1
|
Seagle HM, Keller SR, Tavtigian SV, Horton C, Holowatyj AN. Clinical Multigene Panel Testing Identifies Racial and Ethnic Differences in Germline Pathogenic Variants Among Patients With Early-Onset Colorectal Cancer. J Clin Oncol 2023; 41:4279-4289. [PMID: 37319387 PMCID: PMC10852379 DOI: 10.1200/jco.22.02378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE The early-onset colorectal cancer (EOCRC) burden differs across racial/ethnic groups, yet the role of germline genetic predisposition in EOCRC disparities remains uncharacterized. We defined the prevalence and spectrum of inherited colorectal cancer (CRC) susceptibility gene variations among patients with EOCRC by race and ethnicity. PATIENTS AND METHODS We included individuals diagnosed with a first primary CRC between age 15 and 49 years who identified as Ashkenazi Jewish, Asian, Black, Hispanic, or White and underwent germline genetic testing of 14 CRC susceptibility genes performed by a clinical testing laboratory. Variant comparisons by racial and ethnic groups were evaluated using chi-square tests and multivariable logistic regression adjusted for sex, age, CRC site, and number of primary colorectal tumors. RESULTS Among 3,980 patients with EOCRC, a total of 530 germline pathogenic or likely pathogenic variants were identified in 485 individuals (12.2%). By race/ethnicity, 12.7% of Ashkenazim patients, 9.5% of Asian patients, 10.3% of Black patients, 14.0% of Hispanic patients, and 12.4% of White patients carried a germline variant. The prevalence of Lynch syndrome (P = .037), as well as APC, CHEK2, MLH1, monoallelic MUTYH, and PTEN variants, varied by race/ethnicity among patients with EOCRC (all P < .026). Ashkenazim and Hispanic patients had significantly higher odds of presenting with a pathogenic APC variant, which included p.I1307K (odds ratio [OR], 2.67; 95% CI, 1.30 to 5.49; P = .007) and MLH1 variant (OR, 8.69; 95% CI, 2.68 to 28.20; P = .0003), respectively, versus White patients in adjusted models. CONCLUSION Germline genetic features differed by race/ethnicity in young patients with CRC, suggesting that current multigene panel tests may not be representative of EOCRC risk in diverse populations. Further study is needed to optimize genes selected for genetic testing in EOCRC via ancestry-specific gene and variant discovery to yield equitable clinical benefits for all patients and to mitigate inequities in disease burden.
Collapse
Affiliation(s)
- Hannah M. Seagle
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt University School of Medicine, Nashville, TN
| | - Samantha R. Keller
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt University School of Medicine, Nashville, TN
| | - Sean V. Tavtigian
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT
| | - Carolyn Horton
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, CA
| | - Andreana N. Holowatyj
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt University School of Medicine, Nashville, TN
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT
- Vanderbilt-Ingram Cancer Center, Nashville, TN
| |
Collapse
|
2
|
Du YX, Mamun AA, Lyu AP, Zhang HJ. Natural Compounds Targeting the Autophagy Pathway in the Treatment of Colorectal Cancer. Int J Mol Sci 2023; 24:7310. [PMID: 37108476 PMCID: PMC10138367 DOI: 10.3390/ijms24087310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Autophagy is a highly conserved intracellular degradation pathway by which misfolded proteins or damaged organelles are delivered in a double-membrane vacuolar vesicle and finally degraded by lysosomes. The risk of colorectal cancer (CRC) is high, and there is growing evidence that autophagy plays a critical role in regulating the initiation and metastasis of CRC; however, whether autophagy promotes or suppresses tumor progression is still controversial. Many natural compounds have been reported to exert anticancer effects or enhance current clinical therapies by modulating autophagy. Here, we discuss recent advancements in the molecular mechanisms of autophagy in regulating CRC. We also highlight the research on natural compounds that are particularly promising autophagy modulators for CRC treatment with clinical evidence. Overall, this review illustrates the importance of autophagy in CRC and provides perspectives for these natural autophagy regulators as new therapeutic candidates for CRC drug development.
Collapse
Affiliation(s)
| | | | - Ai-Ping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China; (Y.-X.D.); (A.A.M.)
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China; (Y.-X.D.); (A.A.M.)
| |
Collapse
|
3
|
MUTYH-associated tumor syndrome: The other face of MAP. Oncogene 2022; 41:2531-2539. [DOI: 10.1038/s41388-022-02304-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
|
4
|
Risk of colorectal adenomas and cancer in monoallelic carriers of MUTYH pathogenic variants: a single-centre experience. Int J Colorectal Dis 2021; 36:2199-2204. [PMID: 34244858 PMCID: PMC8426294 DOI: 10.1007/s00384-021-03983-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE The carrier frequency of MUTYH pathogenic variants in the population may be as high as one in 45. Some studies have found an increased risk of colorectal cancer (CRC) in monoallelic carriers of MUTYH pathogenic variants, but the role of early surveillance colonoscopy is not conclusive. This study aimed to assess the outcomes of colonoscopy surveillance in MUTYH carriers. METHODS Patients, with a monoallelic pathogenic variant in MUTYH, found at cascade testing, were identified from the St Mark's Hospital Polyposis Registry database. Findings at surveillance colonoscopy were reviewed. RESULTS Two hundred and forty-nine carriers were identified, of whom 125 had undergone at least one surveillance colonoscopy. Twenty-eight patients (22%) developed at least one adenoma; all adenomas had low-grade dysplasia (LGD). The median age at first colonoscopy was 36 years (range 16-75 years). The median age at first adenoma detection was 43 years (range 22-75 years). The cumulative incidence of adenoma development by age 30, 40, 50, 60 and 70 years was 3.2%, 8.8%, 15.2%, 18.4% and 20.8%, respectively. No CRCs were observed. CONCLUSIONS Our cohort of monoallelic carriers of MUTYH pathogenic variants is a relatively younger group than adults entering population screening colonoscopy, but a high adenoma rate was not observed. No CRCs were detected, suggesting that current guidance that these individuals should be managed in the same way as the general population is reasonable.
Collapse
|
5
|
Endoscopic Phenotype of Monoallelic Carriers of MUTYH Gene Mutations in the Family of Polyposis Patients: A Prospective Study. Dis Colon Rectum 2019; 62:470-475. [PMID: 30640315 DOI: 10.1097/dcr.0000000000001323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Almost no prospective data on endoscopy in MUTYH monoallelic carriers are available. OBJECTIVE This study aimed to define the prevalence of colorectal and duodenal adenomas in a population of people presenting with a single mutation of the MUTYH gene and being first-degree relatives of biallelic MUTYH mutation carriers. DESIGN This study is a prospective cohort evaluation. PATIENTS Patients were first-degree relatives of a patient who had polyposis with biallelic MUTYH mutation and carrying a single gene mutation of the gene from 12 French centers. SETTINGS This is a multicenter study. INTERVENTION Detailed data on life habits (tobacco, alcohol, and nonsteroidal anti-inflammatory drugs), extraintestinal manifestations, and germline analysis were recorded. Complete endoscopic evaluation (colonoscopy and upper endoscopy) with chromoendoscopy was performed. RESULTS Sixty-two patients were prospectively included (34 women (55%), mean age of 54, range 30-70 years). Thirty-two patients (52%) presented with colorectal polyps at colonoscopy. Of these patients with polyps, 15 (25%) had only adenomas, 8 (13%) had only hyperplastic polyps, 1 (1%) had sessile serrated adenomas, and 8 (13%) had adenomas and/or sessile serrated adenomas. We detected, in total, 29 adenomas with low-grade dysplasia, 5 adenomas with high-grade dysplasia, and 6 sessile serrated adenomas. Fourteen patients (23%) presented with a single adenoma, and 10 (16%) had 1 to 5 adenomas. No patient had more than 5 adenomas. At upper endoscopy, 3 had a limited number of fundic gland polyps; none had duodenal adenomas. The 2 main missense mutations c.1145G>A, p.Gly382Asp and c.494A>G, p.Tyr165Cys were associated with the development of colorectal adenomas/serrated polyps in these monoallelic carriers. LIMITATIONS This study was limited by the small number of patients. CONCLUSIONS This prospective study provides unique prospective data suggesting that monoallelic mutation carriers related to patients with polyposis show no colorectal polyposis and have very limited upper GI manifestations justifying an endoscopic follow-up. See Video Abstract at http://links.lww.com/DCR/A862.
Collapse
|
6
|
Zorcolo L, Fantola G, Balestrino L, Restivo A, Vivanet C, Spina F, Cabras F, Ambu R, Casula G. MUTYH-associated colon disease: Adenomatous polyposis is only one of the possible phenotypes. A family report and literature review. TUMORI JOURNAL 2018; 97:676-80. [DOI: 10.1177/030089161109700523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aims and background The MutY human homologue gene (MUTYH) is responsible for about a quarter of attenuated familial adenomatous polyposis. Occasionally, it has been associated with hyperplastic polyps and serrated adenoma. We report a family where the same MUTYH mutation determined four different phenotypes, including a case of hyperplastic polyposis syndrome. Patients and methods A family with a history of right-sided colon cancer and multiple colonic polyposis was investigated. Genetic tests were correlated with clinical findings to define phenotypic manifestations of MUTYH mutations. The pertinent English-language literature was reviewed to evaluate the risk of malignancy of MUTYH and the role of prophylactic surgery. Results Three male siblings carried a biallelic MUTYH mutation (G382D-exon13), while the fourth was heterozygote. One developed an isolated cecal cancer at the age of 48. Another, aged 38, was diagnosed with numerous minute colonic and rectal polyps and underwent a proctocolectomy, with final pathology showing a picture of hyperplastic and lymphoid polyposis. The third biallelic brother, 46 years old, developed four hyperplastic lesions, while the heterozygote brother had a large flat serrated adenoma of the right colon removed at the age of 50. Conclusion Many aspects of MUTYH mutation still need to be clarified and one of them regards the different phenotypic expressions. Although the majority of reported cases manifested attenuated adenomatous polyposis, hyperplastic polyps and serrated adenomas appear to be more common than expected. Presenting hyperplastic polyposis syndrome is very unusual and may represent a clinical dilemma for correct management. Current evidence suggests to handle MUTYH-associated polyposis as typical FAP.
