1
|
Lyu Y, Xie F, Chen B, Shin WS, Chen W, He Y, Leung KT, Tse GMK, Yu J, To KF, Kang W. The nerve cells in gastrointestinal cancers: from molecular mechanisms to clinical intervention. Oncogene 2024; 43:77-91. [PMID: 38081962 PMCID: PMC10774121 DOI: 10.1038/s41388-023-02909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024]
Abstract
Gastrointestinal (GI) cancer is a formidable malignancy with significant morbidity and mortality rates. Recent studies have shed light on the complex interplay between the nervous system and the GI system, influencing various aspects of GI tumorigenesis, such as the malignance of cancer cells, the conformation of tumor microenvironment (TME), and the resistance to chemotherapies. The discussion in this review first focused on exploring the intricate details of the biological function of the nervous system in the development of the GI tract and the progression of tumors within it. Meanwhile, the cancer cell-originated feedback regulation on the nervous system is revealed to play a crucial role in the growth and development of nerve cells within tumor tissues. This interaction is vital for understanding the complex relationship between the nervous system and GI oncogenesis. Additionally, the study identified various components within the TME that possess a significant influence on the occurrence and progression of GI cancer, including microbiota, immune cells, and fibroblasts. Moreover, we highlighted the transformation relationship between non-neuronal cells and neuronal cells during GI cancer progression, inspiring the development of strategies for nervous system-guided anti-tumor drugs. By further elucidating the deep mechanism of various neuroregulatory signals and neuronal intervention, we underlined the potential of these targeted drugs translating into effective therapies for GI cancer treatment. In summary, this review provides an overview of the mechanisms of neuromodulation and explores potential therapeutic opportunities, providing insights into the understanding and management of GI cancers.
Collapse
Affiliation(s)
- Yang Lyu
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Wing Sum Shin
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
2
|
Dhanyamraju PK, Schell TD, Amin S, Robertson GP. Drug-Tolerant Persister Cells in Cancer Therapy Resistance. Cancer Res 2022; 82:2503-2514. [PMID: 35584245 PMCID: PMC9296591 DOI: 10.1158/0008-5472.can-21-3844] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 01/21/2023]
Abstract
One of the current stumbling blocks in our fight against cancer is the development of acquired resistance to therapy, which is attributable to approximately 90% of cancer-related deaths. Undercutting this process during treatment could significantly improve cancer management. In many cases, drug resistance is mediated by a drug-tolerant persister (DTP) cell subpopulation present in tumors, often referred to as persister cells. This review provides a summary of currently known persister cell subpopulations and approaches to target them. A specific DTP cell subpopulation with elevated levels of aldehyde dehydrogenase (ALDH) activity has stem cell-like characteristics and a high level of plasticity, enabling them to switch rapidly between high and low ALDH activity. Further studies are required to fully elucidate the functions of ALDH-high DTP cells, how they withstand drug concentrations that kill other cells, and how they rapidly adapt under levels of high cellular stress and eventually lead to more aggressive, recurrent, and drug-resistant cancer. Furthermore, this review addresses the processes used by the ALDH-high persister cell subpopulation to enable cancer progression, the ALDH isoforms important in these processes, interactions of ALDH-high DTPs with the tumor microenvironment, and approaches to therapeutically modulate this subpopulation in order to more effectively manage cancer.
Collapse
Affiliation(s)
- Pavan Kumar Dhanyamraju
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Todd D Schell
- Departments of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Shantu Amin
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- The Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
3
|
Goluba K, Kunrade L, Riekstina U, Parfejevs V. Schwann Cells in Digestive System Disorders. Cells 2022; 11:832. [PMID: 35269454 PMCID: PMC8908985 DOI: 10.3390/cells11050832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Proper functioning of the digestive system is ensured by coordinated action of the central and peripheral nervous systems (PNS). Peripheral innervation of the digestive system can be viewed as intrinsic and extrinsic. The intrinsic portion is mainly composed of the neurons and glia of the enteric nervous system (ENS), while the extrinsic part is formed by sympathetic, parasympathetic, and sensory branches of the PNS. Glial cells are a crucial component of digestive tract innervation, and a great deal of research evidence highlights the important status of ENS glia in health and disease. In this review, we shift the focus a bit and discuss the functions of Schwann cells (SCs), the glial cells of the extrinsic innervation of the digestive system. For more context, we also provide information on the basic findings regarding the function of innervation in disorders of the digestive organs. We find diverse SC roles described particularly in the mouth, the pancreas, and the intestine. We note that most of the scientific evidence concerns the involvement of SCs in cancer progression and pain, but some research identifies stem cell functions and potential for regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Vadims Parfejevs
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str. 3, LV-1004 Riga, Latvia; (K.G.); (L.K.); (U.R.)
| |
Collapse
|
4
|
Usai C, Gibbons JM, Pade C, Li W, Jacobs SRM, McKnight Á, Kennedy PTF, Gill US. The β-NGF/TrkA Signalling Pathway Is Associated With the Production of Anti-Nucleoprotein IgG in Convalescent COVID-19. Front Immunol 2022; 12:813300. [PMID: 35095908 PMCID: PMC8795736 DOI: 10.3389/fimmu.2021.813300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/16/2021] [Indexed: 01/10/2023] Open
Abstract
Background The presentation of SARS-CoV-2 infection varies from asymptomatic to severe COVID-19. Similarly, high variability in the presence, titre and duration of specific antibodies has been reported. While some host factors determining these differences, such as age and ethnicity have been identified, the underlying molecular mechanisms underpinning these differences remain poorly defined. Methods We analysed serum and PBMC from 17 subjects with a previous PCR-confirmed SARS-CoV-2 infection and 10 unexposed volunteers following the first wave of the pandemic, in the UK. Anti-NP IgG and neutralising antibodies were measured, as well as a panel of infection and inflammation related cytokines. The virus-specific T cell response was determined by IFN-γ ELISPOT and flow cytometry after overnight incubation of PBMCs with pools of selected SARS-CoV-2 specific peptides. Results Seven of 17 convalescent subjects had undetectable levels of anti-NP IgG, and a positive correlation was shown between anti-NP IgG levels and the titre of neutralising antibodies (IC50). In contrast, a discrepancy was noted between antibody levels and T cell IFN-γ production by ELISpot following stimulation with specific peptides. Among the analysed cytokines, β-NGF and IL-1α levels were significantly different between anti-NP positive and negative subjects, and only β-NGF significantly correlated with anti-NP positivity. Interestingly, CD4+ T cells of anti-NP negative subjects expressed lower amounts of the β-NGF-specific receptor TrkA. Conclusions Our results suggest that the β-NGF/TrkA signalling pathway is associated with the production of anti-NP specific antibody in mild SARS-CoV-2 infection and the mechanistic regulation of this pathway in COVID-19 requires further investigation.
