1
|
Dupuy M, Lamoureux F, Mullard M, Postec A, Regnier L, Baud’huin M, Georges S, Brounais-Le Royer B, Ory B, Rédini F, Verrecchia F. Ewing sarcoma from molecular biology to the clinic. Front Cell Dev Biol 2023; 11:1248753. [PMID: 37752913 PMCID: PMC10518617 DOI: 10.3389/fcell.2023.1248753] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
In Europe, with an incidence of 7.5 cases per million, Ewing sarcoma (ES) is the second most common primary malignant bone tumor in children, adolescents and young adults, after osteosarcoma. Since the 1980s, conventional treatment has been based on the use of neoadjuvant and adjuvant chemotherapeutic agents combined with surgical resection of the tumor when possible. These treatments have increased the patient survival rate to 70% for localized forms, which drops drastically to less than 30% when patients are resistant to chemotherapy or when pulmonary metastases are present at diagnosis. However, the lack of improvement in these survival rates over the last decades points to the urgent need for new therapies. Genetically, ES is characterized by a chromosomal translocation between a member of the FET family and a member of the ETS family. In 85% of cases, the chromosomal translocation found is (11; 22) (q24; q12), between the EWS RNA-binding protein and the FLI1 transcription factor, leading to the EWS-FLI1 fusion protein. This chimeric protein acts as an oncogenic factor playing a crucial role in the development of ES. This review provides a non-exhaustive overview of ES from a clinical and biological point of view, describing its main clinical, cellular and molecular aspects.
Collapse
Affiliation(s)
- Maryne Dupuy
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, CRCI2NA, Université d'Angers, Nantes, France
| | | | | | | | | | | | | | | | | | | | - Franck Verrecchia
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, CRCI2NA, Université d'Angers, Nantes, France
| |
Collapse
|
2
|
Roundhill EA, Pantziarka P, Liddle DE, Shaw LA, Albadrani G, Burchill SA. Exploiting the Stemness and Chemoresistance Transcriptome of Ewing Sarcoma to Identify Candidate Therapeutic Targets and Drug-Repurposing Candidates. Cancers (Basel) 2023; 15:cancers15030769. [PMID: 36765727 PMCID: PMC9913297 DOI: 10.3390/cancers15030769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Outcomes for most patients with Ewing sarcoma (ES) have remained unchanged for the last 30 years, emphasising the need for more effective and tolerable treatments. We have hypothesised that using small-molecule inhibitors to kill the self-renewing chemotherapy-resistant cells (Ewing sarcoma cancer stem-like cells; ES-CSCs) responsible for progression and relapse could improve outcomes and minimise treatment-induced morbidities. For the first time, we demonstrate that ABCG1, a potential oncogene in some cancers, is highly expressed in ES-CSCs independently of CD133. Using functional models, transcriptomics and a bespoke in silico drug-repurposing pipeline, we have prioritised a group of tractable small-molecule inhibitors for further preclinical studies. Consistent with the cellular origin of ES, 21 candidate molecular targets of pluripotency, stemness and chemoresistance were identified. Small-molecule inhibitors to 13 of the 21 molecular targets (62%) were identified. POU5F1/OCT4 was the most promising new therapeutic target in Ewing sarcoma, interacting with 10 of the 21 prioritised molecular targets and meriting further study. The majority of small-molecule inhibitors (72%) target one of two drug efflux proteins, p-glycoprotein (n = 168) or MRP1 (n = 13). In summary, we have identified a novel cell surface marker of ES-CSCs and cancer/non-cancer drugs to targets expressed by these cells that are worthy of further preclinical evaluation. If effective in preclinical models, these drugs and drug combinations might be repurposed for clinical evaluation in patients with ES.
Collapse
Affiliation(s)
- Elizabeth Ann Roundhill
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
- Correspondence: (E.A.R.); (S.A.B.)
| | - Pan Pantziarka
- Anticancer Fund, Brusselsesteenweg 11, 1860 Meise, Belgium
| | - Danielle E. Liddle
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Lucy A. Shaw
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Ghadeer Albadrani
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Susan Ann Burchill
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
- Correspondence: (E.A.R.); (S.A.B.)
| |
Collapse
|
3
|
Roundhill EA, Chicon-Bosch M, Jeys L, Parry M, Rankin KS, Droop A, Burchill SA. RNA sequencing and functional studies of patient-derived cells reveal that neurexin-1 and regulators of this pathway are associated with poor outcomes in Ewing sarcoma. Cell Oncol (Dordr) 2021; 44:1065-1085. [PMID: 34403115 PMCID: PMC8516792 DOI: 10.1007/s13402-021-00619-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
PURPOSE The development of biomarkers and molecularly targeted therapies for patients with Ewing sarcoma (ES) in order to minimise morbidity and improve outcome is urgently needed. Here, we set out to isolate and characterise patient-derived ES primary cell cultures and daughter cancer stem-like cells (CSCs) to identify biomarkers of high-risk disease and candidate therapeutic targets. METHODS Thirty-two patient-derived primary cultures were established from treatment-naïve tumours and primary ES-CSCs isolated from these cultures using functional methods. By RNA-sequencing we analysed the transcriptome of ES patient-derived cells (n = 24) and ES-CSCs (n = 11) to identify the most abundant and differentially expressed genes (DEGs). Expression of the top DEG(s) in ES-CSCs compared to ES cells was validated at both RNA and protein levels. The functional and prognostic potential of the most significant gene (neurexin-1) was investigated using knock-down studies and immunohistochemistry of two independent tumour cohorts. RESULTS ES-CSCs were isolated from all primary cell cultures, consistent with the premise that ES is a CSC driven cancer. Transcriptional profiling confirmed that these cells were of mesenchymal origin, revealed novel cell surface targets for therapy that regulate cell-extracellular matrix interactions and identified candidate drivers of progression and relapse. High expression of neurexin-1 and low levels of regulators of its activity, APBA1 and NLGN4X, were associated with poor event-free and overall survival rates. Knock-down of neurexin-1 decreased viable cell numbers and spheroid formation. CONCLUSIONS Genes that regulate extracellular interactions, including neurexin-1, are candidate therapeutic targets in ES. High levels of neurexin-1 at diagnosis are associated with poor outcome and identify patients with localised disease that will relapse. These patients could benefit from more intensive or novel treatment modalities. The prognostic significance of neurexin-1 should be validated independently.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Antineoplastic Agents/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Line, Tumor
- Child
- Doxorubicin/pharmacology
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neural Cell Adhesion Molecules/genetics
- Neural Cell Adhesion Molecules/metabolism
- Prognosis
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sequence Analysis, RNA/methods
- Transcriptome/genetics
- Tumor Cells, Cultured
- Vincristine/pharmacology
Collapse
Affiliation(s)
- Elizabeth Ann Roundhill
- Children's Cancer Research Group, Leeds Institute of Medical Research, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Mariona Chicon-Bosch
- Children's Cancer Research Group, Leeds Institute of Medical Research, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Lee Jeys
- Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham, B31 2AP, UK
| | - Michael Parry
- Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham, B31 2AP, UK
| | - Kenneth S Rankin
- Translational and Clinical Research Institute, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4AD, UK
| | - Alastair Droop
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Susan Ann Burchill
- Children's Cancer Research Group, Leeds Institute of Medical Research, St. James's University Hospital, Leeds, LS9 7TF, UK.
| |
Collapse
|
4
|
Osteosarcoma, chondrosarcoma and Ewing sarcoma: Clinical aspects, biomarker discovery and liquid biopsy. Crit Rev Oncol Hematol 2021; 162:103340. [PMID: 33894338 DOI: 10.1016/j.critrevonc.2021.103340] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
Bone sarcomas, although rare, are associated with significant morbidity and mortality. The most frequent primary bone cancers include osteosarcoma, chondrosarcoma and Ewing sarcoma. The treatment approaches are heterogeneous and mainly chosen based on precise tumour staging. Unfortunately, clinical outcome has not changed significantly in over 30 years and tumour grade is still the best prognosticator of metastatic disease and survival. An option to improve this scenario is to identify molecular biomarkers in the early stage of the disease, or even before the disease onset. Blood-based liquid biopsies are a promising, non-invasive way to achieve this goal and there are an increasing number of studies which investigate their potential application in bone cancer diagnosis, prognosis and personalised therapy. This review summarises the interplay between clinical and molecular aspects of the three main bone sarcomas, alongside biomarker discovery and promising applications of liquid biopsy in each tumour context.