Collapse
Affiliation(s)
- Luigi Zorcolo
- Department of General Surgery, Colorectal Unit, University of Cagliari, Cagliari
| | - Giovanni Fantola
- Department of General Surgery, Colorectal Unit, University of Cagliari, Cagliari
| | | | - Angelo Restivo
- Department of General Surgery, Colorectal Unit, University of Cagliari, Cagliari
| | | | | | - Francesco Cabras
- Department of General Surgery, Colorectal Unit, University of Cagliari, Cagliari
| | - Rossano Ambu
- Department of Pathology, University of Cagliari, Cagliari, Italy
| | - Giuseppe Casula
- Department of General Surgery, Colorectal Unit, University of Cagliari, Cagliari
| |
Collapse
|
7
|
Angel J, DiGiovanni J. Genetic Determinants of Cancer Susceptibility. COMPREHENSIVE TOXICOLOGY 2018:330-360. [DOI: 10.1016/b978-0-12-801238-3.65251-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Abstract
Colorectal cancer (CRC) is a heterogeneous triat that involves both environmental and genetic factors. Genetic mutations of MUTYH (p.Y179C and p.G396D) have been reported to be associated with increased risk of CRC among several ethnic populations. The aim of this work is to assess the association of the monoallelic MUTYH mutations (p.Y179C and p.G396D) with increased risk of CRC among Egyptian patients. This study included 120 unrelated CRC Egyptian patients who were compared with 100 healthy controls from the same locality. For all individuals, DNA was genotyped for MUTYH p.Y179C and MUTYH p.G396D mutations using the T-ARMS-PCR technique. The frequencies of monoallelic MUTYH mutations showed a strong association with the increased risk of CRC among Egyptian patients compared with controls (12.5 vs. 4.0 %, OR = 3.49, 95 % CI = 1.12-10.90, P = 0.03). Moreover, the frequency of MUTYH p.Y179C mutation was noted to be significantly higher among CRC patients compared to controls rather than MUTYH p.G396D mutation. Interestingly, CRC patients with tumors in the right side colon showed an evidence for association with the MUTYH p.Y179C mutation compared with tumors in the left side colon (p = 0.01). MUTYH p.Y179C mutation was associated with an increased risk of CRC among Egyptian patients rather than MUTYH p.G396D mutation.
Collapse
|
9
|
Wang T, Goodman M, Sun YV, Thyagarajan B, Gross M, Bostick RM. DNA base excision repair genetic risk scores, oxidative balance, and incident, sporadic colorectal adenoma. Mol Carcinog 2017; 56:1642-1652. [PMID: 28120344 DOI: 10.1002/mc.22620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/10/2017] [Accepted: 01/20/2017] [Indexed: 12/27/2022]
Abstract
Associations of individual base excision repair (BER) genotypes with colorectal adenoma risk are unclear, but likely modest. However, genetic risk scores (GRS) that aggregate information from multiple genetic variants might be useful for assessing genetic predisposition to colorectal adenoma. We analyzed data pooled from three colonoscopy-based case-control studies of incident, sporadic colorectal adenoma (n = 488 cases, 604 controls) that collected blood for genotyping and extensive dietary and other data. We randomly split our population sample into training samples (half of the participants) and validation samples (the remaining participants) 10 times. Associations of 65 individual single nucleotide polymorphisms (SNPs) in 15 BER genes were assessed in the training samples and used to combine information from multiple risk variants into a BER GRS among the validation samples using unweighted and weighted methods. We also combined 15 extrinsic exposures with known pro- or antioxidant properties into an oxidative balance score (OBS). Associations of the BER GRS with colorectal adenoma, overall and jointly with the OBS, were assessed using multivariable logistic regression. The odds ratio for those in the highest relative to the lowest tertile of the weighted BER GRS was 2.07 (95% confidence interval, 1.26-3.40; ptrend = 0.01). Relative to those with both a low GRS and a high (more antioxidant) OBS, the estimated direct association for those with both a high BER GRS and a low OBS was stronger than for those in other GRS/OBS categories. Our findings suggest that BER genotypes collectively may be associated with incident sporadic colorectal adenomas.
Collapse
Affiliation(s)
- Tengteng Wang
- Department of Epidemiology, University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, North Carolina.,Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia
| | - Michael Goodman
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Myron Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Roberd M Bostick
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
10
|
Whole Gene Capture Analysis of 15 CRC Susceptibility Genes in Suspected Lynch Syndrome Patients. PLoS One 2016; 11:e0157381. [PMID: 27300758 PMCID: PMC4907507 DOI: 10.1371/journal.pone.0157381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/27/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND AIMS Lynch Syndrome (LS) is caused by pathogenic germline variants in one of the mismatch repair (MMR) genes. However, up to 60% of MMR-deficient colorectal cancer cases are categorized as suspected Lynch Syndrome (sLS) because no pathogenic MMR germline variant can be identified, which leads to difficulties in clinical management. We therefore analyzed the genomic regions of 15 CRC susceptibility genes in leukocyte DNA of 34 unrelated sLS patients and 11 patients with MLH1 hypermethylated tumors with a clear family history. METHODS Using targeted next-generation sequencing, we analyzed the entire non-repetitive genomic sequence, including intronic and regulatory sequences, of 15 CRC susceptibility genes. In addition, tumor DNA from 28 sLS patients was analyzed for somatic MMR variants. RESULTS Of 1979 germline variants found in the leukocyte DNA of 34 sLS patients, one was a pathogenic variant (MLH1 c.1667+1delG). Leukocyte DNA of 11 patients with MLH1 hypermethylated tumors was negative for pathogenic germline variants in the tested CRC susceptibility genes and for germline MLH1 hypermethylation. Somatic DNA analysis of 28 sLS tumors identified eight (29%) cases with two pathogenic somatic variants, one with a VUS predicted to pathogenic and LOH, and nine cases (32%) with one pathogenic somatic variant (n = 8) or one VUS predicted to be pathogenic (n = 1). CONCLUSIONS This is the first study in sLS patients to include the entire genomic sequence of CRC susceptibility genes. An underlying somatic or germline MMR gene defect was identified in ten of 34 sLS patients (29%). In the remaining sLS patients, the underlying genetic defect explaining the MMRdeficiency in their tumors might be found outside the genomic regions harboring the MMR and other known CRC susceptibility genes.
Collapse
|
11
|
Macaron C, Heald B, Burke CA. Using Genetics to Identify Hereditary Colorectal Polyposis and Cancer Syndromes in Your Patient. Curr Gastroenterol Rep 2016; 17:463. [PMID: 26292665 DOI: 10.1007/s11894-015-0463-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The majority of patients with colorectal polyps and cancer do not have a Mendelian cause of the disease. Age, lifestyle, and environmental factors interact with complex genetic traits to contribute to the etiology. However, approximately 5-10 % of patients with colorectal cancer (CRC) and more than 40 % of patients meeting specific clinical features of the hereditary polyposis syndromes have a discoverable, actionable genetic cause which will significantly alter their medical management.
Collapse
Affiliation(s)
- Carole Macaron
- Section of Gastroenterology, Department of Veterans Affairs, Louis Stokes Cleveland Medical Center, Cleveland, 44106, OH, USA
| | | | | |
Collapse
|
12
|
Komine K, Shimodaira H, Takao M, Soeda H, Zhang X, Takahashi M, Ishioka C. Functional Complementation Assay for 47 MUTYH Variants in a MutY-Disrupted Escherichia coli Strain. Hum Mutat 2016; 36:704-11. [PMID: 25820570 PMCID: PMC4682456 DOI: 10.1002/humu.22794] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 03/25/2015] [Indexed: 12/27/2022]
Abstract
MUTYH-associated polyposis (MAP) is an adenomatous polyposis transmitted in an autosomal-recessive pattern, involving biallelic inactivation of the MUTYH gene. Loss of a functional MUTYH protein will result in the accumulation of G:T mismatched DNA caused by oxidative damage. Although p.Y179C and p.G396D are the two most prevalent MUTYH variants, more than 200 missense variants have been detected. It is difficult to determine whether these variants are disease-causing mutations or single-nucleotide polymorphisms. To understand the functional consequences of these variants, we generated 47 MUTYH gene variants via site-directed mutagenesis, expressed the encoded proteins in MutY-disrupted Escherichia coli, and assessed their abilities to complement the functional deficiency in the E. coli by monitoring spontaneous mutation rates. Although the majority of variants exhibited intermediate complementation relative to the wild type, some variants severely interfered with this complementation. However, some variants retained functioning similar to the wild type. In silico predictions of functional effects demonstrated a good correlation. Structural prediction of MUTYH based on the MutY protein structure allowed us to interpret effects on the protein stability or catalytic activity. These data will be useful for evaluating the functional consequences of missense MUTYH variants detected in patients with suspected MAP.
