1
|
Roca E, Aujayeb A, Astoul P. Diagnosis of Pleural Mesothelioma: Is Everything Solved at the Present Time? Curr Oncol 2024; 31:4968-4983. [PMID: 39329996 PMCID: PMC11430569 DOI: 10.3390/curroncol31090368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024] Open
Abstract
Ranked high in worldwide growing health issues, pleural diseases affect approximately one million people globally per year and are often correlated with a poor prognosis. Among these pleural diseases, malignant pleural mesothelioma (PM), a neoplastic disease mainly due to asbestos exposure, still remains a diagnostic challenge. Timely diagnosis is imperative to define the most suitable therapeutic approach for the patient, but the choice of diagnostic modalities depends on operator experience and local facilities while bearing in mind the yield of each diagnostic procedure. Since the analysis of pleural fluid cytology is not sufficient in differentiating historical features in PM, histopathological and morphological features obtained via tissue biopsies are fundamental. The quality of biopsy samples is crucial and often requires highly qualified expertise. Since adequate tissue biopsy is essential, medical or video-assisted thoracoscopy (MT or VATS) is proposed as the most suitable approach, with the former being a physician-led procedure. Indeed, MT is the diagnostic gold standard for malignant pleural pathologies. Moreover, this medical or surgical approach can allow diagnostic and therapeutic procedures: it provides the possibility of video-assisted biopsies, the drainage of high volumes of pleural fluid and the administration of sterile calibrated talcum powder under visual control in order to achieve pleurodesis, placement of indwelling pleural catheters if required and in a near future potential intrapleural therapy. In this context, dedicated diagnostic pathways remain a crucial need, especially to quickly and properly diagnose PM. Lastly, the interdisciplinary approach and multidisciplinary collaboration should always be implemented in order to direct the patient to the best customised diagnostic and therapeutic pathway. At the present time, the diagnosis of PM remains an unsolved problem despite MDT (multidisciplinary team) meetings, mainly because of the lack of standardised diagnostic work-up. This review aims to provide an overview of diagnostic procedures in order to propose a clear strategy.
Collapse
Affiliation(s)
- Elisa Roca
- Thoracic Oncology, Lung Unit, P. Pederzoli Hospital, Peschiera Del Garda, VR, Italy;
| | - Avinash Aujayeb
- Respiratory Department, Northumbria Health Care NHS Foundation Trust, Care of Gail Hewitt, Newcastle NE23 6NZ, UK;
| | - Philippe Astoul
- Department of Thoracic Oncology, Pleural Diseases and Interventional Pulmonology, North Hospital, Aix-Marseille University, Chemin des Bourrely, 13005 Marseille, France
- La Timone Campus, Aix-Marseille University, 13005 Marseille, France
| |
Collapse
|
2
|
Chang X, Miao J. Role of TIM-3 in ovarian cancer: the forsaken cop or a new noble. Front Immunol 2024; 15:1407403. [PMID: 39206199 PMCID: PMC11350557 DOI: 10.3389/fimmu.2024.1407403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
T cell immunoglobulin and mucin domain-3 (TIM-3), a crucial immune checkpoint following PD1 and CTLA4, is widely found in several immune cells. Nonetheless, its performance in recent clinical trials appears disappointing. Ovarian cancer (OC), a malignant tumor with a high mortality rate in gynecology, faces significant hurdles in immunotherapy. The broad presence of TIM-3 offers a new opportunity for immunotherapy in OC. This study reviews the role of TIM-3 in OC and assesses its potential as a target for immunotherapy. The regulatory effects of TIM-3 on the immune microenvironment in OC are discussed, with a focus on preclinical studies that demonstrate TIM-3's modulation of various immune cells in OC. Additionally, the potential therapeutic advantages and challenges of targeting TIM-3 in OC are examined.
Collapse
Affiliation(s)
| | - Jinwei Miao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Bertoli E, De Carlo E, Bortolot M, Stanzione B, Del Conte A, Spina M, Bearz A. Targeted Therapy in Mesotheliomas: Uphill All the Way. Cancers (Basel) 2024; 16:1971. [PMID: 38893092 PMCID: PMC11171080 DOI: 10.3390/cancers16111971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Mesothelioma (MM) is an aggressive and lethal disease with few therapeutic opportunities. Platinum-pemetrexed chemotherapy is the backbone of first-line treatment for MM. The introduction of immunotherapy (IO) has been the only novelty of the last decades, allowing an increase in survival compared to standard chemotherapy (CT). However, IO is not approved for epithelioid histology in many countries. Therefore, therapy for relapsed MM remains an unmet clinical need, and the prognosis of MM remains poor, with an average survival of only 18 months. Increasing evidence reveals MM complexity and heterogeneity, of which histological classification fails to explain. Thus, scientific focus on possibly new molecular markers or cellular targets is increasing, together with the search for target therapies directed towards them. The molecular landscape of MM is characterized by inactivating tumor suppressor alterations, the most common of which is found in CDKN2A, BAP1, MTAP, and NF2. In addition, cellular targets such as mesothelin or metabolic enzymes such as ASS1 could be potentially amenable to specific therapies. This review examines the major targets and relative attempts of therapeutic approaches to provide an overview of the potential prospects for treating this rare neoplasm.
Collapse
Affiliation(s)
- Elisa Bertoli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Elisa De Carlo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Martina Bortolot
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Brigida Stanzione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Alessandro Del Conte
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Alessandra Bearz
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| |
Collapse
|
4
|
Xia S, Duan W, Xu M, Li M, Tang M, Wei S, Lin M, Li E, Liu W, Wang Q. Mesothelin promotes brain metastasis of non-small cell lung cancer by activating MET. J Exp Clin Cancer Res 2024; 43:103. [PMID: 38570866 PMCID: PMC10988939 DOI: 10.1186/s13046-024-03015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Brain metastasis (BM) is common among cases of advanced non-small cell lung cancer (NSCLC) and is the leading cause of death for these patients. Mesothelin (MSLN), a tumor-associated antigen expressed in many solid tumors, has been reported to be involved in the progression of multiple tumors. However, its potential involvement in BM of NSCLC and the underlying mechanism remain unknown. METHODS The expression of MSLN was validated in clinical tissue and serum samples using immunohistochemistry and enzyme-linked immunosorbent assay. The ability of NSCLC cells to penetrate the blood-brain barrier (BBB) was examined using an in vitro Transwell model and an ex vivo multi-organ microfluidic bionic chip. Immunofluorescence staining and western blotting were used to detect the disruption of tight junctions. In vivo BBB leakiness assay was performed to assess the barrier integrity. MET expression and activation was detected by western blotting. The therapeutic efficacy of drugs targeting MSLN (anetumab) and MET (crizotinib/capmatinib) on BM was evaluated in animal studies. RESULTS MSLN expression was significantly elevated in both serum and tumor tissue samples from NSCLC patients with BM and correlated with a poor clinical prognosis. MSLN significantly enhanced the brain metastatic abilities of NSCLC cells, especially BBB extravasation. Mechanistically, MSLN facilitated the expression and activation of MET through the c-Jun N-terminal kinase (JNK) signaling pathway, which allowed tumor cells to disrupt tight junctions and the integrity of the BBB and thereby penetrate the barrier. Drugs targeting MSLN (anetumab) and MET (crizotinib/capmatinib) effectively blocked the development of BM and prolonged the survival of mice. CONCLUSIONS Our results demonstrate that MSLN plays a critical role in BM of NSCLC by modulating the JNK/MET signaling network and thus, provides a potential novel therapeutic target for preventing BM in NSCLC patients.
