical Sciences, School of Life Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan ; †Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
12
|
The Effects of Olive Leaf Extract on Antioxidant Enzymes Activity and Tumor Growth in Breast Cancer. ACTA ACUST UNITED AC 2014. [DOI: 10.5812/thrita.12914] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Mahalingaiah PKS, Singh KP. Chronic oxidative stress increases growth and tumorigenic potential of MCF-7 breast cancer cells. PLoS One 2014; 9:e87371. [PMID: 24489904 PMCID: PMC3905021 DOI: 10.1371/journal.pone.0087371] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/20/2013] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence suggests that exposures to elevated levels of either endogenous estrogen or environmental estrogenic chemicals are associated with breast cancer development and progression. These natural or synthetic estrogens are known to produce reactive oxygen species (ROS) and increased ROS has been implicated in both cellular apoptosis and carcinogenesis. Though there are several studies on direct involvement of ROS in cellular apoptosis using short-term exposure model, there is no experimental evidence to directly implicate chronic exposure to ROS in increased growth and tumorigenicity of breast cancer cells. Therefore, the objective of this study was to evaluate the effects of chronic oxidative stress on growth, survival and tumorigenic potential of MCF-7 breast cancer cells. MCF-7 cells were exposed to exogenous hydrogen peroxide (H2O2) as a source of ROS at doses of 25 µM and 250 µM for acute (24 hours) and chronic period (3 months) and their effects on cell growth/survival and tumorigenic potential were evaluated. The results of cell count, MTT and cell cycle analysis showed that while acute exposure inhibits the growth of MCF-7 cells in a dose-dependent manner, the chronic exposure to H2O2-induced ROS leads to increased cell growth and survival of MCF-7 cells. This was further confirmed by gene expression analysis of cell cycle and cell survival related genes. Significant increase in number of soft agar colonies, up-regulation of pro-metastatic genes VEGF, WNT1 and CD44, whereas down-regulation of anti-metastatic gene E-Cadherin in H2O2 treated MCF-7 cells observed in this study further suggests that persistent exposure to oxidative stress increases tumorigenic and metastatic potential of MCF-7 cells. Since many chemotherapeutic drugs are known to induce their cytotoxicity by increasing ROS levels, the results of this study are also highly significant in understanding the mechanism for adaptation to ROS-induced toxicity leading to acquired chemotherapeutic resistance in breast cancer cells.
Collapse
Affiliation(s)
- Prathap Kumar S. Mahalingaiah
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas, United States of America
| | - Kamaleshwar P. Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Gao D, Li S. Stimuli-induced organ-specific injury enhancement of organotropic metastasis in a spatiotemporal regulation. Pathol Oncol Res 2013; 20:27-42. [PMID: 24357158 DOI: 10.1007/s12253-013-9734-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 12/05/2013] [Indexed: 12/11/2022]
Abstract
The relationship between inflammation and tumorigenesis has been established. Recently, inflammation is also reported to be a drive force for cancer metastasis. Further evidences show that various stimuli directly induced-injury in a specific organ can also promote metastasis in this organ, which include epidemiological reports, clinical series and experimental studies. Each type of cancer has preferential sites for metastasis, which is also due to inflammatory factors that are released by primary cancer to act on these sites and indirectly induce injuries on them. Host factors such as stress,fever can also influence distant metastasis in a specific site through stimulation of immune and inflammatory effects. The five aspects support an idea that specific-organ injury directly induced by various stimuli or indirectly induced by primary tumor or host factors activation of proinflammatory modulators can promote metastasis in this organ through a spatiotemporal regulation, which has important implications for personalized prediction, prevention and management of cancer metastasis.