Collapse
Affiliation(s)
- Keigo Komine
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Japan.,Department of Clinical Oncology, Tohoku University Hospital, Aoba-ku, Sendai, Japan
| | - Hideki Shimodaira
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Japan.,Department of Clinical Oncology, Tohoku University Hospital, Aoba-ku, Sendai, Japan
| | - Masashi Takao
- Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Japan
| | - Hiroshi Soeda
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Japan.,Department of Clinical Oncology, Tohoku University Hospital, Aoba-ku, Sendai, Japan
| | - Xiaofei Zhang
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Japan
| | - Masanobu Takahashi
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Japan.,Department of Clinical Oncology, Tohoku University Hospital, Aoba-ku, Sendai, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Japan.,Department of Clinical Oncology, Tohoku University Hospital, Aoba-ku, Sendai, Japan
| |
Collapse
|
13
|
Abstract
Approximately 5 to 10% of colorectal cancers develop within a known hereditary syndrome. Specific underlying genetic mutations drive the clinical phenotype and it is imperative to determine the genetic etiology to provide meaningful surveillance and intervention. Recognizing potential patients and families with a hereditary predisposition is the first step in management. Syndromes can be categorized according to polyp burden as polyposis or nonpolyposis. Clinical assessment should start with a personal and family medical history, physical examination, and evaluation for the presence and type of colorectal polyps or cancers. Key information is gained from these simple steps and should guide the specific genetic analysis for diagnosis. Genetic counseling is a critical component to any hereditary colorectal cancer program and should be conducted before genetic testing to provide education about the implications of test results. This review focuses on the thought process that drives initial clinical evaluation and guides genetic testing for patients with suspected hereditary colorectal cancer syndromes.
Collapse
Affiliation(s)
- Matthew F. Kalady
- Department of Colorectal Surgery, Digestive Disease Institute, Cleveland, Ohio
- Sanford R. Weiss, MD, Center for Hereditary Colorectal Neoplasia, Cleveland, Ohio
| | - Brandie Heald
- Sanford R. Weiss, MD, Center for Hereditary Colorectal Neoplasia, Cleveland, Ohio
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
14
|
Leoz ML, Carballal S, Moreira L, Ocaña T, Balaguer F. The genetic basis of familial adenomatous polyposis and its implications for clinical practice and risk management. APPLICATION OF CLINICAL GENETICS 2015; 8:95-107. [PMID: 25931827 PMCID: PMC4404874 DOI: 10.2147/tacg.s51484] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Familial adenomatous polyposis (FAP) is an inherited disorder that represents the most common gastrointestinal polyposis syndrome. Germline mutations in the APC gene were initially identified as responsible for FAP, and later, several studies have also implicated the MUTYH gene as responsible for this disease, usually referred to as MUTYH-associated polyposis (MAP). FAP and MAP are characterized by the early onset of multiple adenomatous colorectal polyps, a high lifetime risk of colorectal cancer (CRC), and in some patients the development of extracolonic manifestations. The goal of colorectal management in these patients is to prevent CRC mortality through endoscopic and surgical approaches. Individuals with FAP and their relatives should receive appropriate genetic counseling and join surveillance programs when indicated. This review is focused on the description of the main clinical and genetic aspects of FAP associated with germline APC mutations and MAP.
Collapse
Affiliation(s)
- Maria Liz Leoz
- Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Sabela Carballal
- Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Leticia Moreira
- Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Teresa Ocaña
- Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Francesc Balaguer
- Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| |
Collapse
|
15
|
Yang L, Huang XE, Xu L, Zhou JN, Yu DS, Zhou X, Li DZ, Guan X. Role of MYH polymorphisms in sporadic colorectal cancer in China: a case-control, population-based study. Asian Pac J Cancer Prev 2015; 14:6403-9. [PMID: 24377541 DOI: 10.7314/apjcp.2013.14.11.6403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Biallelic germline variants of the 8-hydroxyguanine (8-OG) repair gene MYH have been associated with colorectal neoplasms that display somatic G:C?T:A transversions. However, the effect of single germline variants has not been widely studied, prompting the present investigation of monoallelic MYH variants and susceptibility to sporadic colorectal cancer (CRC) in a Chinese population. PATIENTS AND METHODS Between January 2006 and December 2012, 400 cases of sporadic CRC and 600 age- and sex-matched normal blood donors were screened randomly for 7 potentially pathogenic germline MYH exons using genetic testing technology. Variants of heterozygosity at the MYH locus were assessed in both sporadic cancer patients and healthy controls. Univariate and multivariate analyses were performed to determine risk factors for cancer onset. RESULTS Five monoallelic single nucleotide polymorphisms (SNPs) were identified in the 7 exon regions of MYH, which were detected in 75 (18.75%) of 400 CRC patients as well as 42 (7%) of 600 normal controls. The region of exon 1 proved to be a linked polymorphic region for the first time, a triple linked variant including exon 1-316 G?A, exon 1-292 G?A and intron 1+11 C?T, being identified in 13 CRC patients and 2 normal blood donors. A variant of base replacement, intron 10-2 A?G, was identified in the exon 10 region in 21 cases and 7 controls, while a similar type of variant in the exon 13 region, intron 13+12 C?T, was identified in 8 cases and 6 controls. Not the only but a newly missense variant in the present study, p. V463E (Exon 14+74 T?A), was identified in exon 14 in 6 patients and 1 normal control. In exon 16, nt. 1678-80 del GTT with loss of heterozygosity (LOH) was identified in 27 CRC cases and 26 controls. There was no Y165C in exon 7 or G382D in exon 14, the hot- spot variants which have been reported most frequently in Caucasian studies. After univariate analysis and multivariate analysis, the linked variant in exon 1 region (p=0.002), intron 10-2 A?G (p=0.004) and p. V463E (p=0.036) in the MYH gene were selected as 3 independent risk factors for CRC. CONCLUSIONS According to these results, the linked variant in Exon 1 region, Intron 10-2 A?G of base replacement and p. V463E of missense variant, the 3 heterozygosity variants of MYH gene in a Chinese population, may relate to the susceptibility to sporadic CRC. Lack of the hot-spot variants of Caucasians in the present study may due to the ethnic difference in MYH gene.
Collapse
Affiliation(s)
- Liu Yang
- Colorectal Cancer Center, the Affiliated Jiangsu Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, China E-mail : ,
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Macaron C, Leach BH, Burke CA. Hereditary colorectal cancer syndromes and genetic testing. J Surg Oncol 2014; 111:103-11. [PMID: 24975382 DOI: 10.1002/jso.23706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 05/24/2014] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer and cancer deaths in the Western world. Approximately 5-10% of CRC are hereditary, due to a defined genetic cause. Individuals and families affected with a hereditary CRC syndrome exhibit benign and malignant extra-intestinal tumors, require aggressive cancer screening and benefit from management by a multi-disciplinary team of professionals. The clinical manifestations, genetic causes and current management of patients with hereditary colon cancer syndrome is provided.
Collapse
Affiliation(s)
- Carole Macaron
- Department of Gastroenterology and Hepatology, The Cleveland Clinic, Cleveland, Ohio
| | | | | |
Collapse
|
17
|
Buecher B, Bonaïti C, Buisine MP, Colas C, Saurin JC. French experts report on MUTYH-associated polyposis (MAP). Fam Cancer 2013; 11:321-8. [PMID: 22538434 DOI: 10.1007/s10689-012-9511-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent years have been characterised by an improvement in our knowledge of genetic determinism of adenomatous polyposes and by the description in 2002 of a new entity called "MUTYH-associated polyposis" (MAP), related to biallelic mutations of this gene. Its autosomal recessive mode of inheritance contrasts with the autosomal dominant inheritance of the classical "familial adenomatous polyposis" (FAP), associated with an APC germline mutation. Although some phenotypic features may be of value to distinguish these two conditions, their clinical "spectra" largely overlap and the differential diagnosis may be difficult. The purpose of this expertise conducted under the auspices of the French Institut National du Cancer (INCa) was to assess the current state of knowledge on MUTYH-associated polyposis and to establish some recommendations in the field of molecular analysis (indications of tests and analysis strategies for affected patients and their relatives) and of clinical management based on available data in the literature, on the results from the French molecular genetics laboratories performing MUTYH analysis and on the opinions of biologists and clinicians experts (genetic counsellors and gastroenterologists). The risk of colorectal cancer among relatives carrying a monoallelic MUTYH mutation was also studied.
Collapse
Affiliation(s)
- Bruno Buecher
- Department of Genetics, Institut Curie, 26, rue d'Ulm, 75248, Paris Cédex 5, France.
| | | | | | | | | |
Collapse
|
18
|
Lejbkowicz F, Cohen I, Barnett-Griness O, Pinchev M, Poynter J, Gruber SB, Rennert G. Common MUTYH mutations and colorectal cancer risk in multiethnic populations. Fam Cancer 2013; 11:329-35. [PMID: 22371070 DOI: 10.1007/s10689-012-9516-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MUTYH is associated with colorectal cancer (CRC) risk. We studied the frequency of MUTYH and risk of CRC in Arabs, North African and European Jews. Participants were all 593 Sephardi Moroccan Jews (232 cases, 361 controls) and all 631 Arabs (327 cases, 304 controls) recruited into a population-based study of colorectal cancer in Israel, as well as a random sample of 189 Ashkenazi Jewish cases. Two MUTYH mutations, G396D and Y179C, were studied in 1,413 individuals, with MUTYH sequence analysis in 46 cases with CRC in a sibling or adenoma. No carriers of mutations in MUTYH were identified in Ashkenazi Jews and only one in Arabs. In Sephardi Jews, 28 carriers of G396D, 25 (4.2%) heterozygotes and 3 (0.5%) homozygotes were identified. Four (0.7%) were heterozygote carriers of the Y179C mutation. Two compound heterozygous carriers of Y179C and G396D were identified. Homozygote carriers of G396D had nonsignificantly elevated risk of CRC (OR = 11.0, 95% CI: 0.91-213.9, p = 0.06), and combined bi-allelic carriers of G396D and Y179C had increased risk, OR = 17.4, 95% CI = (1.9-316.7, p = 0.009). Four of five bi-allelic carriers reported a family history of CRC. Sequencing of 46 colorectal cancer cases with family history and additional adenomas, did not identify any other non-founder mutations. MUTYH carriers of the two common founder mutations are profoundly under-represented among both Ashkenazi Jews and Arabs. The prevalence of MUTYH carriers of the common mutations is much higher in Sephardi Jews. Bi-allelic carriers of mutations in MUTYH, are associated with highly risk of colorectal cancer.