Collapse
Affiliation(s)
- Carla Usai
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Joseph M. Gibbons
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Corinna Pade
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Wenhao Li
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Barts Health National Health Service (NHS) Trust, The Royal London Hospital, London, United Kingdom
| | - Sabina R. M. Jacobs
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Áine McKnight
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Patrick T. F. Kennedy
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Barts Health National Health Service (NHS) Trust, The Royal London Hospital, London, United Kingdom
| | - Upkar S. Gill
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Barts Health National Health Service (NHS) Trust, The Royal London Hospital, London, United Kingdom
| |
Collapse
|
5
|
The neurotrophic tyrosine kinase receptor 1 (TrkA) is overexpressed in oesophageal squamous cell carcinoma. Pathology 2020; 53:470-477. [PMID: 33143904 DOI: 10.1016/j.pathol.2020.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 01/31/2023]
Abstract
Nerve growth factor (NGF) and its receptors, the neurotrophic receptor tyrosine kinase 1 (NTRK1/TrkA) and the common neurotrophin receptor (NGFR/p75NTR), are increasingly implicated in cancer progression, but their clinicopathological significance in oesophageal cancer is unclear. In this study, the expression of NGF, NTRK1 and NGFR were analysed by immunohistochemistry in a cohort of 303 oesophageal cancers versus 137 normal adjacent oesophageal tissues. Immunostaining was digitally quantified and compared to clinicopathological parameters. NGF and NGFR staining were found in epithelial cells and at similar levels between oesophageal cancers and normal oesophageal tissue. NGFR staining was slightly increased with grade (p=0.0389). Interestingly, NTRK1 staining was markedly higher in oesophageal squamous cell carcinoma (OR 2.31, 95%CI 1.13-4.38, p<0.0001) and significantly lower in adenocarcinoma (OR 0.50, 95%CI 0.44-0.63, p<0.0001) compared to normal oesophageal tissue. In addition, NTRK1 staining was decreased in grade 2 and grade 3 (OR 0.51, 95%CI 0.21-1.40, p<0.0001) compared to grade 1, suggesting a preferential involvement of this receptor in the more differentiated forms of oesophageal carcinomas. Together, these data point to NTRK1 as a biomarker and a candidate therapeutic target in oesophageal squamous cell carcinoma.
Collapse
|
6
|
Griffin N, Rowe CW, Gao F, Jobling P, Wills V, Walker MM, Faulkner S, Hondermarck H. Clinicopathological Significance of Nerves in Esophageal Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1921-1930. [PMID: 32479822 DOI: 10.1016/j.ajpath.2020.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Nerves are emerging promoters of cancer progression, but the innervation of esophageal cancer and its clinicopathologic significance remain unclear. In this study, nerves were analyzed by immunohistochemistry in a cohort of 260 esophageal cancers, including 40 matched lymph node metastases and 137 normal adjacent esophageal tissues. Nerves were detected in 38% of esophageal cancers and were more associated with squamous cell carcinomas (P = 0.04). The surrounding or invasion of nerves by cancer cells (perineural invasion) was detected in 12% of esophageal cancers and was associated with reduced survival (P = 0.04). Nerves were found to express the following receptors for nerve growth factor (NGF): neurotrophic receptor tyrosine kinase 1 and nerve growth factor receptor. An association was suggested between high production of NGF by cancer cells and the presence of nerves (P = 0.02). In vitro, NGF production in esophageal cancer cells was shown by Western blot, and esophageal cancer cells were able to induce neurite outgrowth in the PC12 neuronal cells. The neurotrophic activity of esophageal cancer cells was inhibited by anti-NGF blocking antibodies. Together, these data suggest that innervation is a feature in esophageal cancers that may be driven by cancer cell-released NGF.
Collapse
Affiliation(s)
- Nathan Griffin
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, Australia
| | - Christopher W Rowe
- Hunter Medical Research Institute, University of Newcastle, New Lambton, Australia; Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
| | - Fangfang Gao
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, Australia
| | - Phillip Jobling
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, Australia
| | - Vanessa Wills
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Callaghan, Australia; Department of Surgery, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Marjorie M Walker
- Hunter Medical Research Institute, University of Newcastle, New Lambton, Australia; Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
| | - Sam Faulkner
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, Australia
| | - Hubert Hondermarck
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, Australia.
| |
Collapse
|
7
|
Liu SY, Liu SZ, Li Y, Chen S. Mouse Nerve Growth Factor Facilitates the Growth of Interspinal Schwannoma Cells by Activating NGF Receptors. J Korean Neurosurg Soc 2019; 62:626-634. [PMID: 31527385 PMCID: PMC6835149 DOI: 10.3340/jkns.2019.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/23/2019] [Indexed: 01/19/2023] Open
Abstract
Objective Nerve growth factor (NGF) is a member of the neurotrophic factor family and plays a vital role in the physiological processes of organisms, especially in the nervous system. Many recent studies have reported that NGF is also involved in the regulation of tumourigenesis by either promoting or suppressing tumor growth, which depends on the location and type of tumor. However, little is known regarding the effect of NGF on interspinal schwannoma (IS). In the present study, we aimed to explored whether mouse nerve growth factor (mNGF), which is widely used in the clinic, can influence the growth of interspinal schwannoma cells (ISCs) isolated from IS in vitro. Methods ISCs were isolated, cultured and identified by S-100 with immunofluorescence analysis. S-100-positive cells were divided into five groups, and separately cultured with various concentrations of mNGF (0 [phosphate buffered saline, PBS], 40, 80, 160, and 320 ng/mL) for 24 hours. Western blot and quantantive real time polymerase chain reaction (PCR) were applied to detect tyrosine kinase A (TrkA) receptor and p75 neurotrophin receptor (p75NTR) in each group. Crystal violet staining was selected to assess the effect of mNGF (160 ng/mL) on ISCs growth.
Results ISCs growth was enhanced by mNGF in a dose-dependent manner. The result of crystal violet staining revealed that it was significantly strengthened the cells growth kinetics when cultured with 160 ng/mL mNGF compared to PBS group. Western blot and quantantive real time PCR discovered that TrkA receptor and mRNA expression were both up-regualated under the condition of mNGF, expecially in 160 ng/mL, while the exoression of p75NTR demonstrated no difference among groups.
Conclusion From these data, we conclude that exogenous mNGF can facilitate ISC growth by activating both TrkA receptor and p75NTR. In addition, patients who are suffering from IS should not be administered mNGF in the clinic.