Collapse
|
5
|
Precision medicine in Ewing sarcoma: a translational point of view. Clin Transl Oncol 2020; 22:1440-1454. [PMID: 32026343 DOI: 10.1007/s12094-020-02298-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022]
Abstract
Ewing sarcoma is a rare tumor that arises in bones of children and teenagers but, in 15% of the patients it is presented as a primary soft tissue tumor. Balanced reciprocal chimeric translocation t(11;22)(q24;q12), which encodes an oncogenic protein fusion (EWSR1/FLI1), is the most generalized and characteristic molecular event. Using conventional treatments, (chemotherapy, surgery and radiotherapy) long-term overall survival rate is 30% for patients with disseminated disease and 65-75% for patients with localized tumors. Urgent new effective drug development is a challenge. This review summarizes the preclinical and clinical investigational knowledge about prognostic and targetable biomarkers in Ewing sarcoma, finally suggesting a workflow for precision medicine committees.
Collapse
|
6
|
Luong TMH, Akazawa Y, Mussazhanova Z, Matsuda K, Ueki N, Miura S, Hara T, Yokoyama H, Nakashima M. Cutaneous pilomatrical carcinosarcoma: a case report with molecular analysis and literature review. Diagn Pathol 2020; 15:7. [PMID: 32005258 PMCID: PMC6993389 DOI: 10.1186/s13000-020-0925-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/15/2020] [Indexed: 01/09/2023] Open
Abstract
Background Cutaneous pilomatrical carcinosarcoma (CS) is a very rare biphasic tumor composed of admixed epithelial and mesenchymal malignant cells, with limited information on its pathogenesis. We report a case of pilomatrical CS of the scalp with comparative immunohistochemical and molecular analysis together with a review of the literature. Case presentation A 74-year-old woman presented with a rapidly growing long-standing tumor of the scalp. The tumor was surgically resected. Histologically, the tumor was 25 mm in diameter, and was composed of carcinoma showing a clear pilomatrical differentiation and sarcoma with pleomorphic spindle cells and giant cells. Both epithelial and mesenchymal components shared focal cytoplasmic and/or nuclear accumulation of β-catenin based on immunohistochemical analysis, although a mutation of exon 3 of the CTNNB1 gene was not detected. Fluorescence in situ hybridization analysis revealed gains of chromosomes 9p21, 3, and 7 in both the epithelial and sarcomatous components. Conclusions The current case demonstrated characteristic findings of pilomatricoma and further evidence of partial clonality between the carcinomatous and sarcomatous component, suggesting the possibility of malignant transformation of pilomatricoma. Rapid growth of a pilomatrical tumor should warrant the development of a malignant tumor, including CS.
Collapse
Affiliation(s)
- Thi My Hanh Luong
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki City, Nagasaki, 852-8523, Japan
| | - Yuko Akazawa
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki City, Nagasaki, 852-8523, Japan.
| | - Zhanna Mussazhanova
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki City, Nagasaki, 852-8523, Japan
| | - Katsuya Matsuda
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki City, Nagasaki, 852-8523, Japan
| | - Nozomi Ueki
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki City, Nagasaki, 852-8523, Japan
| | - Shiro Miura
- Department of Pathology, National Hospital Organization Nagasaki Medical Center, Omura, 856-8562, Nagasaki, Japan
| | - Toshihide Hara
- Department of Dermatology, Isahaya General Hospital, Isahaya, Japan
| | - Hiroko Yokoyama
- Department of Dermatology, Isahaya General Hospital, Isahaya, Japan
| | - Masahiro Nakashima
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki City, Nagasaki, 852-8523, Japan
| |
Collapse
|
7
|
El Beaino M, Liu J, Wasylishen AR, Pourebrahim R, Migut A, Bessellieu BJ, Huang K, Lin PP. Loss of Stag2 cooperates with EWS-FLI1 to transform murine Mesenchymal stem cells. BMC Cancer 2020; 20:3. [PMID: 31898537 PMCID: PMC6941350 DOI: 10.1186/s12885-019-6465-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 12/15/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Ewing sarcoma is a malignancy of primitive cells, possibly of mesenchymal origin. It is probable that genetic perturbations other than EWS-FLI1 cooperate with it to produce the tumor. Sequencing studies identified STAG2 mutations in approximately 15% of cases in humans. In the present study, we hypothesize that loss of Stag2 cooperates with EWS-FLI1 in generating sarcomas derived from murine mesenchymal stem cells (MSCs). METHODS Mice bearing an inducible EWS-FLI1 transgene were crossed to p53-/- mice in pure C57/Bl6 background. MSCs were derived from the bone marrow of the mice. EWS-FLI1 induction and Stag2 knockdown were achieved in vitro by adenovirus-Cre and shRNA-bearing pGIPZ lentiviral infection, respectively. The cells were then treated with ionizing radiation to 10 Gy. Anchorage independent growth in vitro was assessed by soft agar assays. Cellular migration and invasion were evaluated by transwell assays. Cells were injected with Matrigel intramuscularly into C57/Bl6 mice to test for tumor formation. RESULTS Primary murine MSCs with the genotype EWS-FLI1 p53-/- were resistant to transformation and did not form tumors in syngeneic mice without irradiation. Stag2 inhibition increased the efficiency and speed of sarcoma formation significantly in irradiated EWS-FLI1 p53-/- MSCs. The efficiency of tumor formation was 91% for cells in mice injected with Stag2-repressed cells and 22% for mice receiving cells without Stag2 inhibition (p < .001). Stag2 knockdown reduced survival of mice in Kaplan-Meier analysis (p < .001). It also increased MSC migration and invasion in vitro but did not affect proliferation rate or aneuploidy. CONCLUSION Loss of Stag2 has a synergistic effect with EWS-FLI1 in the production of sarcomas from murine MSCs, but the mechanism may not relate to increased proliferation or chromosomal instability. Primary murine MSCs are resistant to transformation, and the combination of p53 null mutation, EWS-FLI1, and Stag2 inhibition does not confer immediate conversion of MSCs to sarcomas. Irradiation is necessary in this model, suggesting that perturbations of other genes beside Stag2 and p53 are likely to be essential in the development of EWS-FLI1-driven sarcomas from MSCs.