Collapse
Affiliation(s)
- Shengkai Xia
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Wenzhe Duan
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Mingxin Xu
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Mengqi Li
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Mengyi Tang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Song Wei
- Department of Oncology, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Manqing Lin
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Encheng Li
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China.
| | - Wenwen Liu
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China.
- Department of Scientific Research Center, The Second Hospital, Dalian Medical University, Dalian, China.
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China.
- Department of Scientific Research Center, The Second Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
5
|
Kitadai R, Nishikawa T, Yoshida H, Mizoguchi C, Yamamoto K, Kato T, Yonemori K. Mesothelin expression in gynecologic carcinosarcoma: clinicopathological significance and correlation with HER2 expression. J Gynecol Oncol 2024; 35:e11. [PMID: 37914528 PMCID: PMC10948979 DOI: 10.3802/jgo.2024.35.e11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/23/2023] [Accepted: 09/04/2023] [Indexed: 11/03/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate mesothelin (MSLN) expression and determine its clinical significance and correlation with human epidermal growth factor receptor 2 (HER2) expression in gynecological carcinosarcoma. METHODS We retrospectively evaluated patients with uterine carcinosarcoma (UCS) and ovarian carcinosarcoma (OCS) who underwent surgery between 1997 and 2019. Immunohistochemical staining of formalin-fixed, paraffin-embedded specimens for MSLN (clone SP74) and HER2 (clone 4A5) was also performed. MSLN was scored using the H-score and 4-tired scoring system (0-3+). MSLN positivity was defined as any positive cell at any intensity, while high MSLN expression was defined as an intensity of ≥2+ in ≥30% of tumor cells. HER2 expression was scored according to modified 2018 American Society of Clinical Oncology/College of American Pathologists criteria. RESULTS A total of 128 patients were recruited, including 119 with UCS and 9 with OCS. All cases in UCS exhibited MSLN positivity, and 33.9% showed high-MSLN expression. Clinicopathological characteristics were not significantly associated with high or low-MSLN expression. However, the high-MSLN group showed more prolonged overall survival (OS) than the low-MSLN group (not assessed vs. 36.8 months; hazard ratio=0.48, 95% confidence interval=0.26-0.89, p=0.016). HER2-high patients had higher MSLN expression than HER2-negative patients. In high-MSLN and low-MSLN expression groups, HER2 status did not affect OS. OCS showed 100% MSLN positivity, with 66.6% high-MSLN. CONCLUSION MSLN expression is widely observed in gynecological carcinosarcomas. Moreover, high-MSLN expression is a favorable prognostic factor for UCS. MSLN could be a promising therapeutic target for UCS, even in the era of anti-HER2 therapy.
Collapse
Affiliation(s)
- Rui Kitadai
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tadaaki Nishikawa
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Chiharu Mizoguchi
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kasumi Yamamoto
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.
| |
Collapse
|
6
|
Luckett T, Abudula M, Ireland L, Glenn M, Bellomo G, Stafferton R, Halloran C, Ghaneh P, Jones R, Schmid MC, Mielgo A. Mesothelin Secretion by Pancreatic Cancer Cells Co-opts Macrophages and Promotes Metastasis. Cancer Res 2024; 84:527-544. [PMID: 38356443 DOI: 10.1158/0008-5472.can-23-1542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/27/2023] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease, yet effective treatments to inhibit PDAC metastasis are lacking. The rich PDAC tumor microenvironment plays a major role in disease progression. Macrophages are the most abundant immune cell population in PDAC tumors and can acquire a range of functions that either hinder or promote tumor growth and metastasis. Here, we identified that mesothelin secretion by pancreatic cancer cells co-opts macrophages to support tumor growth and metastasis of cancer cells to the lungs, liver, and lymph nodes. Mechanistically, secretion of high levels of mesothelin by metastatic cancer cells induced the expression of VEGF alpha (VEGFA) and S100A9 in macrophages. Macrophage-derived VEGFA fed back to cancer cells to support tumor growth, and S100A9 increased neutrophil lung infiltration and formation of neutrophil extracellular traps. These results reveal a role for mesothelin in regulating macrophage functions and interaction with neutrophils to support PDAC metastasis. SIGNIFICANCE Mesothelin secretion by cancer cells supports pancreatic cancer metastasis by inducing macrophage secretion of VEGFA and S100A9 to support cancer cell proliferation and survival, recruit neutrophils, and stimulate neutrophil extracellular trap formation. See related commentary by Alewine, p. 513.
Collapse
Affiliation(s)
- Teifion Luckett
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Maidinaimu Abudula
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Ireland
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Mark Glenn
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gaia Bellomo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ruth Stafferton
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Chris Halloran
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Paula Ghaneh
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Rob Jones
- Department of Hepatobiliary Surgery, Liverpool University Teaching Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Michael C Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
7
|
Hagerty BL, Takabe K. Biology of Mesothelin and Clinical Implications: A Review of Existing Literature. World J Oncol 2023; 14:340-349. [PMID: 37869242 PMCID: PMC10588497 DOI: 10.14740/wjon1655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023] Open
Abstract
Since its discovery in 1992, mesothelin (MSLN) has generated significant interest as a therapeutic target. A number of characteristics make it ideal for this purpose. First, it is not expressed on the parenchyma of any vital organs. Second, it is differentially expressed on a number of cancer types that have relatively poor prognosis and lack effective systemic options. Third, it is expressed on the cell membrane making it accessible to large molecule targeted therapies. However, unlike other drug targets that have been exploited for therapeutic benefit, the precise function of MSLN, why it is expressed in certain cancers, and its biological role have not been clearly elucidated. Here the existing literature on the cellular function and expression patterns of MSLN across tumor types is reviewed in order to gain further understanding of this intriguing molecule. In doing so, we conclude that there remains significant ambiguity surrounding its function and role in cellular and tumor biology. Furthermore, the expression of MSLN and its relation of prognosis seems to depend on the type of tumor. Finally, the unified mechanism by which MSLN acts as a protein that conveys tumor aggressiveness remains elusive. What is clear is that there is much yet to be discovered in this realm and doing so may have large implications for treatment of otherwise lethal malignancies.
Collapse
Affiliation(s)
- Brendan L Hagerty
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
- Department of Breast Surgery, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
8
|
Hagerty BL, Oshi M, Endo I, Takabe K. High Mesothelin expression in pancreatic adenocarcinoma is associated with aggressive tumor features but not prognosis. Am J Cancer Res 2023; 13:4235-4245. [PMID: 37818071 PMCID: PMC10560932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/08/2023] [Indexed: 10/12/2023] Open
Abstract
Mesothelin is a cell surface marker expressed on most pancreatic cancers and has been associated with aggressive biology. Despite its popularity as a drug target, clinical relevance of Mesothelin expression in pancreatic cancer is unclear. We set out to define transcriptomic signatures associated with high Mesothelin expression and identify its role in tumor biology and its clinical relevance. We analyzed pancreatic adenocarcinomas in the cancer genome atlas (TCGA), (n = 145) and the results were validated using GSE62452 cohort (n = 69). We divided the cohorts into high and low Mesothelin expression by the median. High Mesothelin was not associated with progression-free, disease-free, disease specific, nor overall survival in TCGA cohort. Despite this, high Mesothelin expression was associated with high Ki67 expression and enriched all five cell proliferation-related Hallmark gene sets, but not with previously investigated pathways: TNF-alpha, PI3K, nor angiogenesis. Mesothelin expression did not correlate with MUC16 expression. The high Mesothelin pancreatic cancers demonstrated higher homologous recombination deficiency, fraction altered, and silent and non-silent mutation rates (all P < 0.001) that indicate aggressive cancer biology. However, lymphocyte infiltration score, TIL regional fraction, TCR richness, infiltration of CD8 T-cells, and cytolytic activity were all significantly lower in Mesothelin high tumors (all P < 0.015). Finally, we found that Mesothelin expression significantly correlated with sensitivity to cytotoxic chemotherapy in pancreatic cancer cell lines. In conclusion, high Mesothelin expression is associated with enhanced proliferation, depressed immune response, and sensitivity to cytotoxic chemotherapy, which may explain there was no difference in survival in pancreatic cancer patients.