Collapse
Affiliation(s)
- Shu Yi Liu
- School of Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Sheng Ze Liu
- Department of Neurosurgery, Fuzhou Second Affiliated Hospital of Xiamen University, Fuzhou, China
| | - Yu Li
- Department of Otolaryngology, Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Shi Chen
- Department of Neurosurgery, Fuzhou Second Affiliated Hospital of Xiamen University, Fuzhou, China
| |
Collapse
|
8
|
Xu J, Song J, Yang X, Guo J, Wang T, Zhuo W. ProNGF siRNA inhibits cell proliferation and invasion of pancreatic cancer cells and promotes anoikis. Biomed Pharmacother 2019; 111:1066-1073. [PMID: 30841420 DOI: 10.1016/j.biopha.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/21/2018] [Accepted: 01/01/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Precursor of nerve growth factor (proNGF) was previously considered biologically inactive; however, it has recently been identified as having important roles in the pathology of cancer development. AIM This study aimed to explore the therapeutic effects of proNGF siRNA on the proliferation, invasion, and anoikis of pancreatic cancer cells and determine the functions of proNGF. METHODS Pancreatic ductal adenocarcinoma (PDAC) and paired paracancerous tissue samples were collected from 60 patients for evaluation of proNGF expression by immunohistochemistry staining, qPCR, and western blotting. PDAC cell proliferation, migration, apoptosis, and anoikis following proNGF siRNA knockdown were investigated in two pancreatic cancer cell lines, Panc-1 and Bxpc-3, using BrdU incorporation assays, EdU staining, Ki-67 immunofluorescence (IF) staining, wound-healing assays, transwell invasion assays, and EthD-1 IF staining. Autophagy-related proteins were also measured by western blotting. RESULTS Levels of proNGF protein were higher in pancreatic cancer tissues and cells lines than those in paracancerous tissues and normal pancreatic duct epithelial cells, respectively. In vitro, ProNGF knockdown by siRNA led to significantly reduced cell proliferation, remarkably inhibited wound-healing, and reduced the number of invaded PDAC cells in migration and transwell assays. Treatment with proNGF siRNA also downregulated ATG5 and Beclin 1 protein levels, increased those of P62, and increased EthD-1 staining in PDAC cells. CONCLUSION ProNGF expression is elevated in PDAC tissues and cell lines, and proNGF siRNA can inhibit cell proliferation, migration, and invasion, and promote anoikis of pancreatic cancer cells, in which decreased proNGF may participate.
Collapse
Affiliation(s)
- Jianbiao Xu
- Second Department of General Surgery, The First People's Hospital of Yunnan Province, Kunming 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Jianlin Song
- Second Department of General Surgery, The First People's Hospital of Yunnan Province, Kunming 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Xiaochun Yang
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China; Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming 650032, China.
| | - Jianhui Guo
- Second Department of General Surgery, The First People's Hospital of Yunnan Province, Kunming 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China.
| | - Tongmin Wang
- Second Department of General Surgery, The First People's Hospital of Yunnan Province, Kunming 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Weidong Zhuo
- Second Department of General Surgery, The First People's Hospital of Yunnan Province, Kunming 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| |
Collapse
|
9
|
Neurotrophins and their involvement in digestive cancers. Cell Death Dis 2019; 10:123. [PMID: 30741921 PMCID: PMC6370832 DOI: 10.1038/s41419-019-1385-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/18/2022]
Abstract
Cancers of the digestive system, including esophageal, gastric, pancreatic, hepatic, and colorectal cancers, have a high incidence and mortality worldwide. Efficient therapies have improved patient care; however, many challenges remain including late diagnosis, disease recurrence, and resistance to therapies. Mechanisms responsible for these aforementioned challenges are numerous. This review focuses on neurotrophins, including NGF, BDNF, and NT3, and their specific tyrosine kinase receptors called tropomyosin receptor kinase (Trk A, B, C, respectively), associated with sortilin and the p75 neurotrophin receptor (p75NTR), and their implication in digestive cancers. Globally, p75NTR is a frequently downregulated tumor suppressor. On the contrary, Trk and their ligands are considered oncogenic factors. New therapies which target NT and/or their receptors, or use them as diagnosis biomarkers could help us to combat digestive cancers.
Collapse
|
10
|
Duarte JG, Nascimento RD, Martins PR, d'Ávila Reis D. Evaluation of the immunoreactivity of nerve growth factor and tropomyosin receptor kinase A in the esophagus of noninfected and infected individuals with Trypanosoma cruzi. Parasitol Res 2018; 117:1647-1655. [PMID: 29550999 DOI: 10.1007/s00436-018-5838-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/09/2018] [Indexed: 11/30/2022]
Abstract
Megaesophagus is one of the major manifestations of the chronic phase of Chagas disease. Its primary symptom is generally dysphagia due to disturbance in the lower esophageal sphincter. Microscopically, the affected organ presents denervation, which has been considered as consequence of an inflammatory process that begins at the acute phase and persists in the chronic phase. Inflammatory infiltrates are composed of lymphocytes, macrophages, natural killer cells, mast cells, and eosinophils. In this study, we evaluated the immunoreactivity of nerve growth factor (NGF), and of its receptor tropomyosin receptor kinase A (TrkA), molecules that are well known for having a relevant role in neuroimmune communication in the gastrointestinal tract. Esophageal samples obtained via autopsy or surgery procedures from six noninfected individuals, six infected individuals without megaesophagus, and six infected individuals with megaesophagus were analyzed. Infected individuals without megaesophagus presented increased numbers of NGF immunoreactive (IR) mast cells and increased areas of TrkA-IR epithelial cells and inner muscle cells. Infected individuals with megaesophagus showed increased numbers of NGF-IR eosinophils and mast cells, TrkA-IR eosinophils and mast cells, increased area of NGF-IR epithelial cells, and increased areas of TrkA-IR epithelials cells and inner muscle cells. The data presented here point to the participation of NGF and its TrkA receptor in the pathology of chagasic megaesophagus.