Collapse
Affiliation(s)
- Marc El Beaino
- Department of Orthopaedic Oncology - Unit 1448, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Jiayong Liu
- Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital & Institute, 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, China
| | - Amanda R Wasylishen
- Department of Genetics - Unit 1010, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Rasoul Pourebrahim
- Department of Leukemia - Unit 428, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Agata Migut
- Department of Orthopaedic Oncology - Unit 1448, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Bryan J Bessellieu
- Department of Orthopaedic Oncology - Unit 1448, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Ke Huang
- Department of Orthopaedic Oncology - Unit 1448, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Patrick P Lin
- Department of Orthopaedic Oncology - Unit 1448, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Bui NQ, Przybyl J, Trabucco SE, Frampton G, Hastie T, van de Rijn M, Ganjoo KN. A clinico-genomic analysis of soft tissue sarcoma patients reveals CDKN2A deletion as a biomarker for poor prognosis. Clin Sarcoma Res 2019; 9:12. [PMID: 31528332 PMCID: PMC6739971 DOI: 10.1186/s13569-019-0122-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/28/2019] [Indexed: 01/19/2023] Open
Abstract
Background Sarcomas are a rare, heterogeneous group of tumors with variable tendencies for aggressive behavior. Molecular markers for prognosis are needed to risk stratify patients and identify those who might benefit from more intensive therapeutic strategies. Patients and methods We analyzed somatic tumor genomic profiles and clinical outcomes of 152 soft tissue (STS) and bone sarcoma (BS) patients sequenced at Stanford Cancer Institute as well as 206 STS patients from The Cancer Genome Atlas. Genomic profiles of 7733 STS from the Foundation Medicine database were used to assess the frequency of CDKN2A alterations in histological subtypes of sarcoma. Results Compared to all other tumor types, sarcomas were found to carry the highest relative percentage of gene amplifications/deletions/fusions and the lowest average mutation count. The most commonly altered genes in STS were TP53 (47%), CDKN2A (22%), RB1 (22%), NF1 (11%), and ATRX (11%). When all genomic alterations were tested for prognostic significance in the specific Stanford cohort of localized STS, only CDKN2A alterations correlated significantly with prognosis, with a hazard ratio (HR) of 2.83 for overall survival (p = 0.017). These findings were validated in the TCGA dataset where CDKN2A altered patients had significantly worse overall survival with a HR of 2.7 (p = 0.002). Analysis of 7733 STS patients from Foundation One showed high prevalence of CDKN2A alterations in malignant peripheral nerve sheath tumors, myxofibrosarcomas, and undifferentiated pleomorphic sarcomas. Conclusion Our clinico-genomic profiling of STS shows that CDKN2A deletion was the most prevalent DNA copy number aberration and was associated with poor prognosis.
Collapse
Affiliation(s)
- Nam Q Bui
- 1Department of Medicine (Oncology), Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, CA 94305 USA
| | - Joanna Przybyl
- 2Department of Pathology, Stanford University School of Medicine, Stanford, CA USA
| | | | | | - Trevor Hastie
- 4Department of Statistics, Stanford University, Stanford, CA USA
| | - Matt van de Rijn
- 2Department of Pathology, Stanford University School of Medicine, Stanford, CA USA
| | - Kristen N Ganjoo
- 1Department of Medicine (Oncology), Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, CA 94305 USA
| |
Collapse
|
9
|
ABCG1 and Pgp identify drug resistant, self-renewing osteosarcoma cells. Cancer Lett 2019; 453:142-157. [DOI: 10.1016/j.canlet.2019.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/11/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022]
|
10
|
Grünewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Álava E, Kovar H, Sorensen PH, Delattre O, Dirksen U. Ewing sarcoma. Nat Rev Dis Primers 2018; 4:5. [PMID: 29977059 DOI: 10.1038/s41572-018-0003-x] [Citation(s) in RCA: 474] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ewing sarcoma is the second most frequent bone tumour of childhood and adolescence that can also arise in soft tissue. Ewing sarcoma is a highly aggressive cancer, with a survival of 70-80% for patients with standard-risk and localized disease and ~30% for those with metastatic disease. Treatment comprises local surgery, radiotherapy and polychemotherapy, which are associated with acute and chronic adverse effects that may compromise quality of life in survivors. Histologically, Ewing sarcomas are composed of small round cells expressing high levels of CD99. Genetically, they are characterized by balanced chromosomal translocations in which a member of the FET gene family is fused with an ETS transcription factor, with the most common fusion being EWSR1-FLI1 (85% of cases). Ewing sarcoma breakpoint region 1 protein (EWSR1)-Friend leukaemia integration 1 transcription factor (FLI1) is a tumour-specific chimeric transcription factor (EWSR1-FLI1) with neomorphic effects that massively rewires the transcriptome. Additionally, EWSR1-FLI1 reprogrammes the epigenome by inducing de novo enhancers at GGAA microsatellites and by altering the state of gene regulatory elements, creating a unique epigenetic signature. Additional mutations at diagnosis are rare and mainly involve STAG2, TP53 and CDKN2A deletions. Emerging studies on the molecular mechanisms of Ewing sarcoma hold promise for improvements in early detection, disease monitoring, lower treatment-related toxicity, overall survival and quality of life.
Collapse
Affiliation(s)
- Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,German Cancer Consortium, partner site Munich, Munich, Germany. .,German Cancer Research Center, Heidelberg, Germany.
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,German Cancer Consortium, partner site Munich, Munich, Germany. .,German Cancer Research Center, Heidelberg, Germany.
| | - Didier Surdez
- INSERM U830, Équipe Labellisé LNCC, PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Eleni M Tomazou
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
| | - Enrique de Álava
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville/CIBERONC, Seville, Spain
| | - Heinrich Kovar
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria.,Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Poul H Sorensen
- British Columbia Cancer Research Centre and University of British Columbia, Vancouver, Canada
| | - Olivier Delattre
- INSERM U830, Équipe Labellisé LNCC, PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Uta Dirksen
- German Cancer Research Center, Heidelberg, Germany.,Cooperative Ewing Sarcoma Study group, Essen University Hospital, Essen, Germany.,German Cancer Consortium, partner site Essen, Essen, Germany
| |
Collapse
|
11
|
Woollard WJ, Kalaivani NP, Jones CL, Roper C, Tung L, Lee JJ, Thomas BR, Tosi I, Ferreira S, Beyers CZ, McKenzie RCT, Butler RM, Lorenc A, Whittaker SJ, Mitchell TJ. Independent Loss of Methylthioadenosine Phosphorylase (MTAP) in Primary Cutaneous T-Cell Lymphoma. J Invest Dermatol 2016; 136:1238-1246. [PMID: 26872600 DOI: 10.1016/j.jid.2016.01.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 12/07/2015] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
Methylthioadenosine phosphorylase (MTAP) and the tumor suppressor genes CDKN2A-CDKN2B are frequently deleted in malignancies. The specific role of MTAP in cutaneous T-cell lymphoma subgroups, mycosis fungoides (MF) and Sézary syndrome (SS), is unknown. In 213 skin samples from patients with MF/SS, MTAP copy number loss (34%) was more frequent than CDKN2A (12%) in all cutaneous T-cell lymphoma stages using quantitative reverse transcription PCR. Importantly, in early stage MF, MTAP loss occurred independently of CDKN2A loss in 37% of samples. In peripheral blood mononuclear cells from patients with SS, codeletion with CDKN2A occurred in 18% of samples but loss of MTAP alone was uncommon. In CD4(+) cells from SS, reduced MTAP mRNA expression correlated with MTAP copy number loss (P < 0.01) but reduced MTAP expression was also detected in the absence of copy number loss. Deep sequencing of MTAP/CDKN2A-CDKN2B loci in 77 peripheral blood mononuclear cell DNA samples from patients with SS did not show any nonsynonymous mutations, but read-depth analysis suggested focal deletions consistent with MTAP and CDKN2A copy number loss detected with quantitative reverse transcription PCR. In a cutaneous T-cell lymphoma cell line, promoter hypermethylation was shown to downregulate MTAP expression and may represent a mechanism of MTAP inactivation. In conclusion, our findings suggest that there may be selection in early stages of MF for MTAP deletion within the cutaneous tumor microenvironment.