Collapse
Affiliation(s)
- Flavio Lejbkowicz
- Department of Community Medicine and Epidemiology, Carmel Medical Center and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and Clalit Health Services National Cancer Control Center, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
19
|
High prevalence of the c.1227_1228dup (p.Glu410GlyfsX43) mutation in Tunisian families affected with MUTYH-associated-polyposis. Fam Cancer 2013; 11:503-8. [PMID: 22744763 DOI: 10.1007/s10689-012-9543-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Germline mutations in the base excision repair gene MUTYH have been associated with recessive inheritance of multiple colorectal adenomas. Screening of the MUTYH gene was carried on index cases of 10 unrelated Tunisian families and on available DNA samples from some members. Three germline mutations: c.536A > G (p.Y179C), c.1187 G > A (p.G396D) and c.1227_1228dup (p.Glu410GlyfsX43), were identified in the homozygous or compound heterozygous state in 8 out of 10 families. The c.1227_1228dup (p.Glu410GlyfsX43) mutation was the most frequent, since it was found in biallelic homozygous in 7 probands and 2 members of family F1 and in compound heterozygous associated with the c.536 A > G (p.Y179C) or c.1187 G > A (p.G396D) in family F2. Haplotype analysis revealed that the 8 families are unrelated. Moreover, in sporadic colorectal cancer, the c.1227_1228dup (p.Glu410GlyfsX43) mutation was identified in 13 % of patients compared to the p.G396D and p.Y179C found in 1.2 and 2.12 % respectively. Our data shows the high prevalence of the p.Glu410GlyfsX43 mutation in Tunisian families affected with MUTYH associated polyposis as well as in sporadic colorectal carcinoma.
Collapse
|
20
|
MUTYH-associated polyposis (MAP): evidence for the origin of the common European mutations p.Tyr179Cys and p.Gly396Asp by founder events. Eur J Hum Genet 2013; 22:923-9. [PMID: 23361220 DOI: 10.1038/ejhg.2012.309] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 12/18/2022] Open
Abstract
MUTYH-associated polyposis (MAP) is an autosomal recessive adenomatous polyposis caused by biallelic germline mutations of the base-excision-repair gene MUTYH. In MAP patients of European origin, the combined allele frequency of the mutations p.Tyr179Cys and p.Gly396Asp ranges between 50 and 82%, while these mutations have not been identified in Far Eastern Asian populations, supporting the hypothesis that a founder effect has occurred at some point in European history. To investigate the natural history of the two common European MUTYH alleles, we genotyped six gene-flanking microsatellite markers in 80 unrelated Italian and German MAP patients segregating one or both mutations and calculated their age in generations (g) by using DMLE+2.2 software. Three distinct common haplotypes, one for p.Tyr179Cys and two for p.Gly396Asp, were identified. Estimated mutation ages were 305 g (95% CS: 271-418) for p.Tyr179Cys and 350 g (95% CS: 313-435) for p.Gly396Asp. These results provide evidence for strong founder effects and suggest that the p.Tyr179Cys and p.Gly396Asp mutations derive from ancestors who lived between 5-8 thousand years and 6-9 thousand years B.C., respectively.
Collapse
|
21
|
Theodoratou E, Montazeri Z, Hawken S, Allum GC, Gong J, Tait V, Kirac I, Tazari M, Farrington SM, Demarsh A, Zgaga L, Landry D, Benson HE, Read SH, Rudan I, Tenesa A, Dunlop MG, Campbell H, Little J. Systematic Meta-Analyses and Field Synopsis of Genetic Association Studies in Colorectal Cancer. J Natl Cancer Inst 2012; 104:1433-57. [DOI: 10.1093/jnci/djs369] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
22
|
Venesio T, Balsamo A, D'Agostino VG, Ranzani GN. MUTYH-associated polyposis (MAP), the syndrome implicating base excision repair in inherited predisposition to colorectal tumors. Front Oncol 2012; 2:83. [PMID: 22876359 PMCID: PMC3410368 DOI: 10.3389/fonc.2012.00083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/16/2012] [Indexed: 12/24/2022] Open
Abstract
In 2002, Al-Tassan and co-workers described for the first time a recessive form of inherited polyposis associated with germline mutations of MUTYH, a gene encoding a base excision repair (BER) protein that counteracts the DNA damage induced by the oxidative stress. MUTYH-associated polyposis (MAP) is now a well-defined cancer susceptibility syndrome, showing peculiar molecular features that characterize disease progression. However, some aspects of MAP, including diagnostic criteria, genotype-phenotype correlations, pathogenicity of variants, as well as relationships between BER and other DNA repair pathways, are still poorly understood. A deeper knowledge of the MUTYH expression pattern is likely to refine our understanding of the protein role and, finally, to improve guidances for identifying and handling MAP patients.
Collapse
Affiliation(s)
- Tiziana Venesio
- Unit of Pathology, Institute for Cancer Research and Treatment Candiolo, Torino, Italy
| | | | | | | |
Collapse
|
23
|
Li Z, Fang ZY, Ding Y, Yao WT, Yang Y, Zhu ZQ, Wang W, Zhang QX. Amplifications of NCOA3 gene in colorectal cancers in a Chinese population. World J Gastroenterol 2012; 18:855-60. [PMID: 22371647 PMCID: PMC3286150 DOI: 10.3748/wjg.v18.i8.855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 08/08/2011] [Accepted: 08/31/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the copy number variation of NACO3 gene in colorectal cancer (CRC) and its correlation with tumor progression.
METHODS: A total of 142 samples of case-matched CRC tissues and adjacent normal tissues were obtained from patients undergoing bowel resection. Quantitative real-time polymerase chain reaction method was used to investigate the copy number variations of NCOA3 as well as gene expression in the collected tissues.
RESULTS: Copy number gains of NCOA3 were detected in 39 CRC samples (27.5%) and were correlated with tumor progression (χ2 = 6.42, P = 0.0112). Moreover, there was a positive correlation between copy number gain and mRNA over-expression of NCOA3 in CRCs (P = 0.0023). Expression level of NCOA3 mRNA was also enhanced in the CRC samples with unaltered copy numbers (3.85 ± 1.23 vs 2.71 ± 0.64, P < 0.01).
CONCLUSION: Sporadic colorectal cancers exhibit different mechanisms of NCOA3 regulation.
Collapse
|
24
|
Dizdaroglu M. Oxidatively induced DNA damage: mechanisms, repair and disease. Cancer Lett 2012; 327:26-47. [PMID: 22293091 DOI: 10.1016/j.canlet.2012.01.016] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/23/2011] [Accepted: 01/11/2012] [Indexed: 12/12/2022]
Abstract
Endogenous and exogenous sources cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. The resulting DNA lesions are mutagenic and, unless repaired, lead to a variety of mutations and consequently to genetic instability, which is a hallmark of cancer. Oxidatively induced DNA damage is repaired in living cells by different pathways that involve a large number of proteins. Unrepaired and accumulated DNA lesions may lead to disease processes including carcinogenesis. Mutations also occur in DNA repair genes, destabilizing the DNA repair system. A majority of cancer cell lines have somatic mutations in their DNA repair genes. In addition, polymorphisms in these genes constitute a risk factor for cancer. In general, defects in DNA repair are associated with cancer. Numerous DNA repair enzymes exist that possess different, but sometimes overlapping substrate specificities for removal of oxidatively induced DNA lesions. In addition to the role of DNA repair in carcinogenesis, recent evidence suggests that some types of tumors possess increased DNA repair capacity that may lead to therapy resistance. DNA repair pathways are drug targets to develop DNA repair inhibitors to increase the efficacy of cancer therapy. Oxidatively induced DNA lesions and DNA repair proteins may serve as potential biomarkers for early detection, cancer risk assessment, prognosis and for monitoring therapy. Taken together, a large body of accumulated evidence suggests that oxidatively induced DNA damage and its repair are important factors in the development of human cancers. Thus this field deserves more research to contribute to the development of cancer biomarkers, DNA repair inhibitors and treatment approaches to better understand and fight cancer.