Collapse
Affiliation(s)
- Jacqueline Garcia Duarte
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodolfo Duarte Nascimento
- Departamento de Ciências Básicas da Vida, Instituto de Ciências da Vida, Universidade Federal de Juiz de Fora, Governador Valadares, Minas Gerais, Brazil.
| | - Patrícia Rocha Martins
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora d'Ávila Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
11
|
Shi W, George SK, George B, Curry CV, Murzabdillaeva A, Alkan S, Amin HM. TrkA is a binding partner of NPM-ALK that promotes the survival of ALK + T-cell lymphoma. Mol Oncol 2017; 11:1189-1207. [PMID: 28557340 PMCID: PMC5579389 DOI: 10.1002/1878-0261.12088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/01/2017] [Accepted: 05/17/2017] [Indexed: 11/25/2022] Open
Abstract
Nucleophosmin‐anaplastic lymphoma kinase‐expressing (NPM‐ALK+) T‐cell lymphoma is an aggressive neoplasm that is more commonly seen in children and young adults. The pathogenesis of NPM‐ALK+ T‐cell lymphoma is not completely understood. Wild‐type ALK is a receptor tyrosine kinase that is physiologically expressed in neural tissues during early stages of human development, which suggests that ALK may interact with neurotrophic factors. The aberrant expression of NPM‐ALK results from a translocation between the ALK gene on chromosome 2p23 and the NPM gene on chromosome 5q35. The nerve growth factor (NGF) is the first neurotrophic factor attributed to non‐neural functions including cancer cell survival, proliferation, and metastasis. These functions are primarily mediated through the tropomyosin receptor kinase A (TrkA). The expression and role of NGF/TrkA in NPM‐ALK+ T‐cell lymphoma are not known. In this study, we tested the hypothesis that TrkA signaling is upregulated and sustains the survival of this lymphoma. Our data illustrate that TrkA and NGF are expressed in five NPM‐ALK+ T‐cell lymphoma cell lines and TrkA is expressed in 11 of 13 primary lymphoma tumors from patients. In addition, we found evidence to support that NPM‐ALK and TrkA functionally interact. A selective TrkA inhibitor induced apoptosis and decreased cell viability, proliferation, and colony formation of NPM‐ALK+ T‐cell lymphoma cell lines. These effects were associated with downregulation of cell survival regulatory proteins. Similar results were also observed using specific knockdown of TrkA in NPM‐ALK+ T‐cell lymphoma cells by siRNA. Importantly, the inhibition of TrkA signaling was associated with antitumor effects in vivo, because tumor xenografts in mice regressed and the mice exhibited improved survival. In conclusion, TrkA plays an important role in the pathogenesis of NPM‐ALK+ T‐cell lymphoma, and therefore, targeting TrkA signaling may represent a novel approach to eradicate this aggressive neoplasm.
Collapse
Affiliation(s)
- Wenyu Shi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Hematology, Affiliated Hospital of the University of Nantong, Jiangsu, China
| | - Suraj Konnath George
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bhawana George
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Choladda V Curry
- Department of Pathology and Immunology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| | - Albina Murzabdillaeva
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Serhan Alkan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
12
|
Kojima H, Okumura T, Yamaguchi T, Miwa T, Shimada Y, Nagata T. Enhanced cancer stem cell properties of a mitotically quiescent subpopulation of p75NTR-positive cells in esophageal squamous cell carcinoma. Int J Oncol 2017; 51:49-62. [PMID: 28534989 PMCID: PMC5467780 DOI: 10.3892/ijo.2017.4001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/27/2017] [Indexed: 12/14/2022] Open
Abstract
Mitotically quiescent cancer stem cells (CSCs) possess higher malignant potential than other CSCs, indicating their higher contribution to therapeutic resistance than that of other CSCs. In esophageal squamous cell carcinoma (ESCC), p75 neurotrophin receptor (p75NTR) is expressed in a candidate CSC population showing high tumorigenicity and chemoresistance. In the present study, we isolated and characterized quiescent CSCs population in ESCC based on p75NTR expression and cell cycle status. Expression of p75NTR and Ki-67 in ESCC cell lines (KYSE cells) and surgically resected ESCC specimens was detected by performing immunocytochemical analysis. p75NTR-positive KYSE cells were fractionated into quiescent and proliferating cells by performing flow cytometry with a fluorescent DNA-staining dye to determine their CSC phenotype. Immunocytochemical analysis showed that 21.8 and 36.5% of the p75NTR-positive cells were Ki-67-negative (G0), which accounted for 11.4 and 15.7% of cells in KYSE-30 and KYSE-140 cell lines, respectively. Flow cytometric cell sorting showed that p75NTR-positive cells in the G0-G1 phase (p75NTR-positive/G0-1 cells) but not in the S-G2-M phase (p75NTR-positive/S-G2-M cells) showed strong expression of stem cell-related genes Nanog, BMI-1, and p63; high colony formation ability; high tumorigenicity in a mouse xenograft model; and strong chemoresistance against cisplatin because of the expression of drug resistance genes ABCG2 and ERCC1. Label-retention assay showed that 3.4% p75NTR-positive cells retained fluorescent cell-tracing dye, but p75NTR-negative cells did not. Immunohistochemical analysis of ESCC specimens showed p75NTR expression in 39 of 95 (41.1%) patients, with a median of 13.2% (range, 3.0-80.1%) p75NTR-positive/Ki-67-negative cells, which were found to be associated with poorly differentiated histology. Our results suggest that p75NTR-positive/G0-1 cells represent quiescent CSCs in ESCC and indicate that these cells can be used as targets to investigate molecular processes regulating CSC phenotype and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Hirofumi Kojima
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama city, Toyama 930-0194, Japan
| | - Tomoyuki Okumura
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama city, Toyama 930-0194, Japan
| | - Tetsuji Yamaguchi
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama city, Toyama 930-0194, Japan
| | - Takeshi Miwa
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama city, Toyama 930-0194, Japan
| | - Yutaka Shimada
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuya Nagata
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama city, Toyama 930-0194, Japan
| |
Collapse
|
13
|
Role of Nerve Growth Factor (NGF) and miRNAs in Epithelial Ovarian Cancer. Int J Mol Sci 2017; 18:ijms18030507. [PMID: 28245631 PMCID: PMC5372523 DOI: 10.3390/ijms18030507] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/12/2017] [Accepted: 02/20/2017] [Indexed: 12/17/2022] Open
Abstract
Ovarian cancer is the eighth most common cancer in women worldwide, and epithelial ovarian cancer (EOC) represents 90% of cases. Nerve growth factor (NGF) and its high affinity receptor tyrosine kinase A receptor (TRKA) have been associated with the development of several types of cancer, including EOC; both NGF and TRKA levels are elevated in this pathology. EOC presents high angiogenesis and several molecules have been reported to induce this process. NGF increases angiogenesis through its TRKA receptor on endothelial cells, and by indirectly inducing vascular endothelial growth factor expression. Other molecules controlled by NGF include ciclooxigenase-2, disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) and calreticulin (CRT), proteins involved in crucial processes needed for EOC progression. These molecules could be modified through microRNA regulation, which could be regulated by NGF. MicroRNAs are the widest family of non-coding RNAs; they bind to 3'-UTR of mRNAs to inhibit their translation, to deadenilate or to degraded them. In EOC, a deregulation in microRNA expression has been described, including alterations of miR-200 family, cluster-17-92, and miR-23b, among others. Since the NGF-microRNA relationship in pathologies has not been studied, this review proposes that some microRNAs could be associated with NGF/TRKA activation, modifying protein levels needed for EOC progression.