Collapse
Affiliation(s)
- Dongwei Gao
- , 536 Hospital of PLA, 29# Xiadu street, Xining, 810007, Qinghai Province, People's Republic of China,
| | | |
Collapse
|
15
|
Carillon J, Rouanet JM, Cristol JP, Brion R. Superoxide dismutase administration, a potential therapy against oxidative stress related diseases: several routes of supplementation and proposal of an original mechanism of action. Pharm Res 2013; 30:2718-28. [PMID: 23793992 DOI: 10.1007/s11095-013-1113-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/04/2013] [Indexed: 12/17/2022]
Abstract
Oxidative stress, involved in many diseases, is defined as an impaired balance between reactive oxygen species (ROS) production and antioxidant defences. Antioxidant enzymes such as superoxide dismutase (SOD) play a key role in diminishing oxidative stress. Thus, the removal of ROS by exogenous SODs could be an effective preventive strategy against various diseases. The poor bioavailability of exogenous SODs has been criticized. However, improvements in SOD formulation may overcome this limitation and boost interest in its therapeutic properties. Here, we provide a review of animal and human studies about SODs supplementation in order to evaluate their therapeutic value. Protective effects have been observed against irradiation, carcinogenesis, apoptosis and neurodegeneration. SODs administration has also been reported to alleviate inflammatory, infectious, respiratory, metabolic and cardiovascular diseases and genitourinary and fertility disorders, raising the question of its mechanism of action in these diverse situations. Some authors have shown an increase in endogenous antioxidant enzymes after exogenous SODs administration. The induction of endogenous antioxidant defence and, consequently, a decrease in oxidative stress, could explain all the effects observed. Further investigations need to be carried out to test the hypothesis that SODs supplementation acts by inducing an endogenous antioxidant defence.
Collapse
Affiliation(s)
- Julie Carillon
- Nutrition & Métabolisme, UMR 204 NutriPass Prévention des Malnutritions et des Pathologies Associées, Université Montpellier 1-2, Montpellier, France
| | | | | | | |
Collapse
|
16
|
Carillon J, Fouret G, Feillet-Coudray C, Lacan D, Cristol JP, Rouanet JM. Short-term assessment of toxicological aspects, oxidative and inflammatory response to dietary melon superoxide dismutase in rats. Food Chem Toxicol 2013; 55:323-8. [PMID: 23369932 DOI: 10.1016/j.fct.2013.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/13/2013] [Accepted: 01/17/2013] [Indexed: 01/10/2023]
Abstract
The protective effects of SODB, a gastro-resistant encapsulated melon superoxide dismutase, on haematological and biochemical parameters and inflammatory and oxidative status, were evaluated in the blood and liver tissue. The study consisted in a 28-day experiment on rats supplemented with three doses (10, 40 and 160USOD/day) of SODB-M, SODB-D or SODB-S, different depending on the nature of the coating (palm oil, shellac or gum Arabic respectively). No mortality, abnormal clinical signs, behavioural changes or macroscopic findings were observed whatever the groups. Haematological parameters (total red blood cell count, haemoglobin content, haematocrit, red cell indices, white blood cell count and platelets count) were not modified in SODB treated-groups. No marked change was recorded in biochemical parameters (plasma urea, creatinine, lipids, electrolytes, bilirubin, transaminases and gamma-glutamyl transferase). The liver endogenous antioxidant enzymes (copper/zinc and manganese superoxide dismutase) expressions were significantly increased in the rats receiving the highest dose of SODB (160USOD/day) whatever the coating. Moreover, interleukin-6, a marker of inflammation, was significantly decreased in these high dose-treated-groups. The present study indicates that dietary supplementation of SODB on rats has no harmful side effects and could be beneficial especially at high doses.
Collapse
Affiliation(s)
- Julie Carillon
- Nutrition & Métabolisme, UMR 204 NutriPass - Prévention des Malnutritions et des Pathologies Associées, Université Montpellier Sud de France, Montpellier, France; Bionov R & D Department SARL, Avignon, France
| | | | | | | | | | | |
Collapse
|
17
|
Liu D, Liu A. Superoxide dismutase induces G1-phase cell cycle arrest by down-regulated expression of Cdk-2 and cyclin-E in murine sarcoma S180 tumor cells. Cell Biochem Funct 2012; 31:352-9. [DOI: 10.1002/cbf.2912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/14/2012] [Accepted: 09/10/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Dongyue Liu
- Tianjin University of Science and Technology; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Institute of Food Engineering and Biotechnology; Tianjin; China
| | - Anjun Liu
- Tianjin University of Science and Technology; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Institute of Food Engineering and Biotechnology; Tianjin; China
| |
Collapse
|
18
|
Mustapha MA, Shahpudin SNM, Aziz AAA, Ankathil R. Risk modification of colorectal cancer susceptibility by interleukin-8 -251T>A polymorphism in Malaysians. World J Gastroenterol 2012; 18:2668-73. [PMID: 22690076 PMCID: PMC3370004 DOI: 10.3748/wjg.v18.i21.2668] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/22/2011] [Accepted: 02/27/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the allele and genotype frequencies and associated risk of interleukin (IL)-8 -251T>A polymorphism on colorectal cancer (CRC) susceptibility risk.