Collapse
Affiliation(s)
- Brendan L Hagerty
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
- Department of Gastroenterological Surgery, Yokohama City University School of MedicineYokohama, Kanagawa, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University School of MedicineYokohama, Kanagawa, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
- Department of Gastroenterological Surgery, Yokohama City University School of MedicineYokohama, Kanagawa, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, NY, USA
- Department of Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
- Department of Breast Surgery, Fukushima Medical UniversityFukushima, Japan
| |
Collapse
|
9
|
Timofeeva AV, Fedorov IS, Asaturova AV, Sannikova MV, Tregubova AV, Mayboroda OA, Khabas GN, Frankevich VE, Sukhikh GT. Blood Plasma Small Non-Coding RNAs as Diagnostic Molecules for the Progesterone-Receptor-Negative Phenotype of Serous Ovarian Tumors. Int J Mol Sci 2023; 24:12214. [PMID: 37569592 PMCID: PMC10419267 DOI: 10.3390/ijms241512214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The expression level of the progesterone receptor (PGR) plays a crucial role in determining the biological characteristics of serous ovarian carcinoma. Low PGR expression is associated with chemoresistance and a poorer outcome. In this study, our objective was to explore the relationship between tumor progesterone receptor levels and RNA profiles (miRNAs, piwiRNAs, and mRNAs) to understand their biological characteristics and behavior. To achieve this, we employed next-generation sequencing of small non-coding RNAs, quantitative RT-PCR, and immunohistochemistry to analyze both FFPE and frozen tumor samples, as well as blood plasma from patients with benign cystadenoma (BSC), serous borderline tumor (SBT), low-grade serous ovarian carcinoma (LGSOC), and high-grade serous ovarian carcinoma (HGSOC). Our findings revealed significant upregulation of MMP7 and MUC16, along with downregulation of PGR, in LGSOC and HGSOC compared to BSC. We observed significant correlations of PGR expression levels in tumor tissue with the contents of miR-199a-5p, miR-214-3p, miR-424-3p, miR-424-5p, and miR-125b-5p, which potentially target MUC16, MMP7, and MMP9, as well as with the tissue content of miR-16-5p, miR-17-5p, miR-20a-5p, and miR-93-5p, which are associated with the epithelial-mesenchymal transition (EMT) of cells. The levels of EMT-associated miRNAs were significantly correlated with the content of hsa_piR_022437, hsa_piR_009295, hsa_piR_020813, hsa_piR_004307, and hsa_piR_019914 in tumor tissues. We developed two optimal logistic regression models using the quantitation of hsa_piR_020813, miR-16-5p, and hsa_piR_022437 or hsa_piR_004307, hsa_piR_019914, and miR-93-5p in the tumor tissue, which exhibited a significant ability to diagnose the PGR-negative tumor phenotype with 93% sensitivity. Of particular interest, the blood plasma levels of miR-16-5p and hsa_piR_022437 could be used to diagnose the PGR-negative tumor phenotype with 86% sensitivity even before surgery and chemotherapy. This knowledge can help in choosing the most effective treatment strategy for this aggressive type of ovarian cancer, such as neoadjuvant chemotherapy followed by cytoreduction in combination with hyperthermic intraperitoneal chemotherapy and targeted therapy, thus enhancing the treatment's effectiveness and the patient's longevity.
Collapse
Affiliation(s)
- Angelika V. Timofeeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
| | - Ivan S. Fedorov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
| | - Aleksandra V. Asaturova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
| | - Maya V. Sannikova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
| | - Anna V. Tregubova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
| | - Oleg A. Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands;
| | - Grigory N. Khabas
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
| | - Vladimir E. Frankevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Gennady T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, First Moscow State Medical University Named after I.M. Sechenov, 119991 Moscow, Russia
| |
Collapse
|
10
|
Akbari B, Soltantoyeh T, Shahosseini Z, Yarandi F, Hadjati J, Mirzaei HR. The inhibitory receptors PD1, Tim3, and A2aR are highly expressed during mesoCAR T cell manufacturing in advanced human epithelial ovarian cancer. Cancer Cell Int 2023; 23:104. [PMID: 37244991 DOI: 10.1186/s12935-023-02948-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Chemotherapy and surgery have been the mainstays of epithelial ovarian cancer (EOC) treatment so far. Cellular immunotherapies such as CAR T cell therapy have recently given hope of a cure for solid tumors like EOC. However, extrinsic factors associated with the CAR T cell manufacturing process and/or intrinsic dysregulation of patient-derived T cells, which could be associated with cancer itself, cancer stage, and treatment regimen, may hamper the efficacy of CAR T cell therapy and promote their exhaustion or dysfunction. METHODS To investigate the association of these factors with CAR T cell exhaustion, the frequency of T and CAR T cells expressing three immune inhibitory receptors (i.e., TIM3, PD1, A2aR) generated from T cells of EOC patients and healthy controls was measured during each stage of CAR T cell production. RESULTS Our findings revealed that primary T cells from EOC patients show significantly elevated expression of immune inhibitory receptors, and this increase was more prominent in patients undergoing chemotherapy and those with advanced cancer. In addition, the CAR T cell manufacturing process itself was found to upregulate the expression of these inhibitory receptors and more importantly increase the population of exhausted mesoCAR T cells. CONCLUSIONS Our observations suggest that intrinsic characteristics of patient-derived T cells and extrinsic factors in CAR T cell production protocols should be considered and properly counteracted during CAR T cell manufacturing process. In addition, mitigating the signaling of immune inhibitory receptors through pharmacological/genetic perturbation during CAR T cell manufacturing might profoundly improve CAR T cells function and their antitumor activity in EOC and other solid tumors.
Collapse
Affiliation(s)
- Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Shahosseini
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Molecular Virology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fariba Yarandi
- Department of Obstetrics and Gynecology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Zhai X, Mao L, Wu M, Liu J, Yu S. Challenges of Anti-Mesothelin CAR-T-Cell Therapy. Cancers (Basel) 2023; 15:cancers15051357. [PMID: 36900151 PMCID: PMC10000068 DOI: 10.3390/cancers15051357] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy is a kind of adoptive T-cell therapy (ACT) that has developed rapidly in recent years. Mesothelin (MSLN) is a tumor-associated antigen (TAA) that is highly expressed in various solid tumors and is an important target antigen for the development of new immunotherapies for solid tumors. This article reviews the clinical research status, obstacles, advancements and challenges of anti-MSLN CAR-T-cell therapy. Clinical trials on anti-MSLN CAR-T cells show that they have a high safety profile but limited efficacy. At present, local administration and introduction of new modifications are being used to enhance proliferation and persistence and to improve the efficacy and safety of anti-MSLN CAR-T cells. A number of clinical and basic studies have shown that the curative effect of combining this therapy with standard therapy is significantly better than that of monotherapy.