Collapse
|
14
|
Okumura T, Yamaguchi T, Watanabe T, Nagata T, Shimada Y. Clinical Relevance of a Candidate Stem Cell Marker, p75 Neurotrophin Receptor (p75NTR) Expression in Circulating Tumor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:247-254. [PMID: 28560678 DOI: 10.1007/978-3-319-55947-6_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite advances in its diagnosis and multimodal therapies, the prognosis of esophageal squamous cell carcinoma (ESCC) patients remains poor, because of high incidences of metastasis . Recent reports suggested that circulating tumor stem cells (CTSCs), rather than circulating tumor cells (CTCs), were more accurate diagnostic marker for metastasis, because tumor stem cells or cancer stem cells (CSCs) are more responsible for metastasis through processes such as epithelial mesenchymal transition (EMT) and tumor initiation. A neurotrophin receptor p75 (p75NTR) is expressed in a candidate CSC s in ESCC, which possess enhanced tumorigenicity along with strong expression of EMT-related genes. Our recent report using two-color flow cytometry demonstrated that CTC counts based on a combined expression of epithelial cell adhesion molecule (EpCAM) and p75NTR was significantly higher in peripheral blood samples of ESCC patients than healthy controls. In addition, EpCAM + p75NTR+, but not EpCAM + p75NTR- CTC counts, correlated with clinically diagnosed distant metastasis and pathological venous invasion in surgically resected primary ESCC tumors. Malignant cytology of the isolated EpCAM + p75NTR+ cells was microscopically confirmed as well. These results demonstrated that EpCAM + p75NTR+ CTC count was a more accurate diagnostic marker than EpCAM+ CTC count, suggesting the highly metastatic potential of CTCs with p75NTR expression.Investigation using the isolated EpCAM + p75NTR+ CTCs to assess their stem cell properties may shed light on their roles in tumor metastasis in ESCC.Further investigations based on large-scale prospective studies with long term follow up may provide us with evidences for its clinical use.
Collapse
Affiliation(s)
- Tomoyuki Okumura
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan.
| | - Tetsuji Yamaguchi
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan
| | - Toru Watanabe
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan
| | - Takuya Nagata
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan
| | - Yutaka Shimada
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
15
|
Yamaguchi T, Okumura T, Hirano K, Watanabe T, Nagata T, Shimada Y, Tsukada K. p75 neurotrophin receptor expression is a characteristic of the mitotically quiescent cancer stem cell population present in esophageal squamous cell carcinoma. Int J Oncol 2016; 48:1943-54. [PMID: 26984177 DOI: 10.3892/ijo.2016.3432] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/11/2016] [Indexed: 11/06/2022] Open
Abstract
Mitotically quiescent cancer stem cells (CSC) are hypothesized to exhibit a more aggressive phenotype involving greater therapeutic resistance and metastasis. The aim of our study was to develop a method for identifying quiescent CSC in esophageal squamous cell carcinoma (ESCC) based on their expression of the p75 neurotrophin receptor (p75NTR) and other proposed CSC markers, such as CD44 and CD90. Double immunostaining of surgical ESCC specimens revealed that the mean Ki-67-labeling index of the p75NTR-positive cells was significantly lower than that of the p75NTR-negative cells. Real-time PCR analysis of sorted fractions of ESCC cell lines (KYSE cells) revealed that stem cell-related genes (Nanog, p63 and Bmi-1) and epithelial-mesenchymal transition (EMT)-related genes (N-cadherin and fibronectin) were expressed at significantly higher levels in the p75NTR-positive fractions than in the CD44-positive or CD90-positive fractions. In addition, the p75NTR-positive fractions exhibited significantly higher colony formation in vitro, significantly enhanced tumor formation in mice, and significantly greater chemoresistance against cisplatin (CDDP) than the CD44‑positive or CD90‑positive fractions. Furthermore, in both the cultured cells and those from the mouse xenograft tumors, the p75NTR‑positive/CD44-negative and p75NTR‑positive/CD90-negative KYSE cell fractions contained significantly higher proportions of mitotically quiescent cells. These results suggest that the mitotically quiescent CSC population in ESCC can be identified and isolated based on their p75NTR expression, providing researchers with a novel diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Tetsuji Yamaguchi
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama City, Toyama 930-0194, Japan
| | - Tomoyuki Okumura
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama City, Toyama 930-0194, Japan
| | - Katsuhisa Hirano
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama City, Toyama 930-0194, Japan
| | - Toru Watanabe
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama City, Toyama 930-0194, Japan
| | - Takuya Nagata
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama City, Toyama 930-0194, Japan
| | - Yutaka Shimada
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhiro Tsukada
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama City, Toyama 930-0194, Japan
| |
Collapse
|
16
|
Murillo-Sauca O, Chung MK, Shin JH, Karamboulas C, Kwok S, Jung YH, Oakley R, Tysome JR, Farnebo LO, Kaplan MJ, Sirjani D, Divi V, Holsinger FC, Tomeh C, Nichols A, Le QT, Colevas AD, Kong CS, Uppaluri R, Lewis JS, Ailles LE, Sunwoo JB. CD271 is a functional and targetable marker of tumor-initiating cells in head and neck squamous cell carcinoma. Oncotarget 2015; 5:6854-66. [PMID: 25149537 PMCID: PMC4196168 DOI: 10.18632/oncotarget.2269] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Tumor-initiating cells (TICs) in squamous cell carcinoma of the head and neck (SCCHN) are best characterized by their surface expression of CD44. Although there is great interest in identifying strategies to target this population, no marker of these cells has been found to be functionally active. Here, we examined the expression of the purported marker of normal human oral epithelial stem cells, CD271. We show that CD271 expression is restricted to a subset of the CD44+ cells. Using xenograft assays, we show that the CD44+CD271+ subpopulation contains the most tumorigenic cells. Loss of CD271 function results in a block in the G2-M phase of the cell cycle and a profound negative impact on the capacity of these cells to initiate tumor formation in vivo. Incubation with recombinant NGF results in enhanced phosphorylation of Erk, providing additional evidence that CD271 is functionally active. Finally, incubation of SCCHN cells with antibody to CD271 results in decreased Erk phosphorylation and decreased tumor formation in vivo. Thus, our data are the first to demonstrate that CD271 more specifically identifies the TIC subpopulation within the CD44+ compartment in SCCHN and that this receptor is a functionally active and targetable molecule.