METHODS: Peripheral blood samples of 255 normal controls and 255 clinically and histopathologically confirmed CRC patients were genotyped for IL-8 -251T>A polymorphism employing allele-specific polymerase chain reaction. The relative association of variant allele and genotypes with CRC susceptibility risk was determined by calculating the odds ratios (ORs). Corresponding χ2 tests on the CRC patients and controls were carried out and 95% confidence intervals (CIs) were determined using Fisher’s exact test. The allele frequencies and its risk association were calculated using FAMHAP, haplotype association analysis software.
RESULTS: On comparing the frequencies of genotypes of patients and controls, the homozygous variant AA was significantly higher in CRC patients (P = 0.002) compared to controls. Investigation on the association of the polymorphic genotypes with CRC susceptibility risk, showed that the homozygous variant IL-8 -251AA had a significantly increased risk with OR 3.600 (95% CI: 1.550-8.481, P = 0.001). In the case of allele frequencies, variant allele A of IL-8 -251 showed a significantly increased risk of CRC predisposition with OR 1.32 (95% CI: 1.03-1.69, P = 0.003).
CONCLUSION: Variant allele and genotype of IL-8 (-251T>A) was significantly associated with CRC susceptibility risk and could be considered as a high-risk variant for CRC predisposition.
Collapse
|
19
|
Development of a quantitative bioassay to assess preventive compounds against inflammation-based carcinogenesis. Nitric Oxide 2011; 25:183-94. [PMID: 21345376 DOI: 10.1016/j.niox.2011.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 02/06/2023]
Abstract
Reducing cancer incidence and mortality by use of cancer-chemopreventive agents is an important goal. We have established an in vitro bioassay that is able to screen large numbers of candidate chemicals that are positive for prevention of inflammation-related carcinogenesis. To accomplish this we have added candidate chemicals or vehicles and freshly isolated, fluorescent dye-labeled inflammatory cells that were overlaid on TNF-alpha-stimulated mouse endothelial cells in a 96-well plate. Inhibition of inflammatory cell attachment to the endothelial cells by the chemicals was quantified by the intensity of fluorescence from the adherent inflammatory cells after removing unattached cells. Using this assay, we selected two chemicals, auraptene and turmerones, for further study. As an in vivo test, diets containing these test chemicals were administered to mice with a piece of foreign body, gelatin sponge, that had been implanted to cause inflammation, and we found that the number of inflammatory cells that infiltrated into the subcutaneously implanted gelatin sponge was reduced compared to that found in the mice fed with a control diet. Moreover, diets containing either of the two chemicals prevented inflammation-based carcinogenesis in a mouse model. We found that the compounds reduced not only the number of infiltrating cells but also the expression of inducible nitric oxide synthase (iNOS) or formation of 8-hydroxy-2'-deoxyguanine (8-OHdG) in the infiltrated cells. Moreover, both compounds but not controls sustained the reducing activity in the inflammatory lesion, and this finding was confirmed by using non-invasive in vivo electron spin resonance. The newly established in vitro screening assay will be useful for finding biologically effective chemopreventive agents against inflammation-related carcinogenesis.
Collapse
|
20
|
Asaduzzaman Khan M, Tania M, Zhang DZ, Chen HC. Antioxidant enzymes and cancer. Chin J Cancer Res 2010; 22:87-92. [DOI: 10.1007/s11670-010-0087-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
21
|
Kundu JK, Surh YJ. Nrf2-Keap1 signaling as a potential target for chemoprevention of inflammation-associated carcinogenesis. Pharm Res 2010; 27:999-1013. [PMID: 20354764 DOI: 10.1007/s11095-010-0096-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 02/15/2010] [Indexed: 12/12/2022]
Abstract
Persistent inflammatory tissue damage is causally associated with each stage of carcinogenesis. Inflammation-induced generation of reactive oxygen species, reactive nitrogen species, and other reactive species not only cause DNA damage and subsequently mutations, but also stimulate proliferation of initiated cells and even metastasis and angiogenesis. Induction of cellular cytoprotective enzymes (e.g., heme oxygenase-1, NAD(P)H:quinone oxidoreductase, superoxide dismutase, glutathione-S-transferase, etc.) has been shown to mitigate aforementioned events implicated in inflammation-induced carcinogenesis. A unique feature of genes encoding these cytoprotective enzymes is the presence of a cis-acting element, known as antioxidant response element (ARE) or electrophile response element (EpRE), in their promoter region. A stress-responsive transcription factor, nuclear factor erythroid-2-related factor-2 (Nrf2), initially recognized as a key transcriptional regulator of various cytoprotective enzymes, is known to play a pivotal role in cellular defense against inflammatory injuries. Activation of Nrf2 involves its release from the cytosolic repressor Kelch-like ECH-associated protein-1 (Keap1) and subsequent stabilization and nuclear localization for ARE/EpRE binding. Genetic or pharmacologic inactivation of Nrf2 has been shown to abolish cytoprotective capability and to aggravate experimentally induced inflammatory injuries. Thus, Nrf2-mediated cytoprotective gene induction is an effective strategy for the chemoprevention of inflammation-associated carcinogenesis.