Collapse
Affiliation(s)
- Miral Dizdaroglu
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
25
|
Saunders IW, Ross J, Macrae F, Young GP, Blanco I, Brohede J, Brown G, Brookes D, Lockett T, Molloy PL, Moreno V, Capella G, Hannan GN. Evidence of linkage to chromosomes 10p15.3-p15.1, 14q24.3-q31.1 and 9q33.3-q34.3 in non-syndromic colorectal cancer families. Eur J Hum Genet 2011; 20:91-6. [PMID: 21829229 DOI: 10.1038/ejhg.2011.149] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Up to 25% of colorectal cancer (CRC) may be caused by inherited genetic variants that have yet to be identified. Previous genome-wide linkage studies (GWLSs) have identified a new loci postulated to contain novel CRC risk genes amongst affected families carrying no identifiable mutations in any of the known susceptibility genes for familial CRC syndromes. To undertake a new GWLS, we recruited members from 54 non-syndromic families from Australia and Spain where at least two first-degree relatives were affected by CRC. We used single-nucleotide polymorphism arrays to genotype 98 concordant affected relative pairs that were informative for linkage analyses. We tested for genome-wide significance (GWS) for linkage to CRC using a quantile statistic method, and we found that GWS was achieved at the 5% level. Independently, using the PSEUDO gene-dropping algorithm, we also found that GWS for linkage to CRC was achieved (P=0.02). Merlin non-parametric linkage analysis revealed significant linkage to CRC for chromosomal region 10p15.3-p15.1 and suggestive linkage to CRC for regions on 14q and 9q. The 10p15.3-p15.1 has not been reported to be linked to hereditary CRC in previous linkage studies, but this region does harbour the Kruppel-like factor 6 (KLF6) gene that is known to be altered in common CRC. Further studies aimed at localising the responsible genes, and characterising their function will give insight into the factors responsible for susceptibility in such families, and perhaps shed further light on the mechanisms of CRC development.
Collapse
Affiliation(s)
- Ian W Saunders
- CSIRO Preventative Health Flagship, North Ryde, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Poulsen MLM, Bisgaard ML. MUTYH Associated Polyposis (MAP). Curr Genomics 2011; 9:420-35. [PMID: 19506731 PMCID: PMC2691665 DOI: 10.2174/138920208785699562] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 04/28/2008] [Accepted: 05/04/2008] [Indexed: 01/04/2023] Open
Abstract
MUTYH Associated Polyposis (MAP), a Polyposis predisposition caused by biallelic mutations in the Base Excision Repair (BER) gene MUTYH, confers a marked risk of colorectal cancer (CRC). The MAP phenotype is difficult to distinguish from other hereditary CRC syndromes. Especially from Familial Adenomatous Polyposis (FAP) and to a lesser extend Lynch Syndrome, which are caused by germline mutations in the APC and Mismatch Repair (MMR) genes, respectively. Here we review research findings regarding MUTYH interactions, genotypic and phenotypic characteristics of MAP, as well as surveillance and treatment of the disease. The applied papers, published between 1/1 2002- 1/2 2008, were found through PubMed. The exact role of MUTYH in CRC tumorgenesis is still uncertain, although MAP tumors show distinct molecular features, including somatic G:C>T:A transversions in the APC gene. Furthermore, cooperation between the BER and the MMR systems exists, as MUTYH interacts with MMR gene-products. Possibly, monoallelic defects in both pathways are of significance to CRC development. Specific MUTYH variants are found to be characteristic in distinct ethnic populations, which could facilitate future genetic screening. Knowledge concerning functional consequences of many MUTYH germline mutations remains sparse. Most thoroughly investigated are the two most common MUTYH variants, Y179C and G396D, both generating dysfunctional gene products. Phenotypic features of MAP include: development of 10-100 colorectal adenomas, debuting at 46-47 years, often CRC at time of clinical diagnosis, and in some, development of extracolonic manifestations.
Collapse
Affiliation(s)
- M L M Poulsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
27
|
Win AK, Hopper JL, Jenkins MA. Association between monoallelic MUTYH mutation and colorectal cancer risk: a meta-regression analysis. Fam Cancer 2011; 10:1-9. [PMID: 21061173 DOI: 10.1007/s10689-010-9399-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Whether people who inherit a mutation in MUTYH from only one parent (monoallelic mutation) are at increased risk of colorectal cancer (CRC) remains controversial. Most previous studies and meta-analyses have not found statistically significant associations but, given carriers are relatively rare, may be underpowered to detect small increased risks. We have conducted a systematic review and meta-regression analysis of previously published case-control studies to estimate the strength of association for monoallelic MUTYH mutation and CRC risk. Potential sources of heterogeneity were evaluated. We have compared the carrier frequency in cases with a family history of CRC to that of controls, as a novel and powerful design, to measure statistical evidence of an association but not the strength of association. The magnitude of the genotype-disease association, estimated from a pooled odds ratio comparing cases unselected for family history with controls, was 1.15 (95% CI = 0.98-1.36) and not substantially altered by adjustment for potential sources of heterogeneity. Monoallelic mutation carrier frequency was greater for cases ascertained due to a family history (3.3%; SE 0.9%) than for controls (1.4%; SE 0.3%) (P = 0.02). Monoallelic MUTYH mutation carriers are at increased risk of CRC but the average increase is small.
Collapse
Affiliation(s)
- Aung Ko Win
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, Melbourne School of Population Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | | | |
Collapse
|
28
|
Payne CM, Crowley-Skillicorn C, Bernstein C, Holubec H, Bernstein H. Molecular and cellular pathways associated with chromosome 1p deletions during colon carcinogenesis. Clin Exp Gastroenterol 2011; 4:75-119. [PMID: 21753893 PMCID: PMC3132853 DOI: 10.2147/ceg.s17114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Indexed: 11/23/2022] Open
Abstract
Chromosomal instability is a major pathway of sporadic colon carcinogenesis. Chromosome arm 1p appears to be one of the "hot spots" in the non-neoplastic mucosa that, when deleted, is associated with the initiation of carcinogenesis. Chromosome arm 1p contains genes associated with DNA repair, spindle checkpoint function, apoptosis, multiple microRNAs, the Wnt signaling pathway, tumor suppression, antioxidant activities, and defense against environmental toxins. Loss of 1p is dangerous since it would likely contribute to genomic instability leading to tumorigenesis. The 1p deletion-associated colon carcinogenesis pathways are reviewed at the molecular and cellular levels. Sporadic colon cancer is strongly linked to a high-fat/low-vegetable/low-micronutrient, Western-style diet. We also consider how selected dietary-related compounds (eg, excess hydrophobic bile acids, and low levels of folic acid, niacin, plant-derived antioxidants, and other modulatory compounds) might affect processes leading to chromosomal deletions, and to the molecular and cellular pathways specifically altered by chromosome 1p loss.
Collapse
Affiliation(s)
- Claire M Payne
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona Tucson, AZ, USA
| | | | - Carol Bernstein
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona Tucson, AZ, USA
| | - Hana Holubec
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona Tucson, AZ, USA
| | - Harris Bernstein
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona Tucson, AZ, USA
| |
Collapse
|
29
|
Qiao B, Ansari AH, Scott GB, Sak SC, Chambers PA, Elliott F, Teo MT, Bentley J, Churchman M, Hall J, Taylor CF, Bishop TD, Knowles MA, Kiltie AE. In vitro functional effects of XPC gene rare variants from bladder cancer patients. Carcinogenesis 2011; 32:516-21. [PMID: 21273643 PMCID: PMC3066418 DOI: 10.1093/carcin/bgr005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 12/31/2010] [Accepted: 01/10/2011] [Indexed: 12/02/2022] Open
Abstract
The XPC gene is involved in repair of bulky DNA adducts formed by carcinogenic metabolites and oxidative DNA damage, both known bladder cancer risk factors. Single nucleotide polymorphisms (SNPs) in XPC have been associated with increased bladder cancer risk. Recently, rarer genetic variants have been identified but it is difficult to ascertain which are of functional importance. During a mutation screen of XPC in DNA from 33 bladder tumour samples and matched blood samples, we identified five novel variants in the patients' germ line DNA. In a case-control study of 771 bladder cancer cases and 800 controls, c.905T>C (Phe302Ser), c.1177C>T (Arg393Trp), c.*156G>A [3' untranslated region (UTR)] and c.2251-37C>A (in an intronic C>G SNP site) were found to be rare variants, with a combined odds ratio of 3.1 (95% confidence interval 1.0-9.8, P=0.048) for carriage of one variant. The fifth variant was a 2% minor allele frequency SNP not associated with bladder cancer. The two non-synonymous coding variants were predicted to have functional effects using analytical algorithms; a reduced recruitment of GFP-tagged XPC plasmids containing either c.905T>C or c.1177C>T to sites of 408 nm wavelength laser-induced oxidative DNA damage was found in vitro. c.*156G>A appeared to be associated with reduced messenger RNA stability in an in vitro plasmid-based assay. Although the laser microbeam assay is relevant to a range of DNA repair genes, our 3' UTR assay based on Green fluorescent protein(GFP) has widespread applicability and could be used to assess any gene. These assays may be useful in determining which rare variants are functional, prior to large genotyping efforts.