Collapse
Affiliation(s)
- Oihana Murillo-Sauca
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA. Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA.
| | - Man Ki Chung
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA. Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - June Ho Shin
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA. Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA.
| | | | - Shirley Kwok
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Young Ho Jung
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA. Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Richard Oakley
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - James R Tysome
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Lovisa O Farnebo
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA. Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Michael J Kaplan
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Davud Sirjani
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Vasu Divi
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA.
| | - F Christopher Holsinger
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA.
| | - Chafeek Tomeh
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Anthony Nichols
- Department of Otolaryngology - Head and Neck Surgery, Victoria Hospital, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Quynh T Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA.
| | - A Dimitrios Colevas
- Department of Medicine, Stanford University School of Medicine, Stanford, CA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Christina S Kong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Ravindra Uppaluri
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO
| | - James S Lewis
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO.
| | - Laurie E Ailles
- Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - John B Sunwoo
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA. Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
17
|
Feng RT, Mei JZ, Li M, Zhao JZ, Bai H, Liu GJ. Effect of brain-derived neurotrophic factor on in vitro metastasis of esophageal carcinoma cell line ECa9706. Shijie Huaren Xiaohua Zazhi 2015; 23:1218-1223. [DOI: 10.11569/wcjd.v23.i8.1218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the effect of brain-derived neurotrophic factor (BDNF) on the proliferation and migration of ECa9706 cell line in vitro and the underlying mechanism.
METHODS: Cell proliferation and migration were examined by MTT assay and transwell assay, respectively. The mRNA and protein expression levels of tyrosine kinase receptor B (TrkB) and phospholipase C (PLC)-γ1 were detected by real-time quantitative polymerase chain reaction (qPCR) and Western blot.
RESULTS: BDNF enhanced the proliferation and migration of ECa9706 cells significantly in a dose-dependent manner, and this effect was blocked by K252a (a TrkB antagonist). Compared with control cells, BDNF increased the mRNA and protein expression of TrkB, and the protein expression of PLC-γ1.
CONCLUSION: BDNF/TrkB/PLC-γ1 signaling may play an important role in the migration and metastasis of esophageal carcinoma cells.
Collapse
|
18
|
Hetz S, Acikgoez A, Moll C, Jahnke HG, Robitzki AA, Metzger R, Metzger M. Age-related gene expression analysis in enteric ganglia of human colon after laser microdissection. Front Aging Neurosci 2014; 6:276. [PMID: 25360110 PMCID: PMC4197768 DOI: 10.3389/fnagi.2014.00276] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 09/24/2014] [Indexed: 01/16/2023] Open
Abstract
The enteric nervous system (ENS) poses the intrinsic innervation of the gastrointestinal tract and plays a critical role for all stages of postnatal life. There is increasing scientific and clinical interest in acquired or age-related gastrointestinal dysfunctions that can be manifested in diseases such as gut constipation or fecal incontinence. In this study, we sought to analyze age-dependent changes in the gene expression profile of the human ENS, particularly in the myenteric plexus. Therefore, we used the laser microdissection technique which has been proven as a feasible tool to analyze distinct cell populations within heterogeneously composed tissues. Full biopsy gut samples were prepared from children (4-12 months), middle aged (48-58 years) and aged donors (70-95 years). Cryosections were histologically stained with H&E, the ganglia of the myenteric plexus identified and RNA isolated using laser microdissection technique. Quantitative PCR was performed for selected neural genes, neurotransmitters and receptors. Data were confirmed on protein level using NADPH-diaphorase staining and immunohistochemistry. As result, we demonstrate age-associated alterations in site-specific gene expression pattern of the ENS. Thus, in the adult and aged distal parts of the colon a marked decrease in relative gene expression of neural key genes like NGFR, RET, NOS1 and a concurrent increase of CHAT were observed. Further, we detected notable regional differences of RET, CHAT, TH, and S100B comparing gene expression in aged proximal and distal colon. Interestingly, markers indicating cellular senescence or oxidative stress (SNCA, CASP3, CAT, SOD2, and TERT) were largely unchanged within the ENS. For the first time, our study also describes the age-dependent expression pattern of all major sodium channels within the ENS. Our results are in line with previous studies showing spatio-temporal differences within the mammalian ENS.
Collapse
Affiliation(s)
- Susan Hetz
- CELLT Research Group, Translational Centre for Regenerative Medicine, University of Leipzig Leipzig, Germany
| | - Ali Acikgoez
- Department of General and Visceral Surgery, St. George's Hospital Leipzig, Germany
| | - Corinna Moll
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg Wuerzburg, Germany
| | - Heinz-Georg Jahnke
- Division of Molecular biological-biochemical Processing Technology, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig Leipzig, Germany
| | - Andrea A Robitzki
- Division of Molecular biological-biochemical Processing Technology, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig Leipzig, Germany
| | - Roman Metzger
- Department of Pediatric Surgery, University of Leipzig Leipzig, Germany
| | - Marco Metzger
- CELLT Research Group, Translational Centre for Regenerative Medicine, University of Leipzig Leipzig, Germany ; Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg Wuerzburg, Germany
| |
Collapse
|
19
|
Shen WR, Wang YP, Chang JYF, Yu SY, Chen HM, Chiang CP. Perineural invasion and expression of nerve growth factor can predict the progression and prognosis of oral tongue squamous cell carcinoma. J Oral Pathol Med 2013; 43:258-64. [DOI: 10.1111/jop.12133] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Wei-Ren Shen
- Graduate Institute of Clinical Dentistry; School of Dentistry; National Taiwan University; Taipei Taiwan
- School of Dentistry; National Taiwan University; Taipei Taiwan
- Department of Dentistry; National Taiwan University Hospital; College of Medicine; Taipei Taiwan
| | - Yi-Ping Wang
- Graduate Institute of Clinical Dentistry; School of Dentistry; National Taiwan University; Taipei Taiwan
- School of Dentistry; National Taiwan University; Taipei Taiwan
- Department of Dentistry; National Taiwan University Hospital; College of Medicine; Taipei Taiwan
| | - Julia Yu-Fong Chang
- Graduate Institute of Clinical Dentistry; School of Dentistry; National Taiwan University; Taipei Taiwan
- School of Dentistry; National Taiwan University; Taipei Taiwan
- Department of Dentistry; National Taiwan University Hospital; College of Medicine; Taipei Taiwan
- Department of Oral and Maxillofacial Surgery; Division of Oral Pathology; School of Dentistry; University of Washington; Seattle WA USA
| | - Shang-Yang Yu