Collapse
Affiliation(s)
- Joydeb Kumar Kundu
- College of Pharmacy, Seoul National University, 599 Kwanak-ro, Kwanak-ku, Seoul 151-742, South Korea
| | | |
Collapse
|
22
|
Joosse A, De Vries E, van Eijck CH, Eggermont AMM, Nijsten T, Coebergh JWW. Reactive oxygen species and melanoma: an explanation for gender differences in survival? Pigment Cell Melanoma Res 2010; 23:352-64. [PMID: 20218981 DOI: 10.1111/j.1755-148x.2010.00694.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Epidemiological research consistently shows a female advantage in melanoma survival. So far, no definite candidate for the explanation of this phenomenon has emerged. We propose that gender differences in oxidative stress caused by radical oxygen species (ROS) underlie these survival differences. It is known that males express lower amounts of anti-oxidant enzymes, resulting in more oxidative stress than females. The primary melanoma environment is characterized by high ROS levels, from exogenous sources as well as ROS production within melanoma cells themselves. ROS are known to be able to promote metastasis through a wide variety of mechanisms. We hypothesize that the higher levels of ROS in men enhance selection of ROS-resistance in melanoma cells. Subsequently, ROS can stimulate the metastatic potential of melanoma cells. In addition, due to the lower anti-oxidant defenses in men, ROS produced by melanoma cells cause more damage to healthy tissues surrounding the tumor, further stimulating metastasis. Therefore, ROS may explain the observed differences between males and females in melanoma survival.
Collapse
Affiliation(s)
- Arjen Joosse
- Department of Public Health, Erasmus University Medical Centre, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
23
|
Onuma K, Sato Y, Ogawara S, Shirasawa N, Kobayashi M, Yoshitake J, Yoshimura T, Iigo M, Fujii J, Okada F. Nano-scaled particles of titanium dioxide convert benign mouse fibrosarcoma cells into aggressive tumor cells. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2171-83. [PMID: 19815711 DOI: 10.2353/ajpath.2009.080900] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nanoparticles are prevalent in both commercial and medicinal products; however, the contribution of nanomaterials to carcinogenesis remains unclear. We therefore examined the effects of nano-sized titanium dioxide (TiO(2)) on poorly tumorigenic and nonmetastatic QR-32 fibrosarcoma cells. We found that mice that were cotransplanted subcutaneously with QR-32 cells and nano-sized TiO(2), either uncoated (TiO(2)-1, hydrophilic) or coated with stearic acid (TiO(2)-2, hydrophobic), did not form tumors. However, QR-32 cells became tumorigenic after injection into sites previously implanted with TiO(2)-1, but not TiO(2)-2, and these developing tumors acquired metastatic phenotypes. No differences were observed either histologically or in inflammatory cytokine mRNA expression between TiO(2)-1 and TiO(2)-2 treatments. However, TiO(2)-2, but not TiO(2)-1, generated high levels of reactive oxygen species (ROS) in cell-free conditions. Although both TiO(2)-1 and TiO(2)-2 resulted in intracellular ROS formation, TiO(2)-2 elicited a stronger response, resulting in cytotoxicity to the QR-32 cells. Moreover, TiO(2)-2, but not TiO(2)-1, led to the development of nuclear interstices and multinucleate cells. Cells that survived the TiO(2) toxicity acquired a tumorigenic phenotype. TiO(2)-induced ROS formation and its related cell injury were inhibited by the addition of antioxidant N-acetyl-l-cysteine. These results indicate that nano-sized TiO(2) has the potential to convert benign tumor cells into malignant ones through the generation of ROS in the target cells.