Collapse
Affiliation(s)
| | | | | | | | - Philip A. Chambers
- Cancer Research UK Genome Variation Laboratory Service, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Faye Elliott
- Section of Epidemiology and Biostatistics, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett St, Leeds LS9 7TF, UK
| | - Mark T.W. Teo
- Section of Epidemiology and Biostatistics, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett St, Leeds LS9 7TF, UK
| | | | - Michael Churchman
- Cancer Research UK Genome Variation Laboratory Service, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Janet Hall
- INSERM U612 Bats 110-112, Centre Universitaire, Orsay 91450, France
- Institut Curie, Bats 110-112, Centre Universitaire, Orsay 91450, France
| | - Claire F. Taylor
- Cancer Research UK Genome Variation Laboratory Service, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Timothy D. Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett St, Leeds LS9 7TF, UK
| | | | - Anne E. Kiltie
- Section of Experimental Oncology
- Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
30
|
Theodoratou E, Campbell H, Tenesa A, Houlston R, Webb E, Lubbe S, Broderick P, Gallinger S, Croitoru EM, Jenkins MA, Win AK, Cleary SP, Koessler T, Pharoah PD, Küry S, Bézieau S, Buecher B, Ellis NA, Peterlongo P, Offit K, Aaltonen LA, Enholm S, Lindblom A, Zhou XL, Tomlinson IP, Moreno V, Blanco I, Capellà G, Barnetson R, Porteous ME, Dunlop MG, Farrington SM. A large-scale meta-analysis to refine colorectal cancer risk estimates associated with MUTYH variants. Br J Cancer 2010; 103:1875-84. [PMID: 21063410 PMCID: PMC3008602 DOI: 10.1038/sj.bjc.6605966] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Defective DNA repair has a causal role in hereditary colorectal cancer (CRC). Defects in the base excision repair gene MUTYH are responsible for MUTYH-associated polyposis and CRC predisposition as an autosomal recessive trait. Numerous reports have suggested MUTYH mono-allelic variants to be low penetrance risk alleles. We report a large collaborative meta-analysis to assess and refine CRC risk estimates associated with bi-allelic and mono-allelic MUTYH variants and investigate age and sex influence on risk. Methods: MUTYH genotype data were included from 20 565 cases and 15 524 controls. Three logistic regression models were tested: a crude model; adjusted for age and sex; adjusted for age, sex and study. Results: All three models produced very similar results. MUTYH bi-allelic carriers demonstrated a 28-fold increase in risk (95% confidence interval (CI): 6.95–115). Significant bi-allelic effects were also observed for G396D and Y179C/G396D compound heterozygotes and a marginal mono-allelic effect for variant Y179C (odds ratio (OR)=1.34; 95% CI: 1.00–1.80). A pooled meta-analysis of all published and unpublished datasets submitted showed bi-allelic effects for MUTYH, G396D and Y179C (OR=10.8, 95% CI: 5.02–23.2; OR=6.47, 95% CI: 2.33–18.0; OR=3.35, 95% CI: 1.14–9.89) and marginal mono-allelic effect for variants MUTYH (OR=1.16, 95% CI: 1.00–1.34) and Y179C alone (OR=1.34, 95% CI: 1.01–1.77). Conclusions: Overall, this large study refines estimates of disease risk associated with mono-allelic and bi-allelic MUTYH carriers.
Collapse
Affiliation(s)
- E Theodoratou
- Colon Cancer Genetics Group and Academic Coloproctology, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang C, Fang Z, Xiong Y, Li J, Liu L, Li M, Zhang W, Wan J. Copy number increase of aurora kinase A in colorectal cancers: a correlation with tumor progression. Acta Biochim Biophys Sin (Shanghai) 2010; 42:834-8. [PMID: 20929925 DOI: 10.1093/abbs/gmq088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The centrosome-associated kinase aurora A (AURKA) is involved in genetic instability and is over-expressed in several human carcinomas including colorectal cancer (CRC). The choromosome locus of AURKA, 20q13, is frequently amplified in CRC, and the functional impact of such regions needs to be extensively investigated in large amount of clinical samples. Case-matched tissues of colorectal adenocarcinomas and adjacent normal epithelium (n= 134) were included in this study. Quantitative PCR was carried out to examine the copy number and mRNA level of AURKA in CRC. Our results showed that copy number gains of AUKRA were detected in a relative high percentage of CRC samples (32.4%, 43 of 134). There was a positive correlation between copy number increase of AURKA and tumor progression. And copy number gains of AURKA also showed a positive correlation with mRNA over-expression in CRC. However, the expression level of AURKA mRNA was also enhanced in the group of CRC samples with unaltered copy numbers. These findings indicated that sporadic colorectal cancers exhibit different mechanisms of aurora A regulation and this may impact the efficacy of aurora-targeted therapies.
Collapse
Affiliation(s)
- Chao Zhang
- Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Fang Z, Xiong Y, Zhang C, Li J, Liu L, Li M, Zhang W, Wan J. Coexistence of copy number increases of ZNF217 and CYP24A1 in colorectal cancers in a Chinese population. Oncol Lett 2010; 1:925-930. [PMID: 22966406 DOI: 10.3892/ol_00000163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/19/2010] [Indexed: 01/03/2023] Open
Abstract
Evidence suggests that the amplification of chromosome 20q13 is common in colorectal cancers (CRCs). Certain candidate oncogenes located in this region are reported to be associated with tumorigenesis of the gastrointestinal tract. The functional impact of such regions should be extensively investigated in a large number of clinical samples. In this study, 145 CRC samples with matched adjacent normal tissues were collected from a Chinese population for copy number variation (CNV) analysis. Our results showed that both the copy numbers of 25-hydroxy vitamin D3 24-hydroxylase (CYP24A1) and zinc-finger protein 217 (ZNF217) were amplified in a relatively high percentage of CRC samples (51.1 and 60%, respectively). The mRNA expression levels of both CYP24A1 and ZNF217 were found to have increased in the collected CRC samples as compared to the matched adjacent normal tissues. ZNF217, but not CYP24A1, showed a positive correlation between copy number increases and mRNA overexpression. These findings suggest the potential role of CNVs of certain oncogenes in CRCs.
Collapse
Affiliation(s)
- Zhengyu Fang
- Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center and Shenzhen Hospital, Peking University, Guangdong, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Nielsen M, Morreau H, Vasen HFA, Hes FJ. MUTYH-associated polyposis (MAP). Crit Rev Oncol Hematol 2010; 79:1-16. [PMID: 20663686 DOI: 10.1016/j.critrevonc.2010.05.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/11/2010] [Accepted: 05/27/2010] [Indexed: 12/13/2022] Open
Abstract
The human mutY homologue (MUTYH) gene is responsible for inheritable polyposis and colorectal cancer. This review discusses the molecular genetic aspects of the MUTYH gene and protein, the clinical impact of mono- and biallelic MUTYH mutations and histological aspects of the MUTYH tumors. Furthermore, the relationship between MUTYH and the mismatch repair genes in colorectal cancer (CRC) families is examined. Finally, the role of other base excision repair genes in polyposis and CRC patients is discussed.
Collapse
Affiliation(s)
- Maartje Nielsen
- Department Clinical Genetics, Leiden University Medical Centre, Albinusdreef, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
34
|
Pezzi A, Roncucci L, Benatti P, Sassatelli R, Varesco L, Di Gregorio C, Venesio T, Pedroni M, Maffei S, Reggiani Bonetti L, Borsi E, Ferrari M, Martella P, Rossi G, Ponz De Leon M. Relative role of APC and MUTYH mutations in the pathogenesis of familial adenomatous polyposis. Scand J Gastroenterol 2010; 44:1092-100. [PMID: 19593690 DOI: 10.1080/00365520903100481] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Familial adenomatous polyposis (FAP) is an interesting model for the study of colorectal tumour. Two genes contribute to the FAP phenotype - APC and MUTYH - but their relative role is still undefined. The objective of this study was to evaluate the contribution of the two genes to the pathogenesis of FAP by means of a series of FAP families. MATERIAL AND METHODS Sixty-one unrelated families with a diagnosis of FAP and a total of 187 affected individuals were evaluated. After extracting DNA, APC and MUTYH genes were sequenced. RESULTS In the whole series of patients, colectomy with ileorectal anastomosis was the most frequent surgery, although the number of patients treated by total proctocolectomy and ileoanal anastomosis was increasing. Duodenal and jejunal-ileal adenomas were present in more than half of the patients. Constitutional mutations were detected in 37 of the 45 families (82.2%); there were 33 families with APC and 4 with MUTYH alterations. Age at onset of polyposis and age at surgery were 10-15 years delayed for carriers of MUTYH mutations; cancer at diagnosis was frequent, and extracolonic manifestations were diagnosed in the majority of MUTYH-positive families. MUTYH-associated polyposis showed the horizontal transmission expected for recessive inheritance (at variance with the dominant pattern seen with APC mutations). CONCLUSIONS At least two genes are associated with the FAP phenotype. APC mutations account for the majority of cases, while MUTYH mutations can be observed in 10% of patients. There are few but definite differences between APC- and MUTYH-associated FAP, such as age at diagnosis and pattern of transmission.
Collapse
Affiliation(s)
- Annalisa Pezzi
- Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Angel J, Abel E, DiGiovanni J. Genetic Determinants of Cancer Susceptibility. COMPREHENSIVE TOXICOLOGY 2010:371-400. [DOI: 10.1016/b978-0-08-046884-6.01419-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
36
|
Abstract
This article reviews the role of defective base excision repair, and MUTYH specifically, in colorectal cancer etiology and discusses the consequences of MUTYH gene defects, with particular emphasis on clinical relevance to colorectal polyposis, colorectal cancer risk, and appraising the risk of extra-colonic malignancy. Evidence guiding clinical practice, in terms of surveillance recommendations and options for surgical and other prophylactic interventions, is reviewed.