Collapse
Affiliation(s)
- Xuejia Zhai
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
| | - Ling Mao
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
| | - Min Wu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
| | - Jie Liu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
| | - Shicang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
- Jinfeng Laboratory, Chongqing 401329, China
- Correspondence:
| |
Collapse
|
12
|
Targeting Mesothelin in Solid Tumours: Anti-mesothelin Antibody and Drug Conjugates. Curr Oncol Rep 2023; 25:309-323. [PMID: 36763234 DOI: 10.1007/s11912-023-01367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarise the pathobiological role of mesothelin and the current data on therapeutic antibodies targeting mesothelin in solid tumours. RECENT FINDINGS High mesothelin expression is restricted to the pericardium, pleura, peritoneum and tunica vaginalis. Mesothelin does not seem to have any normal biological function in adult normal tissues. Mesothelin is highly expressed in mesothelioma, serous ovarian cancer, pancreatic cancer and some gastric cancer and adenocarcinoma of the lung and is responsible for tumour proliferation, metastasis, resistance to chemotherapy or radiation and evasion of immune system. To date, antibody, antibody drug conjugates and bispecific antibodies with immune checkpoints have been investigated in mesothelin expressing malignancies. After a couple of decades of clinical investigation in antibody targeting mesothelin, the therapeutic benefit is relatively modest. Novel delivery of mesothelin targeting agents, more potent payload in antibody drug conjugates and immune checkpoint inhibitor, may improve therapeutic benefit.
Collapse
|
13
|
Takamizawa S, Yazaki S, Kojima Y, Yoshida H, Kitadai R, Nishikawa T, Shimoi T, Sudo K, Okuma HS, Tanioka M, Noguchi E, Uno M, Ishikawa M, Kato T, Fujiwara Y, Yonemori K. High mesothelin expression is correlated with non-squamous cell histology and poor survival in cervical cancer: a retrospective study. BMC Cancer 2022; 22:1215. [PMID: 36434635 PMCID: PMC9701073 DOI: 10.1186/s12885-022-10277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Mesothelin (MSLN) is a cell-surface glycoprotein found in various solid tumours. Cancer therapies targeting MSLN have been developed in recent years; however, the available information on MSLN expression in cervical cancer is limited. This study aimed to evaluate MSLN expression in various histological types of cervical cancer and examine its relationship with prognosis. METHODS This retrospective study included patients with cervical cancer who underwent primary surgery between January 2000 and December 2020 at our institution. MSLN expression was evaluated by immunohistochemistry using clone SP74 and defined as positive if MSLN was expressed at any intensity. High MSLN expression was defined as an intensity of ≥ 2 + in ≥ 30% of tumour cells. The association between MSLN expression and clinicopathological factors was evaluated. RESULTS Overall, 123 patients were identified, and 140 tumour samples, including 17 paired primary and metastatic samples, were evaluated. Concerning histological type, 67 patients had squamous cell carcinoma (SCC), whereas 56 had non-SCC. MSLN expression was observed in 98.4% (121/123) of primary tumours. High MSLN expression was observed in 63.4% of samples (78/123), but it differed between the histological types (49.2% for SCC vs. 80.4% for non-SCC, p < 0.001). There was a significant correlation between MSLN expression in primary and metastatic lesions (Rs = 0.557, p = 0.015). In patients with common histological types, overall survival (OS) was shorter in the high MSLN expression group than in the low MSLN expression group (hazard ratio, 3.53; 95% confidence interval, 1.16-15.3, p = 0.03). CONCLUSIONS MSLN was highly expressed in patients with cervical cancer, especially in those with non-SCC. High MSLN expression in the primary lesion was significantly associated with poor OS, and its expression was maintained in metastatic lesions. Our findings indicate that MSLN may be an attractive therapeutic target for cervical cancer. TRIAL REGISTRATION Retrospectively registered. 2014-393. 1 June 2015.
Collapse
Affiliation(s)
- Shigemasa Takamizawa
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Shu Yazaki
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Yuki Kojima
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Hiroshi Yoshida
- grid.272242.30000 0001 2168 5385Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Rui Kitadai
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Tadaaki Nishikawa
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Tatsunori Shimoi
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Kazuki Sudo
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Hitomi Sumiyoshi Okuma
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Maki Tanioka
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Emi Noguchi
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Masaya Uno
- grid.272242.30000 0001 2168 5385Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Mitsuya Ishikawa
- grid.272242.30000 0001 2168 5385Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoyasu Kato
- grid.272242.30000 0001 2168 5385Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuhiro Fujiwara
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Kan Yonemori
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| |
Collapse
|
14
|
Li Y, Tian W, Zhang H, Zhang Z, Zhao Q, Chang L, Lei N, Zhang W. MSLN Correlates With Immune Infiltration and Chemoresistance as a Prognostic Biomarker in Ovarian Cancer. Front Oncol 2022; 12:830570. [PMID: 35692779 PMCID: PMC9174524 DOI: 10.3389/fonc.2022.830570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022] Open
Abstract
Mesothelin (MSLN) is a glycoprotein with various expression degrees in different tumors including mesothelioma, ovarian cancer, pancreatic cancer, etc. MSLN is considered to play an important role in cell survival, proliferation, and tumor progression. Although the expression of MSLN in tumors makes it a potential therapeutic target, its mechanism of action is still unclear, especially its correlation with immune cells infiltration in the tumor microenvironment has not been investigated. In this study, we detected the overexpression of MSLN in ovarian cancer using database analysis and tissue-array staining. We further evaluated the diagnostic value of MSLN and found it was associated with poor overall survival in ovarian cancer. In addition, the high expression of MSLN was significantly related to the immune-related genes and chemoresistant genes. We confirmed the overexpression of MSLN in the chemoresistant ovarian cancer cell lines. Our research suggests that MSLN participates in a variety of pathways related to the suppression of immune activation and promotion of chemoresistance, leading to a poor prognosis in ovarian cancer.
Collapse
Affiliation(s)
- Yike Li
- Department of Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wanjia Tian
- Department of Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hong Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhijian Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qinghe Zhao
- Department of Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Chang
- Department of Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Weiwei Zhang
- Department of Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Giordano G, Ferioli E, Tafuni A. The Role of Mesothelin Expression in Serous Ovarian Carcinoma: Impacts on Diagnosis, Prognosis, and Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14092283. [PMID: 35565412 PMCID: PMC9103848 DOI: 10.3390/cancers14092283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023] Open
Abstract
Mesothelin (MSLN) is a protein expressed in the mesothelial cell lining of the pleura, peritoneum, and pericardium; its biological functions in normal cells are still unknown. Experimental studies using knockout mice have suggested that this molecule does not play an important role in development and reproduction. In contrast, it has been observed that this molecule is produced in abnormal amounts in several malignant neoplasms, such as mesotheliomas and pancreatic adenocarcinomas. Many molecular studies have also demonstrated that mesothelin is overexpressed in HSOCs. Here, we discuss the current knowledge of mesothelin and focus on its role in clinical and pathological diagnoses, as well as its impact on the prognosis of HSOC. Moreover, regarding the binding of MSLN to the ovarian cancer antigen CA125, which has been demonstrated in many studies, we also report on signal transduction pathways that may play an important role in the spread and neoplastic progression of this lethal neoplasm. Given that mesothelin is overexpressed in many solid tumours and has antigenic properties, this molecule could be considered an antigenic target for the treatment of many malignancies. Consequently, we also review the literature to report on mesothelin-targeting therapies for HSOC that have been recently investigated in many clinical studies.