Collapse
Affiliation(s)
- Kunishige Onuma
- Department of Biochemistry and Molecular Biology, Yamagata University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
An R, Chu YL, Tian C, Dai XX, Chen JH, Shi Q, Han J, Dong XP. Over-expression of nm23-H1 in HeLa cells provides cells with higher resistance to oxidative stress possibly due to raising intracellular p53 and GPX1. Acta Pharmacol Sin 2008; 29:1451-8. [PMID: 19026164 DOI: 10.1111/j.1745-7254.2008.00902.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AIM To determine whether the antitumor factor nm23 is related with antioxidation. METHODS Full-length human nm23-H1 was cloned into a mammalianexpressing vector and transiently introduced into HeLa cells. RESULTS A remarkably low level of reactive oxygen species (ROS) was detected in the cells overexpressing nm23-H1. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and trypan blue assays found that the cells transfected with a nm23- H1-expressing plasmid had higher viability and stronger resistance to oxidative stress. Immunoprecipitation tests revealed that endogenous nm23-H1 formed a protein complex with p53. Furthermore, the intracellular levels of p53 and p53- regulated gene GPX1 were obviously increased in the cells overexpressing nm23- H1. The downregulation of p53 in the cells overexpressing nm23-H1 resulted in a higher cellular ROS level and lower cell viability. CONCLUSION The findings suggest that nm23-H1 may act as a cellular protector against oxidative stress, possibly triggering the p53-related antioxidative pathway.
Collapse
Affiliation(s)
- Run An
- School of Medicine, Xi'an Jiao-Tong University, Xi'an 710061, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett 2008; 266:6-11. [PMID: 18372104 DOI: 10.1016/j.canlet.2008.02.026] [Citation(s) in RCA: 408] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 02/12/2008] [Accepted: 02/14/2008] [Indexed: 11/20/2022]
Abstract
Transformation of a normal cell to a malignant one requires phenotypic changes often associated with each of the initiation, promotion and progression phases of the carcinogenic process. Genes in each of these phases acquire alterations in their transcriptional activity that are associated either with hypermethylation-induced transcriptional repression (in the case of tumor suppressor genes) or hypomethylation-induced activation (in the case of oncogenes). Growing evidence supports a role of ROS-induced generation of oxidative stress in these epigenetic processes and as such we can hypothesize of potential mode(s) of action by which oxidative stress modulates epigenetic regulation of gene expression. This is of outmost importance given that various components of the epigenetic pathway and primarily aberrant DNA methylation patterns are used as potential biomarkers for cancer diagnosis and prognosis.
Collapse
|
26
|
Abstract
'Reactive species' (RS) of various types are formed in vivo and many are powerful oxidizing agents, capable of damaging DNA and other biomolecules. Increased formation of RS can promote the development of malignancy, and the 'normal' rates of RS generation may account for the increased risk of cancer development in the aged. Indeed, knockout of various antioxidant defence enzymes raises oxidative damage levels and promotes age-related cancer development in animals. In explaining this, most attention has been paid to direct oxidative damage to DNA by certain RS, such as hydroxyl radical (OH*). However, increased levels of DNA base oxidation products such as 8OHdg (8-hydroxy-2'-deoxyguanosine) do not always lead to malignancy, although malignant tumours often show increased levels of DNA base oxidation. Hence additional actions of RS must be important, possibly their effects on p53, cell proliferation, invasiveness and metastasis. Chronic inflammation predisposes to malignancy, but the role of RS in this is likely to be complex because RS can sometimes act as anti-inflammatory agents.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, MD7 Level 2 Singapore 117597.
| |
Collapse
|
27
|
Okada F. Beyond foreign-body-induced carcinogenesis: Impact of reactive oxygen species derived from inflammatory cells in tumorigenic conversion and tumor progression. Int J Cancer 2007; 121:2364-72. [PMID: 17893867 DOI: 10.1002/ijc.23125] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Foreign-body-induced carcinogenesis is a traditional, maybe old, way of understanding cancer development. A number of novel approaches are available today to elucidate cancer development. However, there are things we learn from the old, and thus I bring out some examples of various clinical cases and experimental models of foreign-body-induced tumorigenesis. What is notable is that the foreign bodies themselves are unrelated to each other, whereas commonly underlying in them is to induce inflammatory reaction, especially stromal proliferation, where those exogenous materials are incorporated and undigested. Such foreign-body-induced carcinogenesis is also recognized in the step of tumor progression, the final step of carcinogenesis that tumor cells acquire malignant phenotypes including metastatic properties. And the phenomenon is universally observed in several cell lines of different origins. In this review I would like to show the evidence that tumor development and progression are accelerated inevitably by inflammation caused from foreign bodies, and that reactive oxygen species derived from inflammatory cells are one of the most important genotoxic mediators to accelerate the process.
Collapse
Affiliation(s)
- Futoshi Okada
- Department of Biomolecular Function, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|