Collapse
Affiliation(s)
- Malcolm G Dunlop
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK.
| | | |
Collapse
|
37
|
Zambirinis CP, Theodoropoulos G, Gazouli M. Undefined familial colorectal cancer. World J Gastrointest Oncol 2009; 1:12-20. [PMID: 21160768 PMCID: PMC2999090 DOI: 10.4251/wjgo.v1.i1.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 03/31/2009] [Accepted: 04/07/2009] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC), one of the most common cancers of the world, is actually a spectrum of several subtypes, with different molecular profiles, clinico-pathological characteristics and possibly separate pathways of progression. It is estimated that in approximately 25%-35% of cases, a familial component exists, so they are classified as familial CRC (fCRC). However the known hereditary CRC syndromes justify only up to 5%. The rest are attributed to some inherited genetic predisposition passed to offspring through low-penetrance genes, which in the proper environmental setting can bring on tumorigenesis. Furthermore, part of the familial clustering may be attributed to chance. Because of the complexity regarding the etiology of CRC, the clinician is sometimes faced with obscure patient data, and cannot be sure if they are dealing with fCRC or sporadic CRC. The elucidation of what is going on with the as yet “undefined” portion of CRC will aid not only in the diagnosis, classification and treatment of CRC, but more importantly in the proper adjustment of the screening guidelines and in genetic counselling of patients.
Collapse
Affiliation(s)
- Constantinos Pantelis Zambirinis
- Constantinos Pantelis Zambirinis, First Propaedeutic Surgical Department, Hippocration University Hospital, School of Medicine, University of Athens, 11527 Athens, Greece
| | | | | |
Collapse
|
38
|
Jones N, Vogt S, Nielsen M, Christian D, Wark PA, Eccles D, Edwards E, Evans DG, Maher ER, Vasen HF, Hes FJ, Aretz S, Sampson JR. Increased colorectal cancer incidence in obligate carriers of heterozygous mutations in MUTYH. Gastroenterology 2009; 137:489-94, 494.e1; quiz 725-6. [PMID: 19394335 DOI: 10.1053/j.gastro.2009.04.047] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/06/2009] [Accepted: 04/10/2009] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS MUTYH-associated polyposis (MAP) is an autosomal recessive disorder caused by mutations in the MUTYH gene. Patients with MAP are at extremely high risk of colorectal cancer, but the risks of colorectal and other cancers in heterozygous carriers of a single MUTYH mutation are uncertain. We performed a retrospective study of cancer incidence and causes of death among obligate MUTYH heterozygote individuals. METHODS MAP index cases were identified from polyposis registers in Germany, The Netherlands, and the United Kingdom. Cancer incidence, cancer mortality, and all-cause mortality data were collected from 347 parents of unrelated MAP index cases and the spouses of 3 index cases who were also found to be heterozygous for single MUTYH mutations. These data were compared with appropriate national sex-, age-, and period-specific population data to obtain standardized mortality ratios (SMR) and standardized incidence ratios (SIR). RESULTS There was a 2-fold increase in the incidence of colorectal cancer among parents of MAP cases, compared with the general population (SIR, 2.12; 95% confidence interval [CI]: 1.30-3.28). Their colorectal cancer mortality was not increased significantly (SMR, 1.02; 95% CI: 0.41-2.10) nor was overall cancer risk (SIR, 0.92; 95% CI: 0.70-1.18), cancer mortality (SMR, 1.12; 95% CI: 0.83-1.48), or overall mortality (SMR, 0.94; 95% CI: 0.80-1.08). CONCLUSIONS The risk of colorectal cancer in heterozygous carriers of single MUTYH mutations who are relatives of patients with MAP is comparable with that of first-degree relatives of patients with sporadic colorectal cancer. Screening measures should be based on this modest increase in risk.
Collapse
Affiliation(s)
- Natalie Jones
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lubbe SJ, Di Bernardo MC, Chandler IP, Houlston RS. Clinical implications of the colorectal cancer risk associated with MUTYH mutation. J Clin Oncol 2009; 27:3975-80. [PMID: 19620482 DOI: 10.1200/jco.2008.21.6853] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Biallelic mutations in the base excision DNA repair gene MUTYH predispose to colorectal cancer (CRC). Evidence that monoallelic mutations also confer an elevated CRC risk is controversial. Precise quantification of the CRC risk and the phenotype associated with MUTYH mutations is relevant to the counseling, surveillance, and clinical management of at-risk individuals. METHODS We analyzed a population-based series of 9,268 patients with CRC and 5,064 controls for the Y179C and G396D MUTYH mutations. We related genotypes to phenotype and calculated genotype-specific CRC risks. RESULTS Overall, biallelic mutation status conferred a 28-fold increase in CRC risk (95% CI,17.66 to 44.06); this accounted for 0.3% of CRCs in the cohort. Genotype relative risks of CRC were strongly age dependent, but penetrance was incomplete at age 60 years. CRC that developed in the context of biallelic mutations were microsatellite stable. Biallelic mutation carriers were more likely to have proximal CRC (P = 4.0 x 10(-4)) and synchronous polyps (P = 5.7 x 10(-9)) than noncarriers. The performance characteristics of clinicopathologic criteria for the identification of biallelic mutations are poor. Monoallelic mutation was not associated with an increased CRC risk (odds ratio, 1.07; 95% CI, 0.87 to 1.31). CONCLUSION The high risk and the propensity for proximal disease associated with biallielic MUTYH mutation justify colonoscopic surveillance. Although mutation screening should be directed to patients with APC-negative polyposis and early-onset proximal MSS CRC in whom detection rates will be highest, the expanded phenotype associated with MUTYH mutation needs to be recognized. There is no evidence than monoallelic mutation status per se is clinically important.
Collapse
Affiliation(s)
- Steven J Lubbe
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, Surrey, UK
| | | | | | | |
Collapse
|
40
|
Häsler R, Begun A, Freitag-Wolf S, Kerick M, Mah N, Zvirbliene A, Spehlmann ME, von Wurmb-Schwark N, Kupcinskas L, Rosenstiel P, Schreiber S. Genetic control of global gene expression levels in the intestinal mucosa: a human twin study. Physiol Genomics 2009; 38:73-9. [DOI: 10.1152/physiolgenomics.00010.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phenotypic variation between individuals, such as different mRNA expression levels, is influenced by genetic and nongenetic factors. Although several studies have addressed the interplay between genotypes and expression profiles in various model organisms in the recent years, the detailed and relative contributions of genetic and nongenetic factors in regulating plasticity of gene expression in barrier organs (e.g., skin, gut), which are exposed to continuous environmental challenge, are still poorly understood. Here we systematically monitored the level of genetic control over genomewide mRNA expression profiles in the healthy intestinal mucosa of 10 monozygotic and 10 dizygotic human twin pairs with microarray analyses. Our results, which are supported by real-time PCR and analysis of molecular phylogenetic conservation, indicate that genes associated with energy metabolism and cell and tissue regeneration pathways are under strong genetic control. Conversely, genes associated with immune response seem to be mainly controlled by exogenous factors. Further insights into the relative extent of genetic and nongenetic determinants of transcriptomal profiles and their influence on physiological and pathophysiological mechanisms are crucial to understanding the key role played by gene-environment interactions in health and disease.
Collapse
Affiliation(s)
- Robert Häsler
- Institute of Clinical Molecular Biology, Center for Molecular Biosciences (ZMB), Christian Albrechts University of Kiel, Kiel, Germany
| | - Alexander Begun
- Institute of Medical Informatics and Statistics, Christian Albrechts University of Kiel, Kiel, Germany
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Christian Albrechts University of Kiel, Kiel, Germany
| | - Martin Kerick
- Institute of Clinical Molecular Biology, Center for Molecular Biosciences (ZMB), Christian Albrechts University of Kiel, Kiel, Germany
| | - Nancy Mah
- Institute of Clinical Molecular Biology, Center for Molecular Biosciences (ZMB), Christian Albrechts University of Kiel, Kiel, Germany
| | - Aida Zvirbliene
- Department of Gastroenterology, Kaunas University of Medicine, Kaunas, Lithuania
| | - Martina E. Spehlmann
- Institute of Clinical Molecular Biology, Center for Molecular Biosciences (ZMB), Christian Albrechts University of Kiel, Kiel, Germany
| | | | - Limas Kupcinskas
- Department of Gastroenterology, Kaunas University of Medicine, Kaunas, Lithuania
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Center for Molecular Biosciences (ZMB), Christian Albrechts University of Kiel, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Center for Molecular Biosciences (ZMB), Christian Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
41
|
Tops CMJ, Wijnen JT, Hes FJ. Introduction to molecular and clinical genetics of colorectal cancer syndromes. Best Pract Res Clin Gastroenterol 2009; 23:127-46. [PMID: 19414141 DOI: 10.1016/j.bpg.2009.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The understanding of molecular genetics in the field of gastroenterology has rapidly grown over the last two decades. In recent years many genes involved in the disorders of the gastrointestinal (GI) tract such as colorectal cancer (CRC) and inflammatory bowel disease have been identified. The elucidation of the molecular genetics of these diseases made it possible to study the high-penetrance susceptibility genes for disease-causing mutations with direct implications for relatives of affected individuals. The most immediate application of these advances is the opportunity of pre-symptomatic diagnosis in relatives of affected individuals by molecular genetic testing. In this article, the most commonly employed mutation detection procedures; the outcome and use of these tests in clinical practice are discussed. We focus on the three most common hereditary colorectal cancer syndromes (CCS): Lynch syndrome, familial adenomatous polyposis and MUTYH-associated polyposis.