Collapse
Affiliation(s)
- Wesley J Woollard
- St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Nithyha P Kalaivani
- St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Christine L Jones
- St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Catherine Roper
- St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Lam Tung
- St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Jae Jin Lee
- St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Bjorn R Thomas
- St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Isabella Tosi
- St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Silvia Ferreira
- Viapath, Skin Tumour Unit, St John's Institute of Dermatology, Guy's Hospital, London, UK
| | - Carl Z Beyers
- Viapath, Skin Tumour Unit, St John's Institute of Dermatology, Guy's Hospital, London, UK
| | - Robert C T McKenzie
- St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Rosie M Butler
- St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Anna Lorenc
- Transformational Bioinformatics, NIHR Research Biomedical Research Center at Guy's and St Thomas' Hospital Foundation Trust and Kings College London, London, UK
| | - Sean J Whittaker
- St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Tracey J Mitchell
- St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| |
Collapse
|
12
|
Lerman DM, Monument MJ, McIlvaine E, Liu XQ, Huang D, Monovich L, Beeler N, Gorlick RG, Marina NM, Womer RB, Bridge JA, Krailo MD, Randall RL, Lessnick SL. Tumoral TP53 and/or CDKN2A alterations are not reliable prognostic biomarkers in patients with localized Ewing sarcoma: a report from the Children's Oncology Group. Pediatr Blood Cancer 2015; 62:759-65. [PMID: 25464386 PMCID: PMC4376595 DOI: 10.1002/pbc.25340] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/02/2014] [Indexed: 01/28/2023]
Abstract
BACKGROUND A growing collection of retrospective studies have suggested that TP53 mutations and/or CDKN2A deletions have prognostic significance in Ewing sarcoma. We sought to evaluate these variables in patients with localized disease treated prospectively on a single Children's Oncology Group protocol. PROCEDURE Of the 568 patients enrolled on Children's Oncology Group protocol AEWS0031 (NCT00006734), 112 had tumor specimens of sufficient quality and quantity to allow for analysis of TP53 mutations status by DNA sequencing, and CDKN2A deletion by dual color fluorescent in situ hybridization. RESULTS Eight of 93 cases (8.6%) were found to have TP53 point mutations and 12 of 107 cases (11.2%) demonstrated homozygous CDKN2A deletion. Two cases were found to have an alteration in both genes. There was no significant difference in event-free survival of patients with TP53 mutations and/or CDKN2A deletions compared to patients with normal TP53/CDKN2A gene status, as demonstrated by log rank test (p = 0.58). CONCLUSIONS Although previous retrospective studies suggest their significance, TP53 mutation and/or CDKN2A deletion are not reliable prognostic biomarkers in localized Ewing sarcoma.
Collapse
Affiliation(s)
- Daniel M. Lerman
- Department of Orthopedics, University of Utah, Salt Lake City, UT, USA,Center for Children’s Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael J. Monument
- Department of Orthopedics, University of Utah, Salt Lake City, UT, USA,Center for Children’s Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Elizabeth McIlvaine
- University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Xiao-qiong Liu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NB, USA
| | - Dali Huang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NB, USA
| | - Laura Monovich
- Children’s Oncology Group Biopathology Center, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Natalie Beeler
- Children’s Oncology Group Biopathology Center, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Richard G. Gorlick
- Department of Pediatrics, Montefiore Medical Center, The Children's Hospital at Montefiore, Bronx, NY, USA
| | - Neyssa M. Marina
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Richard B. Womer
- Division of Oncology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia A. Bridge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NB, USA
| | - Mark D. Krailo
- University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - R. Lor Randall
- Department of Orthopedics, University of Utah, Salt Lake City, UT, USA,Center for Children’s Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Stephen L. Lessnick
- Department of Orthopedics, University of Utah, Salt Lake City, UT, USA,Center for Children’s Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA,Division of Pediatric Hematology/Oncology and the Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
13
|
Silva JG, Corrales-Medina FF, Maher OM, Tannir N, Huh WW, Rytting ME, Subbiah V. Clinical next generation sequencing of pediatric-type malignancies in adult patients identifies novel somatic aberrations. Oncoscience 2015; 2:187-92. [PMID: 25859559 PMCID: PMC4381709 DOI: 10.18632/oncoscience.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/18/2015] [Indexed: 12/20/2022] Open
Abstract
Pediatric malignancies in adults, in contrast to the same diseases in children are clinically more aggressive, resistant to chemotherapeutics, and carry a higher risk of relapse. Molecular profiling of tumor sample using next generation sequencing (NGS) has recently become clinically available. We report the results of targeted exome sequencing of six adult patients with pediatric-type malignancies : Wilms tumor(n=2), medulloblastoma(n=2), Ewing's sarcoma( n=1) and desmoplastic small round cell tumor (n=1) with a median age of 28.8 years. Detection of druggable somatic aberrations in tumors is feasible. However, identification of actionable target therapies in these rare adult patients with pediatric-type malignancies is challenging. Continuous efforts to establish a rare disease registry are warranted.
Collapse
Affiliation(s)
- Jorge Galvez Silva
- Division of Pediatrics, The University of Texas MD Anderson Children's Cancer Hospital, Houston, TX
| | - Fernando F Corrales-Medina
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Miami-Miller School of Medicine, Miami, FL
| | - Ossama M Maher
- Division of Pediatrics, The University of Texas MD Anderson Children's Cancer Hospital, Houston, TX
| | - Nizar Tannir
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Winston W Huh
- Division of Pediatrics, The University of Texas MD Anderson Children's Cancer Hospital, Houston, TX
| | - Michael E Rytting
- Division of Pediatrics, The University of Texas MD Anderson Children's Cancer Hospital, Houston, TX
| | - Vivek Subbiah
- Division of Pediatrics, The University of Texas MD Anderson Children's Cancer Hospital, Houston, TX ; Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
14
|
Tirode F, Surdez D, Ma X, Parker M, Le Deley MC, Bahrami A, Zhang Z, Lapouble E, Grossetête-Lalami S, Rusch M, Reynaud S, Rio-Frio T, Hedlund E, Wu G, Chen X, Pierron G, Oberlin O, Zaidi S, Lemmon G, Gupta P, Vadodaria B, Easton J, Gut M, Ding L, Mardis ER, Wilson RK, Shurtleff S, Laurence V, Michon J, Marec-Bérard P, Gut I, Downing J, Dyer M, Zhang J, Delattre O. Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov 2014; 4:1342-53. [PMID: 25223734 DOI: 10.1158/2159-8290.cd-14-0622] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED Ewing sarcoma is a primary bone tumor initiated by EWSR1-ETS gene fusions. To identify secondary genetic lesions that contribute to tumor progression, we performed whole-genome sequencing of 112 Ewing sarcoma samples and matched germline DNA. Overall, Ewing sarcoma tumors had relatively few single-nucleotide variants, indels, structural variants, and copy-number alterations. Apart from whole chromosome arm copy-number changes, the most common somatic mutations were detected in STAG2 (17%), CDKN2A (12%), TP53 (7%), EZH2, BCOR, and ZMYM3 (2.7% each). Strikingly, STAG2 mutations and CDKN2A deletions were mutually exclusive, as confirmed in Ewing sarcoma cell lines. In an expanded cohort of 299 patients with clinical data, we discovered that STAG2 and TP53 mutations are often concurrent and are associated with poor outcome. Finally, we detected subclonal STAG2 mutations in diagnostic tumors and expansion of STAG2-immunonegative cells in relapsed tumors as compared with matched diagnostic samples. SIGNIFICANCE Whole-genome sequencing reveals that the somatic mutation rate in Ewing sarcoma is low. Tumors that harbor STAG2 and TP53 mutations have a particularly dismal prognosis with current treatments and require alternative therapies. Novel drugs that target epigenetic regulators may constitute viable therapeutic strategies in a subset of patients with mutations in chromatin modifiers.