Collapse
|
16
|
HLA-DR Presentation of the Tumor Antigen MSLN Associates with Clinical Outcome of Ovarian Cancer Patients. Cancers (Basel) 2022; 14:cancers14092260. [PMID: 35565389 PMCID: PMC9101593 DOI: 10.3390/cancers14092260] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The immunopeptidome represents the entirety of peptides that are presented on the surface of cells on human leukocyte antigen (HLA) molecules and are recognized by the T-cell receptors of CD4+ and CD8+ T-cells. Malignant cells present tumor-associated antigens essential for tumor immune surveillance, which can be targeted by T-cell-based immunotherapy approaches. For ovarian carcinomas, various tumor-associated antigens, such as Mucin-16 and Mesothelin, have been described. The aim of our study is to analyze immunopeptidome-defined tumor antigen presentation in ovarian carcinoma patients in relation to clinical characteristics and disease outcomes to define potential biomarkers. Our work demonstrates the central role of HLA-DR-restricted peptide presentation of the tumor antigen Mesothelin and of CD4+ T-cell responses for tumor immune surveillance, and underlines Mesothelin as a prime target antigen for novel immunotherapeutic approaches for ovarian carcinoma patients. Abstract T-cell recognition of HLA-presented antigens is central for the immunological surveillance of malignant disease and key for the development of novel T-cell-based immunotherapy approaches. In recent years, large-scale immunopeptidome studies identified naturally presented tumor-associated antigens for several malignancies. Regarding ovarian carcinoma (OvCa), Mucin-16 (MUC16) and Mesothelin (MSLN) were recently described as the top HLA class I- and HLA class II-presented tumor antigens, respectively. Here, we investigate the role and impact of immunopeptidome-presented tumor antigens on the clinical outcomes of 39 OvCa patients with a follow-up time of up to 50 months after surgery. Patients with a HLA-restricted presentation of high numbers of different MSLN-derived peptides on their tumors exhibited significantly prolonged progression-free (PFS) and overall survival (OS), whereas the presentation of MUC16-derived HLA class I-restricted peptides had no impact. Furthermore, a high HLA-DRB gene expression was associated with increased PFS and OS. In line, in silico prediction revealed that MSLN-derived HLA class II-presented peptides are predominantly presented on HLA-DR allotypes. In conclusion, the correlation of MSLN tumor antigen presentation and HLA-DRB gene expression with prolonged survival indicates a central role of CD4+ T-cell responses for tumor immune surveillance in OvCa, and highlights the importance of immunopeptidome-guided tumor antigen discovery.
Collapse
|
17
|
Li J, Bulin Baila, Xu TX, Song J, Su Rina, Wu J, Wang T. Effects of hsa-mir-145-5p on the Regulation of msln Expression in Colorectal Adenocarcinoma. Anal Cell Pathol (Amst) 2022; 2022:5587084. [PMID: 35340746 PMCID: PMC8941573 DOI: 10.1155/2022/5587084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 12/02/2021] [Accepted: 12/18/2021] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal cancers in the world, and its incidence is increasing all over the world including China. In recent years, research data show that some miRNAs are differentially expressed in cancer tissues, and their expression is closely contributed with the prognosis of CRC. Microarray technology was used, and 179 miRNAs were screened out with significantly altered expression in CRC tissues compared with adjacent tissues. The expression of mir-145-5p in tumor tissues was 3.48 times lower than that in normal tissues. Using bioinformatics technology and network resource prediction, we found that mir-145-5p had a potential target gene relationship with msln gene. Then, qRT-PCR was used to validate the expression level of mir-145-5p and msln mRNA in CRC and paracancerous tissues. The results showed that msln mRNA was higher than in normal tissues, while mir-145-5p was lower, with statistically significant difference (P < 0.01, n = 3). Furthermore, the expression of msln protein in CRC and normal colorectal tissues was detected by protein mass spectrometry (MRM) (n = 3) and immunohistochemistry in a total case of 30 colorectal cancer tissues and normal tissues. Result showed that the positive expression of msln in CRC was higher than that in normal colorectal tissues, 1.38e-6 and 1.89e-6, respectively (P < 0.01, n = 3). Furthermore, in 48 h RTCA real-time monitoring experiment, mir-145-5p showed inhibitory effect on the proliferation of colo320 cells stimulated by msln. This study demonstrated that msln is a target gene of mir-145-5p in CRC. Besides, mir-145-5p negatively regulates the proliferation of CRC colo320 cells through downregulating msln gene expression in CRC colo320 cells.
Collapse
Affiliation(s)
- Junhua Li
- PLA Research Institute of General Surgery, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002 Jiangsu, China
| | - Bulin Baila
- Pharmacy Laboratory, Inner Mongolia International Mongolian Hospital, No. 83 Daxuedong Road, Hohhot 010065, China
| | - Tian Xiang Xu
- Abdominal Tumor Surgery, Inner Mongolia People's Hospital, No. 20 Zhaowuda Road, Hohhot 010017, China
| | - Jiang Song
- Abdominal Tumor Surgery, Inner Mongolia People's Hospital, No. 20 Zhaowuda Road, Hohhot 010017, China
| | - Su Rina
- Abdominal Tumor Surgery, Inner Mongolia People's Hospital, No. 20 Zhaowuda Road, Hohhot 010017, China
| | - Ji Wu
- PLA Research Institute of General Surgery, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002 Jiangsu, China
| | - Tegexibaiyin Wang
- Pharmacy Laboratory, Inner Mongolia International Mongolian Hospital, No. 83 Daxuedong Road, Hohhot 010065, China
| |
Collapse
|
18
|
Mesothelin Expression Is Not Associated with the Presence of Cancer Stem Cell Markers SOX2 and ALDH1 in Ovarian Cancer. Int J Mol Sci 2022; 23:ijms23031016. [PMID: 35162954 PMCID: PMC8834752 DOI: 10.3390/ijms23031016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Mesothelin (MSLN) overexpression (OE) is a frequent finding in ovarian carcinomas and increases cell survival and tumor aggressiveness. Since cancer stem cells (CSCs) contribute to pathogenesis, chemoresistance and malignant behavior in ovarian cancer (OC), we hypothesized that MSLN expression could be creating a favorable environment that nurtures CSCs. In this study, we analyzed the expression of MSLN and CSC markers SOX2 and ALDH1 by immunohistochemistry (IHC) in different model systems: primary high-grade serous carcinomas (HGSCs) and OC cell lines, including cell lines that were genetically engineered for MSLN expression by either CRISPR-Cas9-mediated knockout (Δ) or lentivirus-mediated OE. Cell lines, wild type and genetically engineered, were evaluated in 2D and 3D culture conditions and xenografted in nude mice. We observed that MSLN was widely expressed in HGSC, and restricted expression was observed in OC cell lines. In contrast, SOX2 and ALDH1 expression was limited in all tissue and cell models. Most importantly, the expression of CSC markers was independent of MSLN expression, and manipulation of MSLN expression did not affect CSC markers. In conclusion, MSLN expression is not involved in driving the CSC phenotype.