Collapse
Affiliation(s)
- Carli M J Tops
- Centre for Human and Clinical Genetics, LUMC, Leiden, P.O. Box 9600, S06, 2300 RC Leiden, The Netherlands.
| | | | | |
Collapse
|
42
|
Cleary SP, Cotterchio M, Jenkins MA, Kim H, Bristow R, Green R, Haile R, Hopper JL, LeMarchand L, Lindor N, Parfrey P, Potter J, Younghusband B, Gallinger S. Germline MutY human homologue mutations and colorectal cancer: a multisite case-control study. Gastroenterology 2009; 136:1251-60. [PMID: 19245865 PMCID: PMC2739726 DOI: 10.1053/j.gastro.2008.12.050] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 11/25/2008] [Accepted: 12/18/2008] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The MutY human homologue (MYH) gene is a member of the base-excision repair pathway involved in the repair of oxidative DNA damage. The objective of this study was to determine colorectal cancer (CRC) risk associated with mutations in the MYH gene. METHODS A total of 3811 CRC cases and 2802 controls collected from a multisite CRC registry were screened for 9 germline MYH mutations; subjects with any mutation underwent screening of the entire MYH gene. Logistic regression was used to estimate age- and sex-adjusted odds ratios (AOR). Clinicopathologic and epidemiologic data were reviewed to describe the phenotype associated with MYH mutation status and assess for potential confounding and effect modification. RESULTS Twenty-seven cases and 1 control subject carried homozygous or compound heterozygous MYH mutations (AOR, 18.1; 95% confidence interval, 2.5-132.7). CRC cases with homozygous/compound heterozygous mutations were younger at diagnosis (P=.01), had a higher proportion of right-sided (P=.01), synchronous cancers (P<.01), and personal history of adenomatous polyps (P=.003). Heterozygous MYH mutations were identified in 87 CRC cases and 43 controls; carriers were at increased risk of CRC (AOR, 1.48; 95% confidence interval, 1.02-2.16). There was a higher prevalence of low-frequency microsatellite instability (MSI) in tumors from heterozygous and homozygous/compound heterozygous MYH mutation carriers (P=.02); MSI status modified the CRC risk associated with heterozygous MYH mutations (P interaction<.001). CONCLUSIONS Homozygous/compound heterozygous MYH mutations account for less than 1% of CRC cases. Heterozygous carriers are at increased risk of CRC. Further studies are needed to understand the possible interaction between the base excision repair and low-frequency MSI pathways.
Collapse
Affiliation(s)
- Sean P. Cleary
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada,Department of Public Health Sciences, University of Toronto, Toronto, Ontario, Canada,Cancer Care Ontario, Toronto, Ontario, Canada
| | - Michelle Cotterchio
- Department of Public Health Sciences, University of Toronto, Toronto, Ontario, Canada,Cancer Care Ontario, Toronto, Ontario, Canada
| | - Mark A. Jenkins
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, The University of Melbourne, Victoria, Australia
| | - Hyeja Kim
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Robert Bristow
- Radiation Medicine Program and Department of Radiation Oncology, Princess Margaret Hospital (UHN), University of Toronto, Toronto, Ontario, Canada
| | - Roger Green
- Memorial University of Newfoundland, St John’s, Newfoundland, Canada
| | - Robert Haile
- University of Southern California, Los Angeles, California
| | - John L. Hopper
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, The University of Melbourne, Victoria, Australia
| | | | | | - Patrick Parfrey
- Memorial University of Newfoundland, St John’s, Newfoundland, Canada
| | - John Potter
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ban Younghusband
- Memorial University of Newfoundland, St John’s, Newfoundland, Canada
| | - Steven Gallinger
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada,Cancer Care Ontario, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Abstract
MUTYH-associated polyposis (MAP) is an autosomal recessive disorder characterised by adenomatous polyps of the colorectum and a very high risk of colorectal cancer. It appears to be at least as prevalent as autosomal dominant familial adenomatous polyposis (that is caused by truncating mutations in the APC gene) with which it shares important gastroenterological features. It was first recognised as recently as 2002 and its full phenotype and natural history are still being characterised. Key extracolonic manifestations include a predisposition to duodenal adenomas and cancer and a modest increase in risk for several extraintestinal tumours. Testing for mutations in the MUTYH gene is indicated in patients who have multiple colorectal adenomas or a family history suggestive of autosomal recessive colorectal cancer and for the siblings and spouses of patients with MAP in order to inform surveillance and treatment for patients and their families.
Collapse
Affiliation(s)
- Julian R Sampson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | | |
Collapse
|
44
|
Learn PA, Kahlenberg MS. Hereditary colorectal cancer syndromes and the role of the surgical oncologist. Surg Oncol Clin N Am 2009; 18:121-44, ix. [PMID: 19056045 DOI: 10.1016/j.soc.2008.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The expanding understanding of the genetic basis to hereditary colon cancer syndromes is dismantling previously conceived categorizations and shedding light on why those schemes often failed in past. This review highlights evolving concepts regarding the genetic diagnosis and clinical management of the more commonly inherited colorectal cancer syndromes, including a discussion of recently described familial syndromes. This review also addresses clinician responsibilities in recognition of familial syndromes and provision of counseling.
Collapse
Affiliation(s)
- Peter A Learn
- Department of Surgery, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | |
Collapse
|
45
|
|
46
|
Avezzù A, Agostini M, Pucciarelli S, Lise M, Urso ED, Mammi I, Maretto I, Enzo MV, Pastrello C, Lise M, Nitti D, Viel A. The role of MYH gene in genetic predisposition to colorectal cancer: Another piece of the puzzle. Cancer Lett 2008; 268:308-13. [DOI: 10.1016/j.canlet.2008.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 01/01/2023]
|
47
|
Tenesa A, Farrington SM, Prendergast JGD, Porteous ME, Walker M, Haq N, Barnetson RA, Theodoratou E, Cetnarskyj R, Cartwright N, Semple C, Clark AJ, Reid FJL, Smith LA, Kavoussanakis K, Koessler T, Pharoah PDP, Buch S, Schafmayer C, Tepel J, Schreiber S, Völzke H, Schmidt CO, Hampe J, Chang-Claude J, Hoffmeister M, Brenner H, Wilkening S, Canzian F, Capella G, Moreno V, Deary IJ, Starr JM, Tomlinson IPM, Kemp Z, Howarth K, Carvajal-Carmona L, Webb E, Broderick P, Vijayakrishnan J, Houlston RS, Rennert G, Ballinger D, Rozek L, Gruber SB, Matsuda K, Kidokoro T, Nakamura Y, Zanke BW, Greenwood CMT, Rangrej J, Kustra R, Montpetit A, Hudson TJ, Gallinger S, Campbell H, Dunlop MG. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet 2008; 40:631-7. [PMID: 18372901 PMCID: PMC2778004 DOI: 10.1038/ng.133] [Citation(s) in RCA: 456] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 02/29/2008] [Indexed: 12/12/2022]
Abstract
In a genome-wide association study to identify loci associated with colorectal cancer (CRC) risk, we genotyped 555,510 SNPs in 1,012 early-onset Scottish CRC cases and 1,012 controls (phase 1). In phase 2, we genotyped the 15,008 highest-ranked SNPs in 2,057 Scottish cases and 2,111 controls. We then genotyped the five highest-ranked SNPs from the joint phase 1 and 2 analysis in 14,500 cases and 13,294 controls from seven populations, and identified a previously unreported association, rs3802842 on 11q23 (OR = 1.1; P = 5.8 x 10(-10)), showing population differences in risk. We also replicated and fine-mapped associations at 8q24 (rs7014346; OR = 1.19; P = 8.6 x 10(-26)) and 18q21 (rs4939827; OR = 1.2; P = 7.8 x 10(-28)). Risk was greater for rectal than for colon cancer for rs3802842 (P < 0.008) and rs4939827 (P < 0.009). Carrying all six possible risk alleles yielded OR = 2.6 (95% CI = 1.75-3.89) for CRC. These findings extend our understanding of the role of common genetic variation in CRC etiology.
Collapse
Affiliation(s)
- Albert Tenesa
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and MRC Human Genetics Unit, Edinburgh EH4 2XU, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Familial Risks for Cancer as the Basis for Evidence‐Based Clinical Referral and Counseling. Oncologist 2008; 13:239-47. [DOI: 10.1634/theoncologist.2007-0242] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
49
|
Maehara Y, Egashira A, Oki E, Kakeji Y, Tsuzuki T. DNA repair dysfunction in gastrointestinal tract cancers. Cancer Sci 2008; 99:451-8. [PMID: 18271874 PMCID: PMC11159359 DOI: 10.1111/j.1349-7006.2007.00671.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 10/10/2007] [Accepted: 11/05/2007] [Indexed: 12/22/2022] Open
Abstract
The DNA repair system surveys the genome, which is always suffering from exposure to both exogenous as well as endogenous mutagens, to maintain the genetic information. The fact that the basis of this DNA repair system is highly conserved, from prokaryote to mammalian cells, suggests the importance of precise genome maintenance mechanisms for organisms. In the past 15 years, considerable progress has been made in understanding how repair processes interact and how disruptions of these mechanisms lead to the accumulation of mutations and carcinogenesis. In 1993, two groups reported that DNA mismatch repair could be associated with hereditary non-polyposis colorectal cancer, indicating a connection between faulty DNA repair function and cancer. More recently, an inherited disorder of DNA glycosylase, which removes mutagenic oxidized base from DNA, has been reported in individuals with a predisposition to multiple colorectal adenomas and carcinomas. This is the first report that directly indicates the role of the repair of oxidative DNA in human inherited cancer. Studies from gene knockout mice have elucidated the principal role of these repair systems in the process of carcinogenesis. Moreover, clinical samples derived from cancer patients have shown the direct involvement. This review focuses on the function of DNA mismatch repair and oxidative DNA/nucleotide repair among various DNA repair systems in cells, both of which are essentially involved in the carcinogenesis of gastrointestinal tract cancer.
Collapse
Affiliation(s)
- Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
50
|
Who requires genetic testing? CURRENT COLORECTAL CANCER REPORTS 2008. [DOI: 10.1007/s11888-008-0009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|