Collapse
Affiliation(s)
- Franck Tirode
- INSERM U830, Laboratory of Genetics and Cancer Biology, Institut Curie, Paris, France. Centre de Recherche, Institut Curie, Paris, France
| | - Didier Surdez
- INSERM U830, Laboratory of Genetics and Cancer Biology, Institut Curie, Paris, France. Centre de Recherche, Institut Curie, Paris, France
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Matthew Parker
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Marie Cécile Le Deley
- Departement d'Epidémiologie et de Biostatistiques, Gustave Roussy, Villejuif, France
| | - Armita Bahrami
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zhaojie Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Eve Lapouble
- Unité de Génétique Somatique, Centre Hospitalier, Institut Curie, Paris, France
| | - Sandrine Grossetête-Lalami
- INSERM U830, Laboratory of Genetics and Cancer Biology, Institut Curie, Paris, France. Centre de Recherche, Institut Curie, Paris, France
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stéphanie Reynaud
- Unité de Génétique Somatique, Centre Hospitalier, Institut Curie, Paris, France
| | | | - Erin Hedlund
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Gang Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Gaelle Pierron
- Unité de Génétique Somatique, Centre Hospitalier, Institut Curie, Paris, France
| | - Odile Oberlin
- Departement de Pédiatrie, Gustave Roussy, Villejuif, France
| | - Sakina Zaidi
- INSERM U830, Laboratory of Genetics and Cancer Biology, Institut Curie, Paris, France. Centre de Recherche, Institut Curie, Paris, France
| | - Gordon Lemmon
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Pankaj Gupta
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Bhavin Vadodaria
- The Pediatric Cancer Genome Laboratory, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John Easton
- The Pediatric Cancer Genome Laboratory, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Li Ding
- Department of Genetics, The Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, Missouri. Department of Medicine, The Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, Missouri. Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Elaine R Mardis
- Department of Genetics, The Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, Missouri. Department of Medicine, The Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, Missouri. Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Richard K Wilson
- Department of Genetics, The Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, Missouri. Department of Medicine, The Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, Missouri. Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Sheila Shurtleff
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Valérie Laurence
- Département d'Oncologie Medicale, Adolescents et Jeunes Adultes, Centre Hospitalier, Institut Curie, Paris, France
| | - Jean Michon
- Département d'Oncologie Pediatrique, Adolescents et Jeunes Adultes, Centre Hospitalier, Institut Curie, Paris, France
| | - Perrine Marec-Bérard
- Institute for Paediatric Haematology and Oncology, Leon Bérard Cancer Centre, University of Lyon, Lyon, France
| | - Ivo Gut
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - James Downing
- The Pediatric Cancer Genome Laboratory, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee. Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Olivier Delattre
- INSERM U830, Laboratory of Genetics and Cancer Biology, Institut Curie, Paris, France. Centre de Recherche, Institut Curie, Paris, France.
| | | |
Collapse
|
15
|
The genomic landscape of the Ewing Sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet 2014; 10:e1004475. [PMID: 25010205 PMCID: PMC4091782 DOI: 10.1371/journal.pgen.1004475] [Citation(s) in RCA: 316] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/15/2014] [Indexed: 01/19/2023] Open
Abstract
The Ewing sarcoma family of tumors (EFT) is a group of highly malignant small round blue cell tumors occurring in children and young adults. We report here the largest genomic survey to date of 101 EFT (65 tumors and 36 cell lines). Using a combination of whole genome sequencing and targeted sequencing approaches, we discover that EFT has a very low mutational burden (0.15 mutations/Mb) but frequent deleterious mutations in the cohesin complex subunit STAG2 (21.5% tumors, 44.4% cell lines), homozygous deletion of CDKN2A (13.8% and 50%) and mutations of TP53 (6.2% and 71.9%). We additionally note an increased prevalence of the BRCA2 K3326X polymorphism in EFT patient samples (7.3%) compared to population data (OR 7.1, p = 0.006). Using whole transcriptome sequencing, we find that 11% of tumors pathologically diagnosed as EFT lack a typical EWSR1 fusion oncogene and that these tumors do not have a characteristic Ewing sarcoma gene expression signature. We identify samples harboring novel fusion genes including FUS-NCATc2 and CIC-FOXO4 that may represent distinct small round blue cell tumor variants. In an independent EFT tissue microarray cohort, we show that STAG2 loss as detected by immunohistochemistry may be associated with more advanced disease (p = 0.15) and a modest decrease in overall survival (p = 0.10). These results significantly advance our understanding of the genomic and molecular underpinnings of Ewing sarcoma and provide a foundation towards further efforts to improve diagnosis, prognosis, and precision therapeutics testing. The Ewing sarcoma family of tumors is a group of aggressive cancers that primarily affects the pediatric and young adult population. Increasingly, genomics are being used to better define the disease biology and to identify targets for therapy in many cancer types. Here, we report one of the first and largest genomic studies to date in the Ewing sarcoma family of tumors. Using a combination of modern sequencing techniques in >100 samples, we discover that Ewing sarcomas have a genome that is less complex compared to most cancer types previously surveyed. We find that this cancer is frequently affected by mutations in STAG2, a gene that has recently gained attention due to its importance in the biology of several cancer types. We show that Ewing sarcoma patients whose tumors are affected by STAG2 loss may have a worse prognosis. Additionally, we identify a subset of tumors that were diagnosed as Ewing sarcoma that appear to be distinct from the majority based on genetic and molecular characteristics. Our findings help to define the genetic landscape of Ewing sarcoma and provide a starting point for improving individualization of diagnosis, prognosis and treatment in this cancer.
Collapse
|
16
|
Membrane expression of MRP-1, but not MRP-1 splicing or Pgp expression, predicts survival in patients with ESFT. Br J Cancer 2013; 109:195-206. [PMID: 23799853 PMCID: PMC3708562 DOI: 10.1038/bjc.2013.168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/19/2013] [Accepted: 03/21/2013] [Indexed: 12/22/2022] Open
Abstract
Background: Primary Ewing's sarcoma family of tumours (ESFTs) may respond to chemotherapy, although many patients experience subsequent disease recurrence and relapse. The survival of ESFT cells following chemotherapy has been attributed to the development of resistant disease, possibly through the expression of ABC transporter proteins. Methods: MRP-1 and Pgp mRNA and protein expression in primary ESFTs was determined by quantitative reverse-transcriptase PCR (RT-qPCR) and immunohistochemistry, respectively, and alternative splicing of MRP-1 by RT-PCR. Results: We observed MRP-1 protein expression in 92% (43 out of 47) of primary ESFTs, and cell membrane MRP-1 was highly predictive of both overall survival (P<0.0001) and event-free survival (P<0.0001). Alternative splicing of MRP-1 was detected in primary ESFTs, although the pattern of splicing variants was not predictive of patient outcome, with the exception of loss of exon 9 in six patients, which predicted relapse (P=0.041). Pgp protein was detected in 6% (38 out of 44) of primary ESFTs and was not associated with patient survival. Conclusion: For the first time we have established that cell membrane expression of MRP-1 or loss of exon 9 is predictive of outcome but not the number of splicing events or expression of Pgp, and both may be valuable factors for the stratification of patients for more intensive therapy.