- Graduate Institute of Clinical Dentistry; School of Dentistry; National Taiwan University; Taipei Taiwan
- School of Dentistry; National Taiwan University; Taipei Taiwan
- Department of Dentistry; National Taiwan University Hospital; College of Medicine; Taipei Taiwan
| | - Hsin-Ming Chen
- Graduate Institute of Clinical Dentistry; School of Dentistry; National Taiwan University; Taipei Taiwan
- School of Dentistry; National Taiwan University; Taipei Taiwan
- Department of Dentistry; National Taiwan University Hospital; College of Medicine; Taipei Taiwan
- Graduate Institute of Oral Biology; School of Dentistry; National Taiwan University; Taipei Taiwan
| | - Chun-Pin Chiang
- Graduate Institute of Clinical Dentistry; School of Dentistry; National Taiwan University; Taipei Taiwan
- School of Dentistry; National Taiwan University; Taipei Taiwan
- Department of Dentistry; National Taiwan University Hospital; College of Medicine; Taipei Taiwan
- Graduate Institute of Oral Biology; School of Dentistry; National Taiwan University; Taipei Taiwan
| |
Collapse
|
20
|
Kiyosue T, Kawano S, Matsubara R, Goto Y, Hirano M, Jinno T, Toyoshima T, Kitamura R, Oobu K, Nakamura S. Immunohistochemical location of the p75 neurotrophin receptor (p75NTR) in oral leukoplakia and oral squamous cell carcinoma. Int J Clin Oncol 2011; 18:154-63. [DOI: 10.1007/s10147-011-0358-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/22/2011] [Indexed: 12/13/2022]
|
21
|
Mouse 3T3 fibroblasts under the influence of fibroblasts isolated from stroma of human basal cell carcinoma acquire properties of multipotent stem cells. Biol Cell 2011; 103:233-48. [PMID: 21355851 DOI: 10.1042/bc20100113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND INFORMATION Multipotent mesenchymal stem cells can participate in the formation of a microenvironment stimulating the aggressive behaviour of cancer cells. Moreover, cells exhibiting pluripotent ESC (embryonic stem cell) markers (Nanog and Oct4) have been observed in many tumours. Here, we investigate the role of cancer-associated fibroblasts in the formation of stem cell supporting properties of tumour stroma. We test the influence of fibroblasts isolated from basal cell carcinoma on mouse 3T3 fibroblasts, focusing on the expression of stem cell markers and plasticity in vitro by means of microarrays, qRT-PCR (quantitative real-time PCR) and immunohistochemistry. RESULTS We demonstrate the biological activity of the cancer stromal fibroblasts by influencing the 3T3 fibroblasts to express markers such as Oct4, Nanog and Sox2 and to show differentiation potential similar to mesenchymal stem cells. The role of growth factors such as IGF2 (insulin-like growth factor 2), FGF7 (fibroblast growth factor 7), LEP (leptin), NGF (nerve growth factor) and TGFβ (transforming growth factor β), produced by the stromal fibroblasts, is established to participate in their bioactivity. Uninduced 3T3 do not express the stem cell markers and show minimal differentiation potential. CONCLUSIONS Our observations indicate the pro-stem cell activity of cancer-associated fibroblasts and underline the role of epithelial-mesenchymal interaction in tumour biology.
Collapse
|
22
|
Kolokythas A, Cox DP, Dekker N, Schmidt BL. Nerve growth factor and tyrosine kinase A receptor in oral squamous cell carcinoma: is there an association with perineural invasion? J Oral Maxillofac Surg 2010; 68:1290-5. [PMID: 20363547 DOI: 10.1016/j.joms.2010.01.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 10/03/2009] [Accepted: 01/04/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Perineural invasion (PNI) in oral squamous cell carcinoma (SCC) is recognized as a significant predictor of outcome. PNI is associated with locoregional recurrence and decreased survival of patients with head and neck SCC. Nerve growth factor (NGF) has been shown to be involved in PNI in several malignancies, including breast, prostate, and pancreatic cancers. We investigated the hypothesis that NGF and its high-affinity receptor tyrosine kinase A (TrkA) are highly expressed in cases of oral SCC that have histologic evidence of PNI. MATERIALS AND METHODS We performed immunohistochemistry on archived oral tongue SCC specimens from the established oral and general pathology databases at the University of California, San Francisco. The following groups were evaluated: 1) 21 T1/T2 oral tongue SCC cases with PNI and 2) 21 T1/T2 oral tongue SCC cases without histologic evidence of PNI. RESULTS Strong homogeneous cytoplasmic staining for NGF and TrkA was detected in the malignant cells in the PNI-positive group of tumors. In group II (PNI negative) NGF and TrkA were detected in the stroma cells or were very weakly expressed by the malignant cells. We were able to show the presence of NGF and TrkA in the cytoplasm of malignant squamous cells in tumors with histologic evidence of PNI. Immunostaining for NGF (P = .0001) and TrkA (P = .039) was significantly higher in the PNI-positive oral SCC group than in the PNI-negative oral SCC group. CONCLUSION This study shows that oral SCC with evidence of PNI shows increased expression of NGF and TrkA and suggests that NGF and TrkA are involved with the mechanism leading to PNI. Further investigations are warranted to determine the potential for use of NGF and TrkA as candidate biomarkers to predict progression and outcome.
Collapse
Affiliation(s)
- Antonia Kolokythas
- Department of Oral and Maxillofacial Surgery, University of Illinois at Chicago College of Dentistry, Chicago, IL, USA
| | | | | | | |
Collapse
|
23
|
Electrical stimulation of sympathetic neurons induces autocrine/paracrine effects of NGF mediated by TrkA. J Mol Cell Cardiol 2010; 49:79-87. [PMID: 20138055 DOI: 10.1016/j.yjmcc.2010.01.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 11/21/2022]
Abstract
Neuronal remodeling with increased sympathetic innervation density has been implicated in the pathogenesis of atrial fibrillation (AF). Recently, increased transcardiac nerve growth factor (NGF) levels were observed in a canine model of AF. Whether atrial myocytes or cardiac sympathetic neurons are the source of neurotrophins, and whether NGF is the main neurotrophic factor contributing to sympathetic nerve sprouting (SNS) in AF still remains unclear. Therefore, neonatal rat atrial myocytes were cultured under conditions of high frequency electrical field stimulation (HFES) to mimic rapid atrial depolarization. Likewise, sympathetic neurons from the superior cervical ganglia of neonatal rats were exposed to HFES to simulate the physiological effect of sympathetic stimulation. Real-time PCR, ELISA and Western blots were performed to analyze the expression pattern of NGF and neurotrophin-3 (NT-3). Baseline NGF and NT-3 content was 3-fold higher in sympathetic neurons than in atrial myocytes (relative NGF protein expression: 1+/-0.0 vs. 0.37+/-0.11, all n=5, p<0.05). HFES of sympathetic neurons induced a frequency dependent NGF and NT-3 gene and protein up-regulation (relative NGF protein expression: 0Hz=1+/-0.0 vs. 5Hz=1.13+/-0.19 vs. 50Hz=1.77+/-0.08, all n=5, 0Hz/5Hz vs. 50Hz p<0.05), with a subsequent increase of growth associated protein 43 (GAP-43) expression and morphological SNS. Moreover, HFES of sympathetic neurons increased the tyrosine kinase A (TrkA) receptor expression. HFES induced neurotrophic effects could be abolished by lidocaine, TrkA blockade or NGF neutralizing antibodies, while NT-3 neutralizing antibodies had no significant effect on SNS. In neonatal rat atrial myocytes, HFES resulted in myocyte hypertrophy accompanied by an increase in NT-3 and a decrease in NGF expression. In summary, this study provides evidence that high-rate electrical stimulation of sympathetic neurons mediates nerve sprouting by an increase in NGF expression that targets the TrkA receptor in an autocrine/paracrine manner.