Collapse
|
19
|
Sassu CM, Palaia I, Boccia SM, Caruso G, Perniola G, Tomao F, Di Donato V, Musella A, Muzii L. Role of Circulating Biomarkers in Platinum-Resistant Ovarian Cancer. Int J Mol Sci 2021; 22:ijms222413650. [PMID: 34948446 PMCID: PMC8707281 DOI: 10.3390/ijms222413650] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer (OC) is the second most common cause of death in women with gynecological cancer. Considering the poor prognosis, particularly in the case of platinum-resistant (PtR) disease, a huge effort was made to define new biomarkers able to help physicians in approaching and treating these challenging patients. Currently, most data can be obtained from tumor biopsy samples, but this is not always available and implies a surgical procedure. On the other hand, circulating biomarkers are detected with non-invasive methods, although this might require expensive techniques. Given the fervent hope in their value, here we focused on the most studied circulating biomarkers that could play a role in PtR OC.
Collapse
|
20
|
Exploiting mesothelin in thymic carcinoma as a drug delivery target for anetumab ravtansine. Br J Cancer 2021; 126:754-763. [PMID: 34876673 DOI: 10.1038/s41416-021-01658-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/30/2021] [Accepted: 11/24/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Thymic epithelial tumours (TETs) are rare tumours comprised of thymomas and thymic carcinoma. Novel therapies are needed, especially in thymic carcinoma where the 5-year survival rate hovers at 30%. Mesothelin (MSLN), a surface glycoprotein that is cleaved to produce mature MSLN (mMSLN) and megakaryocyte potentiating factor (MPF), is expressed in limited tissues. However, its expression is present in various cancers, including thymic carcinoma, where it is expressed in 79% of cases. METHODS We utilised flow cytometry, in vitro cytotoxicity assays, and an in vivo xenograft model in order to demonstrate the ability of the MSLN targeting antibody-drug conjugate (ADC) anetumab ravtansine (ARav) in inhibiting the growth of thymic carcinoma. RESULTS Thymoma and thymic carcinoma cell lines express MSLN, and anetumab, the antibody moiety of ARav, was capable of binding MSLN expressing thymic carcinoma cells and internalising. ARav was effective at inhibiting the growth of thymic carcinoma cells stably transfected with mMSLN in vitro. In vivo, 15 mg/kg ARav inhibited T1889 xenograft tumour growth, while combining 7.5 mg/kg ARav with 4 mg/kg cisplatin yielded an additive effect on inhibiting tumour growth. CONCLUSIONS These data demonstrate that anetumab ravtansine inhibits the growth of MSLN positive thymic carcinoma cells in vitro and in vivo.
Collapse
|
21
|
Liu G, Zhang Q, Liu G, Li D, Zhang L, Gu Z, Tian H, Zhang Y, Tian X. Disruption of adenosine 2A receptor improves the anti-tumor function of anti-mesothelin CAR T cells both in vitro and in vivo. Exp Cell Res 2021; 409:112886. [PMID: 34673000 DOI: 10.1016/j.yexcr.2021.112886] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/30/2022]
Abstract
Chimeric antigen receptor (CAR) T cells have been successfully used for the treatment of hematological malignancies including acute and chronic lymphoblastic leukemia. However, results of CAR T cell projects in solid tumors have been less impressive to date, partly because of immunosuppressive tumor microenvironment (TME). It is widely known that high adenosine production is an important factor causing tumor-induced immunosuppression in TME, and adenosine mediates the suppression of anti-tumor T cell responses via binding and signaling through adenosine 2a receptor (A2aR). Previous studies have shown that adenosine generated by cancer cells significantly inhibits T cell anti-tumor activity through binding and then activating adenosine 2A receptors (A2aRs) of T cells. Based on the previous work, in our study, we evaluated whether A2aR disruption by shRNA could enhance the anti-tumor function of anti-mesothelin (MSLN) CAR T cells both in vitro and in vivo. For this goal above, we used MSLN-positive human ovarian serous carcinoma cells (SKOV3) and human colon cancer cells (HCT116) as target cancer cells while MSLN-negative human ovarian cancer cells (ES2) as non-target cancer cells. We observed that targeting cell-intrinsic A2aR through shRNA overexpression caused significant A2aR disruption in CAR T cells and profoundly increased CAR T cell efficacy in both CAR T cell cytokine production and cytotoxicity towards MSLN-positive cancer cells in vitro. More importantly, in SKOV3 xenograft mouse models, anti-MSLN CAR-T cells significantly reduced the tumor burden compared with non-transduced T cells, and the anti-tumor activity of A2aR-disrupted anti-MSLN CAR-T cells was stronger than that of wild-type anti-MSLN CAR-T cells. Altogether, our study showed enhanced anti-tumor efficacy caused by shRNA-mediated A2aR disruption in anti-MSLN CAR T cells both in vitro and in vivo, which proved that shRNA-mediated modification of gene expression might be an excellent strategy for improving CAR T cell function in immunosuppressive tumor microenvironment (TME) and could potentially improve the outcome of treatment in clinical trials.
Collapse
Affiliation(s)
- Guodi Liu
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231, China
| | - Qian Zhang
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231, China
| | - Guoping Liu
- Department of General Surgery, Changhai Hospital, Shanghai, 200433, China
| | - Dehua Li
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231, China
| | - Linsong Zhang
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231, China
| | - Zhangjie Gu
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231, China
| | - Huixin Tian
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231, China
| | - Yong Zhang
- Department of Pathology, Tumor Hospital of China Medical University and Liao Ning Cancer Hospital and Institute, Shenyang, 110042, China.
| | - Xiaoli Tian
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231, China.
| |
Collapse
|
22
|
Hilliard TS, Kowalski B, Iwamoto K, Agadi EA, Liu Y, Yang J, Asem M, Klymenko Y, Johnson J, Shi Z, Marfowaa G, Yemc MG, Petrasko P, Stack MS. Host Mesothelin Expression Increases Ovarian Cancer Metastasis in the Peritoneal Microenvironment. Int J Mol Sci 2021; 22:ijms222212443. [PMID: 34830322 PMCID: PMC8623331 DOI: 10.3390/ijms222212443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 01/06/2023] Open
Abstract
Mesothelin (MSLN), a glycoprotein normally expressed by mesothelial cells, is overexpressed in ovarian cancer (OvCa) suggesting a role in tumor progression, although the biological function is not fully understood. OvCa has a high mortality rate due to diagnosis at advanced stage disease with intraperitoneal metastasis. Tumor cells detach from the primary tumor as single cells or multicellular aggregates (MCAs) and attach to the mesothelium of organs within the peritoneal cavity producing widely disseminated secondary lesions. To investigate the role of host MSLN in the peritoneal cavity we used a mouse model with a null mutation in the MSLN gene (MSLNKO). The deletion of host MSLN expression modified the peritoneal ultrastructure resulting in abnormal mesothelial cell surface architecture and altered omental collagen fibril organization. Co-culture of murine OvCa cells with primary mesothelial cells regardless of MSLN expression formed compact MCAs. However, co-culture with MSLNKO mesothelial cells resulted in smaller MCAs. An allograft tumor study, using wild-type mice (MSLNWT) or MSLNKO mice injected intraperitoneally with murine OvCa cells demonstrated a significant decrease in peritoneal metastatic tumor burden in MSLNKO mice compared to MSLNWT mice. Together, these data support a role for host MSLN in the progression of OvCa metastasis.
Collapse
Affiliation(s)
- Tyvette S. Hilliard
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (B.K.); (E.A.A.); (M.A.); (M.S.S.)
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; (Y.L.); (J.Y.); (Y.K.); (J.J.)