Collapse
|
17
|
Shukla N, Schiffman J, Reed D, Davis IJ, Womer RB, Lessnick SL, Lawlor ER. Biomarkers in Ewing Sarcoma: The Promise and Challenge of Personalized Medicine. A Report from the Children's Oncology Group. Front Oncol 2013; 3:141. [PMID: 23761859 PMCID: PMC3674398 DOI: 10.3389/fonc.2013.00141] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 05/19/2013] [Indexed: 11/13/2022] Open
Abstract
A goal of the COG Ewing Sarcoma (ES) Biology Committee is enabling identification of reliable biomarkers that can predict treatment response and outcome through the use of prospectively collected tissues and correlative studies in concert with COG therapeutic studies. In this report, we aim to provide a concise review of the most well-characterized prognostic biomarkers in ES, and to provide recommendations concerning design and implementation of future biomarker studies. Of particular interest and potentially high clinical relevance are studies of cell-cycle proteins, sub-clinical disease, and copy number alterations. We discuss findings of particular interest from recent biomarker studies and examine factors important to the success of identifying and validating clinically relevant biomarkers in ES. A number of promising biomarkers have demonstrated prognostic significance in numerous retrospective studies and now need to be validated prospectively in larger cohorts of equivalently treated patients. The eventual goal of refining the discovery and use of clinically relevant biomarkers is the development of patient specific ES therapeutic modalities.
Collapse
Affiliation(s)
- Neerav Shukla
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center , New York, NY , USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Cavuoto P, Fenech MF. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat Rev 2012; 38:726-36. [PMID: 22342103 DOI: 10.1016/j.ctrv.2012.01.004] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 12/22/2011] [Accepted: 01/15/2012] [Indexed: 01/11/2023]
Abstract
Methionine is an essential amino acid with many key roles in mammalian metabolism such as protein synthesis, methylation of DNA and polyamine synthesis. Restriction of methionine may be an important strategy in cancer growth control particularly in cancers that exhibit dependence on methionine for survival and proliferation. Methionine dependence in cancer may be due to one or a combination of deletions, polymorphisms or alterations in expression of genes in the methionine de novo and salvage pathways. Cancer cells with these defects are unable to regenerate methionine via these pathways. Defects in the metabolism of folate may also contribute to the methionine dependence phenotype in cancer. Selective killing of methionine dependent cancer cells in co-culture with normal cells has been demonstrated using culture media deficient in methionine. Several animal studies utilizing a methionine restricted diet have reported inhibition of cancer growth and extension of a healthy life-span. In humans, vegan diets, which can be low in methionine, may prove to be a useful nutritional strategy in cancer growth control. The development of methioninase which depletes circulating levels of methionine may be another useful strategy in limiting cancer growth. The application of nutritional methionine restriction and methioninase in combination with chemotherapeutic regimens is the current focus of clinical studies.
Collapse
Affiliation(s)
- Paul Cavuoto
- CSIRO Food and Nutritional Sciences, P.O. Box 10041, Adelaide BC, SA 5000, Australia.
| | | |
Collapse
|
19
|
Tsokos M, Alaggio RD, Dehner LP, Dickman PS. Ewing sarcoma/peripheral primitive neuroectodermal tumor and related tumors. Pediatr Dev Pathol 2012; 15:108-26. [PMID: 22420726 PMCID: PMC6993191 DOI: 10.2350/11-08-1078-pb.1] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ewing sarcoma/peripheral primitive neuroectodermal tumor (EWS/pPNET) and other tumors with EWS gene rearrangements encompass a malignant and intermediate neoplasm with a broad anatomic distribution and a wide age range but a predilection for soft tissue in children, adolescents, and young adults. The overlapping histologic, immunohistochemical and cytogenetic and molecular genetic features create diagnostic challenges despite significant clinical and prognostic differences. Ewing sarcoma is the 3rd most common sarcoma in children and adolescents, and desmoplastic small round cell tumor is a rare neoplasm that occurs more often in older children, adolescents, and young adults. Pathologic examination is complemented by immunohistochemistry, cytogenetics, and molecular genetics. This article reviews the clinicopathologic features of EWS/pPNET and desmoplastic small round cell tumor in the spectrum of tumors with EWS gene rearrangements. Other tumors with different histopathologic features and an EWS gene rearrangement are discussed elsewhere in this volume.
Collapse
Affiliation(s)
- Maria Tsokos
- Department of Pathology, National Institutes of Health, Bethesda, MD, USA
| | - Rita D. Alaggio
- Department of Pathology, University Hospital of Padova, Padova, Italy
| | - Louis P. Dehner
- Department of Pathology, Lauren V. Ackerman Division of Surgical Pathology, Barnes-Jewish Hospital and St. Louis Children’s Hospital, Washington University Medical Center, St. Louis, MO, USA
| | - Paul S. Dickman
- Department of Pathology, Phoenix Children’s Hospital and University of Arizona College of Medicine, Phoenix, AZ, USA
| |
Collapse
|
20
|
Copy Number Alterations and Methylation in Ewing's Sarcoma. Sarcoma 2011; 2011:362173. [PMID: 21437220 PMCID: PMC3061291 DOI: 10.1155/2011/362173] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/03/2011] [Indexed: 12/31/2022] Open
Abstract
Ewing's sarcoma is the second most common bone malignancy affecting children and young adults. The prognosis is especially poor in metastatic or relapsed disease. The cell of origin remains elusive, but the EWS-FLI1 fusion oncoprotein is present in the majority of cases. The understanding of the molecular basis of Ewing's sarcoma continues to progress slowly. EWS-FLI1 affects gene expression, but other factors must also be at work such as mutations, gene copy number alterations, and promoter methylation. This paper explores in depth two molecular aspects of Ewing's sarcoma: copy number alterations (CNAs) and methylation. While CNAs consistently have been reported in Ewing's sarcoma, their clinical significance has been variable, most likely due to small sample size and tumor heterogeneity. Methylation is thought to be important in oncogenesis and balanced karyotype cancers such as Ewing's, yet it has received only minimal attention in prior studies. Future CNA and methylation studies will help to understand the molecular basis of this disease.
Collapse
|
21
|
López-Guerrero JA, Machado I, Scotlandi K, Noguera R, Pellín A, Navarro S, Serra M, Calabuig-Fariñas S, Picci P, Llombart-Bosch A. Clinicopathological significance of cell cycle regulation markers in a large series of genetically confirmed Ewing's sarcoma family of tumors. Int J Cancer 2011; 128:1139-50. [PMID: 20473914 DOI: 10.1002/ijc.25424] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
More than 90% of all Ewing's Sarcoma Family of Tumors (ESFT) exhibit specific chromosomal rearrangements between the EWS gene on chromosome 22 and various members of the ETS gene family of transcription factors. The gene fusion type and other secondary genetic alterations, mainly involving cell cycle regulators, have been shown to be of prognostic relevance in ESFT. However, no conclusive results have been reported. We analyzed the clinicopathological significance of relevant cell cycle regulators in genetically confirmed ESFT. A total of 324 cases were analyzed for the immunohistochemical expression of p53, p21(Waf1/Cip1) , p27(Kip1) and Ki67 and the chromosomal alterations of the p53 and 9p21 locus by fluorescent in situ hybridization. We observed that expression of p53 (p = 0.025), p21(Waf1/Cip1) (p = 0.015) and p27(Kip1) (p = 0.013) was higher in disseminated than in localized disease. Furthermore, a cohort of 217 patients with localized disease was considered for studying the prognosis involvement of these factors on patient follow-up. The median follow-up was 39 months (range: 0.17-452) with an overall survival (OS) of 55%. Ki67 was expressed in 34% of cases and constituted an independent prognostic factor for progression free survival and OS independently of the type of treatment [hazard ratio of 2.0 (95% CI: 1.3-3.1; p = 0.003) and 1.9 (95% IC: 1.3-2.9; p = 0.007) for progression free survival and OS, respectively, being especially relevant in the group of patients which incorporated radiotherapy in their regimen schedules. In conclusion, this study demonstrates that Ki67 expression constitutes a valuable indicator of poor prognosis in localized ESFT.