Collapse
|
24
|
Haas SL, Fitzner B, Jaster R, Wiercinska E, Gaitantzi H, Jesnowski R, Löhr JM, Singer MV, Dooley S, Breitkopf K. Transforming growth factor-beta induces nerve growth factor expression in pancreatic stellate cells by activation of the ALK-5 pathway. Growth Factors 2009; 27:289-99. [PMID: 19639490 DOI: 10.1080/08977190903132273] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nerve growth factor (NGF), a survival factor for neurons enforces pain by sensitizing nociceptors. Also in the pancreas, NGF was associated with pain and it can stimulate the proliferation of pancreatic cancer cells. Hepatic stellate cells (HSC) respond to NGF with apoptosis. Transforming growth factor (TGF)-beta, one of the strongest pro-fibrogenic activators of pancreatic stellate cells (PSC) induced NGF and its two receptors in an immortalized human cell line (ihPSC) and primary rat PSC (prPSC) as determined by RT-PCR, western blot, and immunofluorescence. In contrast to HSC, PSC expressed both NGF receptors, although p75(NTR) expression was weak in prPSC. In contrast to ihPSC TGF-beta activated both Smad signaling cascades in prPSC. NGF secretion was diminished by the activin-like kinase (ALK)-5 inhibitor SB431542, indicating the predominant role of ALK5 in activating the NGF system in PSC. While NGF did not affect proliferation or survival of PSC it induced expression of Inhibitor of Differentiation-1. We conclude that under conditions of upregulated TGF-beta, like fibrosis, NGF levels will also increase in PSC which might contribute to pancreatic wound healing responses.
Collapse
Affiliation(s)
- Stephan L Haas
- Department of Medicine II, Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fan TM, Barger AM, Sprandel IT, Fredrickson RL. Investigating TrkA expression in canine appendicular osteosarcoma. J Vet Intern Med 2008; 22:1181-8. [PMID: 18638015 DOI: 10.1111/j.1939-1676.2008.0151.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The tropomyosin-related kinase A (TrkA) proto-oncogene encodes for a receptor that binds with high affinity to the neurotrophin ligand, nerve growth factor (NGF). Intracellular signaling mediated by the TrkA/NGF axis orchestrates neuronal cell differentiation, mitogenesis, and survival. Interestingly, TrkA also is expressed by bone forming cells, and its signaling promotes antiapoptotic effects in actively dividing osteoblasts. HYPOTHESIS In canine immortalized cell lines and naturally occurring tumor samples, osteosarcoma (OSA) cells will express TrkA. In canine OSA cell lines, TrkA signaling will promote cell mitogenesis and survival. METHODS In vitro, TrkA expression in canine OSA cell lines was assessed by reverse transcriptase-polymerase chain reaction, flow cytometry, and immunocytochemistry. In vitro, the involvement of TrkA-mediated signaling for cell mitogenesis and survival were investigated with commercially available assays. In vivo, TrkA expression was evaluated in primary tumors and pulmonary metastases with immunocytochemistry and immunohistochemistry, respectively. RESULTS In vitro, canine OSA cells expressed TrkA mRNA and protein. Ligation of TrkA with exogenous NGF did not induce mitogenesis. Blockade of TrkA signaling with either a protein kinase inhibitor or NGF-neutralizing antibody induced apoptosis of canine OSA cell lines. In vivo, the majority (10/15) of canine OSA primary tumors and pulmonary metastases (9/12) expressed TrkA protein. CONCLUSIONS AND CLINICAL IMPORTANCE Canine OSA cells express TrkA, and its signaling protects against apoptosis. Most dogs with spontaneously arising OSA express TrkA within their primary tumors and pulmonary metastatic lesions, warranting further investigations with TrkA antagonists as a novel treatment option for canine OSA.
Collapse
Affiliation(s)
- T M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802-4714, USA.
| | | | | | | |
Collapse
|
26
|
Tsunoda S, Okumura T, Ito T, Kondo K, Ortiz C, Tanaka E, Watanabe G, Itami A, Sakai Y, Shimada Y. ABCG2 expression is an independent unfavorable prognostic factor in esophageal squamous cell carcinoma. Oncology 2007; 71:251-8. [PMID: 17671398 DOI: 10.1159/000106787] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 03/10/2007] [Indexed: 01/08/2023]
Abstract
OBJECTIVE ATP-binding cassette, subfamily G, member 2 (ABCG2) is a new member of the superfamily of ATP-binding cassette transporter proteins and known to be not only a member of the membrane transporters implicated in multidrug resistance, but also a molecular determinant of the side population phenotype, characteristics of which are reminiscent of stem cells. The aim of the current study was to clarify the significance of ABCG2 expression in esophageal squamous cell carcinoma (ESCC). METHODS We immunohistochemically investigated paraffin sections of 100 ESCC tumors and assessed the expression level of ABCG2 mRNA in 33 specimens by quantitative RT-PCR. RESULTS In the immunohistochemical study, ABCG2 expression was detectable in 61% of patients and the proportion of ABCG2-positive cells was variable (0-100%). Interestingly, the presence of ABCG2-positive cells in the tumor, regardless of their amount, was associated with poorer survival (p = 0.0088). Moreover, it was revealed to be an independent prognostic factor along with the extent of the primary tumor and positive lymph node metastasis in multivariate analysis using Cox's regression model. In the quantitative RT-PCR study, higher tumor ABCG2 mRNA expression was associated with poorer survival (p = 0.017). CONCLUSIONS The absolute presence of ABCG2-positive cells in the tumor is a single independent prognostic factor, suggesting the underlying roles in malignant characteristics of ESCC other than drug resistance.
Collapse
Affiliation(s)
- Shigeru Tsunoda
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|