- Correspondence: ; Tel.: +1-574-631-2453
| | - Brooke Kowalski
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (B.K.); (E.A.A.); (M.A.); (M.S.S.)
| | - Kyle Iwamoto
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Elizabeth A. Agadi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (B.K.); (E.A.A.); (M.A.); (M.S.S.)
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; (Y.L.); (J.Y.); (Y.K.); (J.J.)
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yueying Liu
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; (Y.L.); (J.Y.); (Y.K.); (J.J.)
| | - Jing Yang
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; (Y.L.); (J.Y.); (Y.K.); (J.J.)
| | - Marwa Asem
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (B.K.); (E.A.A.); (M.A.); (M.S.S.)
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; (Y.L.); (J.Y.); (Y.K.); (J.J.)
| | - Yuliya Klymenko
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; (Y.L.); (J.Y.); (Y.K.); (J.J.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jeff Johnson
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; (Y.L.); (J.Y.); (Y.K.); (J.J.)
| | - Zonggao Shi
- St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Gifty Marfowaa
- Department of Pre-Professional Studies, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Madeleine G. Yemc
- Department of Science Business, University of Notre Dame, Notre Dame, IN 46556, USA; (M.G.Y.); (P.P.)
| | - Phillip Petrasko
- Department of Science Business, University of Notre Dame, Notre Dame, IN 46556, USA; (M.G.Y.); (P.P.)
| | - M. Sharon Stack
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (B.K.); (E.A.A.); (M.A.); (M.S.S.)
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; (Y.L.); (J.Y.); (Y.K.); (J.J.)
| |
Collapse
|
23
|
Nunes M, Silva PMA, Coelho R, Pinto C, Resende A, Bousbaa H, Almeida GM, Ricardo S. Generation of Two Paclitaxel-Resistant High-Grade Serous Carcinoma Cell Lines With Increased Expression of P-Glycoprotein. Front Oncol 2021; 11:752127. [PMID: 34745981 PMCID: PMC8566917 DOI: 10.3389/fonc.2021.752127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Debulking surgery followed by chemotherapy are the standard of care for high-grade serous carcinoma. After an initial good response to treatment, the majority of patients relapse with a chemoresistant profile, leading to a poor overall survival. Chemotherapy regimens used in high-grade serous carcinomas are based in a combination of classical chemotherapeutic drugs, namely, Carboplatin and Paclitaxel. The mechanisms underlying drug resistance and new drug discovery are crucial to improve patients’ survival. To uncover the molecular mechanisms of chemoresistance and test drugs capable of overcoming this resistant profile, it is fundamental to use good cellular models capable of mimicking the chemoresistant disease. Herein, we established two high-grade serous carcinoma cell lines with intrinsic resistance to Carboplatin and induced Paclitaxel resistance (OVCAR8 PTX R C and OVCAR8 PTX R P) derived from the OVCAR8 cell line. These two chemoresistant cell line variants acquired an enhanced resistance to Paclitaxel-induced cell death by increasing the drug efflux capacity, and this resistance was stable in long-term culture and following freeze/thaw cycles. The mechanism underlying Paclitaxel resistance resides in a significant increase in P-glycoprotein expression and, when this drug efflux pump was blocked with Verapamil, cells re-acquired Paclitaxel sensitivity. We generated two high-grade serous carcinoma cell lines, with a double-chemoresistant (Carboplatin and Paclitaxel) phenotype that mimics the majority of tumor recurrences in ovarian cancer context. This robust tool is suitable for preliminary drug testing towards the development of therapeutic strategies to overcome chemoresistance.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Patrícia M A Silva
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Gandra, Portugal.,TOXRUN, Toxicology Research Unit, University Institute of Health Sciences, Advanced Polytechnic and University Cooperative (CESPU), Gandra, Portugal
| | - Ricardo Coelho
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Carla Pinto
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Gandra, Portugal.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - Albina Resende
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Gandra, Portugal.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - Hassan Bousbaa
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Gandra, Portugal
| | - Gabriela M Almeida
- Expression Regulation in Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Faculty of Medicine from University of Porto (FMUP), Porto, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal.,TOXRUN, Toxicology Research Unit, University Institute of Health Sciences, Advanced Polytechnic and University Cooperative (CESPU), Gandra, Portugal.,Faculty of Medicine from University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
24
|
Zam W, Assaad A. Chimeric antigen receptor T-cells (CARs) in cancer treatment. Curr Mol Pharmacol 2021; 15:532-546. [PMID: 34382510 DOI: 10.2174/1874467214666210811150255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is one of the leading causes of death worldwide. Chemotherapy, radiation therapy, and stem cell transplantation were the main cancer treatment approaches for several years but due to their limited effectiveness, there was a constant search for new therapeutic approaches. Cancer immunotherapy that utilizes and enhances the normal capacity of the patient's immune system was used to fight against cancer. Genetically engineered T-cells that express chimeric antigen receptors (CARs) showed remarkable anti-tumor activity against hematologic malignancies and is now being investigated in a variety of solid tumors. The use of this therapy in the last few years has been successful, achieving a great success in improving the quality of life and prolonging the survival time of patients with a reduction in remission rates. However, many challenges still need to be resolved in order for this technology to gain widespread adoption. <P> Objective: This review summarizes various experimental approaches towards the use of CAR T-cells in hematologic malignancies and solid tumors. <P> Conclusion: Finally, we address the challenges posed by CAR T-cells and discuss strategies for improving the performance of these T cells in fighting cancers.
Collapse
Affiliation(s)
- Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Wadi International University, Homs. Syrian Arab Republic
| | - Amany Assaad
- 2. Department of Analytical and Food Chemistry, Faculty of Pharmacy,Tartous University, Tartous. Syrian Arab Republic
| |
Collapse
|
25
|
Yeo D, Castelletti L, van Zandwijk N, Rasko JEJ. Hitting the Bull's-Eye: Mesothelin's Role as a Biomarker and Therapeutic Target for Malignant Pleural Mesothelioma. Cancers (Basel) 2021; 13:3932. [PMID: 34439085 PMCID: PMC8391149 DOI: 10.3390/cancers13163932] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with limited treatment options and poor prognosis. MPM originates from the mesothelial lining of the pleura. Mesothelin (MSLN) is a glycoprotein expressed at low levels in normal tissues and at high levels in MPM. Many other solid cancers overexpress MSLN, and this is associated with worse survival rates. However, this association has not been found in MPM, and the exact biological role of MSLN in MPM requires further exploration. Here, we discuss the current research on the diagnostic and prognostic value of MSLN in MPM patients. Furthermore, MSLN has become an attractive immunotherapy target in MPM, where better treatment strategies are urgently needed. Several MSLN-targeted monoclonal antibodies, antibody-drug conjugates, immunotoxins, cancer vaccines, and cellular therapies have been tested in the clinical setting. The biological rationale underpinning MSLN-targeted immunotherapies and their potential to improve MPM patient outcomes are reviewed.