Collapse
|
22
|
Abstract
The p53 tumour suppressor plays a pivotal role in the prevention of oncogenic transformation. Cancers frequently evade the potent antitumour surveillance mechanisms of p53 through mutation of the TP53 gene, with approximately 50% of all human malignancies expressing dysfunctional, mutated p53 proteins. Interestingly, genetic lesions in the TP53 gene are only observed in 10% of Ewing Sarcomas, with the majority of these sarcomas expressing a functional wild-type p53. In addition, the p53 downstream signaling pathways and DNA-damage cell cycle checkpoints remain functionally intact in these sarcomas. This paper summarizes recent insights into the functional capabilities and regulation of p53 in Ewing Sarcoma, with a particular focus on the cross-talk between p53 and the EWS-FLI1 gene rearrangement frequently associated with this disease. The development of several activators of p53 is discussed, with recent evidence demonstrating the potential of small molecule p53 activators as a promising systemic therapeutic approach for the treatment of Ewing Sarcomas with wild-type p53.
Collapse
|
23
|
Cell Cycle Deregulation in Ewing's Sarcoma Pathogenesis. Sarcoma 2010; 2011:598704. [PMID: 21052502 PMCID: PMC2968116 DOI: 10.1155/2011/598704] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 10/07/2010] [Indexed: 12/18/2022] Open
Abstract
Ewing's sarcoma is a highly aggressive pediatric tumor of bone that usually contains the characteristic chromosomal translocation t(11;22)(q24;q12). This translocation encodes the oncogenic fusion protein EWS/FLI, which acts as an aberrant transcription factor to deregulate target genes necessary for oncogenesis. One key feature of oncogenic transformation is dysregulation of cell cycle control. It is therefore likely that EWS/FLI and other cooperating mutations in Ewing's sarcoma modulate the cell cycle to facilitate tumorigenesis. This paper will summarize current published data associated with deregulation of the cell cycle in Ewing's sarcoma and highlight important questions that remain to be answered.
Collapse
|
24
|
Iizuka D, Imaoka T, Takabatake T, Nishimura M, Kakinuma S, Nishimura Y, Shimada Y. DNA copy number aberrations and disruption of the p16Ink4a/Rb pathway in radiation-induced and spontaneous rat mammary carcinomas. Radiat Res 2010; 174:206-15. [PMID: 20681787 DOI: 10.1667/rr2006.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chromosomal amplifications and deletions are thought to be important events in spontaneous and radiation-induced carcinogenesis. To clarify how ionizing radiation induces mammary carcinogenesis, we characterized genomic copy number aberrations for gamma-ray-induced rat mammary carcinomas using microarray-based comparative genomic hybridization. We examined 14 carcinomas induced by gamma radiation (2 Gy) and found 26 aberrations, including trisomies of chromosomes 4 and 10 for three and one carcinomas, respectively, an amplification of the chromosomal region 1q12 in two carcinomas, and deletions of the chromosomal regions 3q35q36, 5q32 and 7q11 in two, two and four carcinomas, respectively. These aberrations were not observed in seven spontaneous mammary carcinomas. The expression of p16Ink4a and p19Arf, which are located in the chromosomal region 5q32, was always up-regulated except for a carcinoma with a homozygous deletion of region 5q32. The up-regulation was not accounted for by gene mutations or promoter hypomethylation. However, the amounts of Rb and its mRNA were down-regulated in these carcinomas, indicating a disruption of the p16Ink4a/Rb pathway. This is the first report of array CGH analysis for radiation-induced mammary tumors, which reveals that they show distinct DNA copy number aberration patterns that are different from those of spontaneous tumors and those reported previously for chemically induced tumors.
Collapse
Affiliation(s)
- Daisuke Iizuka
- Experimental Radiobiology for Children's Health Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Pinto A, Dickman P, Parham D. Pathobiologic markers of the ewing sarcoma family of tumors: state of the art and prediction of behaviour. Sarcoma 2010; 2011:856190. [PMID: 20981347 PMCID: PMC2957858 DOI: 10.1155/2011/856190] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/20/2010] [Accepted: 09/23/2010] [Indexed: 01/08/2023] Open
Abstract
Over the past three decades, the outcome of Ewing sarcoma family tumor (ESFT) patients who are nonmetastatic at presentation has improved considerably. The prognosis of patients with metastatic disease at the time of diagnosis and recurrence after therapy remains dismal. Drug-resistant disease at diagnosis or at relapse remains a major cause of mortality among patients diagnosed with ESFT. In order to improve the outcome for patients with potential relapse, there is an urgent need to find reliable markers that either predict tumor behaviour at diagnosis or identify therapeutic molecular targets at the time of recurrence. An improved understanding of the cell of origin and the molecular pathways that regulate tumorigenicity in ESFT should aid us in the search for novel therapies for ESFT. The purpose of this paper is thus to outline current concepts of sarcomagenesis in ESFT and to discuss ESFT patterns of differentiation and molecular markers that might affect prognosis or direct future therapeutic development.
Collapse
Affiliation(s)
- Alfredo Pinto
- Calgary Laboratory Services, University of Calgary, Alberta Children's Hospital, 2888 Shaganappi Trail NW, Calgary, AB, Canada T3B 6A8
| | - Paul Dickman
- Department of Pathology, Phoenix Children's Hospital, 1919 E. Thomas Road, Phoenix, AZ 85016, USA
- Departments of Pathology and Pediatrics, University of Arizona, College of Medicine, Phoenix, AZ 85016, USA
| | - David Parham
- Health Sciences Center, University of Oklahoma, Oklahoma City, OK 73104, USA
| |
Collapse
|
26
|
White DE, Burchill SA. Fenretinide-dependent upregulation of death receptors through ASK1 and p38α enhances death receptor ligand-induced cell death in Ewing's sarcoma family of tumours. Br J Cancer 2010; 103:1380-90. [PMID: 20877355 PMCID: PMC2990598 DOI: 10.1038/sj.bjc.6605896] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background: Sustained p38MAPK phosphorylation upregulates p75 neurotrophin (p75NTR) and induces apoptosis in Ewing's sarcoma family of tumours (ESFT). As fenretinide induces ESFT death through sustained p38MAPK phosphorylation, we hypothesised that this may be effected through upregulation of death receptors (DRs) and that treatment of fenretinide plus DR ligands may enhance apoptosis. Methods: DR expression was determined by flow cytometry. Trypan blue exclusion assays, caspase-8 flow cytometry and immunoblotting for Bid were used to measure cell death. Results: Fenretinide upregulated cell surface expression of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors, FAS and p75NTR, in an ASK1- and p38α-dependent manner. Cotreatment with fenretinide and DR ligands resulted in synergistic death compared with either agent alone; caspase-8 and Bid were cleaved in a time-dependent manner. Fenretinide did not increase DR expression in non-malignant cells. Furthermore, fenretinide, TRAIL or a combination of both agents was non-cytotoxic to non-malignant cells. Etoposide and actinomycin D increased expression of all DRs examined, whereas vincristine increased FAS alone. Only actinomycin D and TRAIL, and etoposide with TRAIL or FasL, enhanced death compared with either agent alone. Conclusion: The synergistic death observed with fenretinide and DR ligands suggests that this combination may be an attractive strategy for the treatment of ESFT.
Collapse
Affiliation(s)
- D E White
- Candlelighter's Children's Cancer Research Group, Section of Experimental Oncology, Leeds Institute of Molecular Medicine, St. James's University Hospital, Beckett Street, Leeds, UK.
| | | |
Collapse
|
27
|
Toomey EC, Schiffman JD, Lessnick SL. Recent advances in the molecular pathogenesis of Ewing's sarcoma. Oncogene 2010; 29:4504-16. [PMID: 20543858 PMCID: PMC3555143 DOI: 10.1038/onc.2010.205] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/23/2010] [Accepted: 04/25/2010] [Indexed: 12/17/2022]
Abstract
Tumor development is a complex process resulting from interplay between mutations in oncogenes and tumor suppressors, host susceptibility factors, and cellular context. Great advances have been made by studying rare tumors with unique clinical, genetic, or molecular features. Ewing's sarcoma serves as an excellent paradigm for understanding tumorigenesis because it exhibits some very useful and important characteristics. For example, nearly all cases of Ewing's sarcoma contain the (11;22)(q24;q12) chromosomal translocation that encodes the EWS/FLI oncoprotein. Besides the t(11;22), however, many cases have otherwise simple karyotypes with no other demonstrable abnormalities. Furthermore, it seems that an underlying genetic susceptibility to Ewing's sarcoma, if it exists, must be rare. These two features suggest that EWS/FLI is the primary mutation that drives the development of this tumor. Finally, Ewing's sarcoma is an aggressive tumor that requires aggressive treatment. Thus, improved understanding of the pathogenesis of this tumor will not only be of academic interest, but may also lead to new therapeutic approaches for individuals afflicted with this disease. The purpose of this review is to highlight recent advances in understanding the molecular pathogenesis of Ewing's sarcoma, while considering the questions surrounding this disease that still remain and how this knowledge may be applied to developing new treatments for patients with this highly aggressive disease.
Collapse
Affiliation(s)
- Elizabeth C. Toomey
- Department of Oncological Sciences and Center for Children's Cancer Research at Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Joshua D. Schiffman
- Department of Oncological Sciences and Center for Children's Cancer Research at Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
- Division of Pediatric Hematology/Oncology, University of Utah School of Medicine, Salt Lake City, UT
| | - Stephen L. Lessnick
- Department of Oncological Sciences and Center for Children's Cancer Research at Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
- Division of Pediatric Hematology/Oncology, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
28
|
Ottaviano L, Schaefer KL, Gajewski M, Huckenbeck W, Baldus S, Rogel U, Mackintosh C, de Alava E, Myklebost O, Kresse SH, Meza-Zepeda LA, Serra M, Cleton-Jansen AM, Hogendoorn PCW, Buerger H, Aigner T, Gabbert HE, Poremba C. Molecular characterization of commonly used cell lines for bone tumor research: a trans-European EuroBoNet effort. Genes Chromosomes Cancer 2010; 49:40-51. [PMID: 19787792 DOI: 10.1002/gcc.20717] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Usage of cancer cell lines has repeatedly generated conflicting results provoked by differences among subclones or contamination with mycoplasm or other immortal mammalian cells. To overcome these limitations, we decided within the EuroBoNeT consortium to characterize a common set of cell lines including osteosarcomas (OS), Ewing sarcomas (ES), and chondrosarcomas (CS). DNA fingerprinting was used to guarantee the identity of all of the cell lines and to distinguish subclones of osteosarcoma cell line HOS. Screening for homozygous loss of 38 tumor suppressor genes by MLPA revealed deletion of CDKN2A as the most common event (15/36), strictly associated with absence of the CDKN2A (p16) protein. Ten cell lines showed missense mutations of the TP53 gene while another set of nine cell lines showed mutations resulting in truncation of the TP53 protein. Cells harboring missense mutations expressed high levels of nuclear TP53, while cell lines with nonsense mutations showed weak/absent staining for TP53. TP53(wt) cell lines usually expressed the protein in 2-10% of the cells. However, seven TP53(wt) osteosarcomas were negative for both mRNA and protein expression. Our analyses shed light on the correlation between immunohistochemical and genetic data for CDKN2A and TP53, and confirm the importance of these signaling pathways. The characterization of a substantial number of cell lines represents an important step to supply research groups with proven models for further advanced studies on tumor biology and may help to make results from different laboratories more comparable.
Collapse
Affiliation(s)
- Laura Ottaviano
- Institute of Pathology, University Medical Center Duesseldorf, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Proctor A, Brownhill SC, Burchill SA. The promise of telomere length, telomerase activity and its regulation in the translocation-dependent cancer ESFT; clinical challenges and utility. Biochim Biophys Acta Mol Basis Dis 2009; 1792:260-74. [PMID: 19264125 DOI: 10.1016/j.bbadis.2009.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/19/2009] [Accepted: 02/20/2009] [Indexed: 01/12/2023]
Abstract
The Ewing's sarcoma family of tumours (ESFT) are diagnosed by EWS-ETS gene translocations. The resulting fusion proteins play a role in both the initiation and maintenance of these solid aggressive malignant tumours, suppressing cellular senescence and increasing cell proliferation and survival. EWS-ETS fusion proteins have altered transcriptional activity, inducing expression of a number of different target genes including telomerase. Up-regulation of hTERT is most likely responsible for the high levels of telomerase activity in primary ESFT, although telomerase activity and expression of hTERT are not predictive of outcome. However levels of telomerase activity in peripheral blood may be useful to monitor response to some therapeutics. Despite high levels of telomerase activity, telomeres in ESFT are frequently shorter than those of matched normal cells. Uncertainty about the role that telomerase and regulators of its activity play in the maintenance of telomere length in normal and cancer cells, and lack of studies examining the relationship between telomerase activity, regulators of its activity and their clinical significance in patient samples have limited their introduction into clinical practice. Studies in clinical samples using standardised assays are critical to establish how telomerase and regulators of its activity might best be exploited for patient benefit.
Collapse
Affiliation(s)
- Andrew Proctor
- Cancer Research UK Clinical Centre, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | | | | |
Collapse
|
30
|
Abstract
Ewing's sarcoma is one of the few solid tumors for which the underlying molecular genetic abnormality has been described: rearrangement of the EWS gene on chromosome 22q12 with an ETS gene family member. These translocations define the Ewing's sarcoma family of tumors (ESFT) and provide a valuable tool for their accurate and unequivocal diagnosis. They also represent ideal targets for the development of tumor-specific therapeutics. Although secondary abnormalities occur in over 80% of primary ESFT the clinical utility of these is currently unclear. However, abnormalities in genes that regulate the G(1)/S checkpoint are frequently described and may be important in predicting outcome and response. Increased understanding of the molecular events that arise in ESFT and their role in the development and maintenance of the malignant phenotype will inform the improved stratification of patients for therapy and identify targets and pathways for the design of more effective cancer therapeutics.
Collapse
Affiliation(s)
- Susan Ann Burchill
- Candlelighter's Children's Cancer Research Group, Cancer Research UK Clinical Centre, Leeds Institute of Molecular Medicine, St James's University Hospital, Leeds, UK.
| |
Collapse
|
31
|
Schaefer KL, Eisenacher M, Braun Y, Brachwitz K, Wai DH, Dirksen U, Lanvers-Kaminsky C, Juergens H, Herrero D, Stegmaier S, Koscielniak E, Eggert A, Nathrath M, Gosheger G, Schneider DT, Bury C, Diallo-Danebrock R, Ottaviano L, Gabbert HE, Poremba C. Microarray analysis of Ewing’s sarcoma family of tumours reveals characteristic gene expression signatures associated with metastasis and resistance to chemotherapy. Eur J Cancer 2008; 44:699-709. [DOI: 10.1016/j.ejca.2008.01.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 12/10/2007] [Accepted: 01/18/2008] [Indexed: 01/17/2023]
|