Collapse
Affiliation(s)
- Dannel Yeo
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW 2050, Australia; (D.Y.); (L.C.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, NSW 2050, Australia
| | - Laura Castelletti
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW 2050, Australia; (D.Y.); (L.C.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, NSW 2050, Australia
| | - Nico van Zandwijk
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, NSW 2050, Australia
- Concord Repatriation General Hospital, Sydney Local Health District (SLHD), Concord, NSW 2139, Australia
| | - John E. J. Rasko
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW 2050, Australia; (D.Y.); (L.C.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, NSW 2050, Australia
- Gene and Stem Cell Therapy Program, Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
26
|
Hsu HJ, Tung CP, Yu CM, Chen CY, Chen HS, Huang YC, Tsai PH, Lin SI, Peng HP, Chiu YK, Tsou YL, Kuo WY, Jian JW, Hung FH, Hsieh CY, Hsiao M, Chuang SSH, Shen CN, Wang YA, Yang AS. Eradicating mesothelin-positive human gastric and pancreatic tumors in xenograft models with optimized anti-mesothelin antibody-drug conjugates from synthetic antibody libraries. Sci Rep 2021; 11:15430. [PMID: 34326410 PMCID: PMC8322431 DOI: 10.1038/s41598-021-94902-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023] Open
Abstract
Mesothelin (MSLN) is an attractive candidate of targeted therapy for several cancers, and hence there are increasing needs to develop MSLN-targeting strategies for cancer therapeutics. Antibody–drug conjugates (ADCs) targeting MSLN have been demonstrated to be a viable strategy in treating MSLN-positive cancers. However, developing antibodies as targeting modules in ADCs for toxic payload delivery to the tumor site but not to normal tissues is not a straightforward task with many potential hurdles. In this work, we established a high throughput engineering platform to develop and optimize anti-MSLN ADCs by characterizing more than 300 scFv CDR-variants and more than 50 IgG CDR-variants of a parent anti-MSLN antibody as candidates for ADCs. The results indicate that only a small portion of the complementarity determining region (CDR) residues are indispensable in the MSLN-specific targeting. Also, the enhancement of the hydrophilicity of the rest of the CDR residues could drastically increase the overall solubility of the optimized anti-MSLN antibodies, and thus substantially improve the efficacies of the ADCs in treating human gastric and pancreatic tumor xenograft models in mice. We demonstrated that the in vivo treatments with the optimized ADCs resulted in almost complete eradication of the xenograft tumors at the treatment endpoints, without detectable off-target toxicity because of the ADCs’ high specificity targeting the cell surface tumor-associated MSLN. The technological platform can be applied to optimize the antibody sequences for more effective targeting modules of ADCs, even when the candidate antibodies are not necessarily feasible for the ADC development due to the antibodies’ inferior solubility or affinity/specificity to the target antigen.
Collapse
Affiliation(s)
- Hung-Ju Hsu
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Chao-Ping Tung
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Chung-Ming Yu
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Chi-Yung Chen
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Hong-Sen Chen
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Yu-Chuan Huang
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Pei-Hsun Tsai
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Su-I Lin
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Hung-Pin Peng
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Yi-Kai Chiu
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Yueh-Liang Tsou
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Wei-Ying Kuo
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Jhih-Wei Jian
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Fei-Hung Hung
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Chiao-Yun Hsieh
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | | | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | | | - An-Suei Yang
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang Dist., Taipei, 115, Taiwan.
| |
Collapse
|
27
|
Fujii Y, Kamachi H, Matsuzawa F, Mizukami T, Kobayashi N, Fukai M, Taketomi A. Early administration of amatuximab, a chimeric high-affinity anti-mesothelin monoclonal antibody, suppresses liver metastasis of mesothelin-expressing pancreatic cancer cells and enhances gemcitabine sensitivity in a xenograft mouse model. Invest New Drugs 2021; 39:1256-1266. [PMID: 33905019 DOI: 10.1007/s10637-021-01118-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/15/2021] [Indexed: 01/11/2023]
Abstract
Amatuximab is a promising therapeutic antibody targeting mesothelin, a 40-kDa glycoprotein that is highly expressed in pancreatic cancer. We investigated the effectiveness of early amatuximab treatment, imitating an adjuvant chemotherapy setting, and combination therapy with amatuximab and gemcitabine in liver metastasis of pancreatic cancer. Liver metastasis mouse models were established in 8-week-old male BALB/c nu/nu mice using the hemisplenic injection method. Tridaily amatuximab monotherapy or combination with gemcitabine was administered to the liver metastasis mouse model before metastatic lesions had formed huge masses. Gaussia luciferase-transfected AsPC-1 was used as a mesothelin-overexpressing pancreatic cancer cell line. The amount of liver metastases and the serum luciferase activity were significantly lower in the treatment groups than those in the control IgG group. Notably, the anti-tumor activity of gemcitabine was synergically enhanced by combination therapy with amatuximab. Furthermore, western blotting revealed that the high expression of phosphorylated c-Met and AKT in liver metastatic lesions treated with gemcitabine monotherapy was canceled by its combination with amatuximab. This result indicated that the observed synergic therapeutic effect may have occurred as a result of the inhibitory effect of amatuximab on the phosphorylation of c-Met and AKT, which were promoted by exposure to GEM. In conclusion, our study revealed that early administration of amatuximab alone or in combination with GEM significantly suppressed the liver metastases of mesothelin-expressing pancreatic cancer cells. A phase II clinical trial of amatuximab as part of an adjuvant chemotherapy regimen for resected pancreatic cancer is expected.
Collapse
Affiliation(s)
- Yuki Fujii
- Department of Gastroenterological Surgery 1, Hokkaido University Graduate School of Medicine, N15W7, Kitaku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hirofumi Kamachi
- Department of Gastroenterological Surgery 1, Hokkaido University Graduate School of Medicine, N15W7, Kitaku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Fumihiko Matsuzawa
- Department of Gastroenterological Surgery 1, Hokkaido University Graduate School of Medicine, N15W7, Kitaku, Sapporo, Hokkaido, 060-8638, Japan
| | - Tatsuzo Mizukami
- Department of Gastroenterological Surgery 1, Hokkaido University Graduate School of Medicine, N15W7, Kitaku, Sapporo, Hokkaido, 060-8638, Japan
| | - Nozomi Kobayashi
- Department of Gastroenterological Surgery 1, Hokkaido University Graduate School of Medicine, N15W7, Kitaku, Sapporo, Hokkaido, 060-8638, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery 1, Hokkaido University Graduate School of Medicine, N15W7, Kitaku, Sapporo, Hokkaido, 060-8638, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery 1, Hokkaido University Graduate School of Medicine, N15W7, Kitaku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
28
|
A Novel 89Zr-labeled DDS Device Utilizing Human IgG Variant (scFv): "Lactosome" Nanoparticle-Based Theranostics for PET Imaging and Targeted Therapy. Life (Basel) 2021; 11:life11020158. [PMID: 33670777 PMCID: PMC7923095 DOI: 10.3390/life11020158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
“Theranostics,” a new concept of medical advances featuring a fusion of therapeutic and diagnostic systems, provides promising prospects in personalized medicine, especially cancer. The theranostics system comprises a novel 89Zr-labeled drug delivery system (DDS), derived from the novel biodegradable polymeric micelle, “Lactosome” nanoparticles conjugated with specific shortened IgG variant, and aims to successfully deliver therapeutically effective molecules, such as the apoptosis-inducing small interfering RNA (siRNA) intracellularly while offering simultaneous tumor visualization via PET imaging. A 27 kDa-human single chain variable fragment (scFv) of IgG to establish clinically applicable PET imaging and theranostics in cancer medicine was fabricated to target mesothelin (MSLN), a 40 kDa-differentiation-related cell surface glycoprotein antigen, which is frequently and highly expressed by malignant tumors. This system coupled with the cell penetrating peptide (CPP)-modified and photosensitizer (e.g., 5, 10, 15, 20-tetrakis (4-aminophenyl) porphyrin (TPP))-loaded Lactosome particles for photochemical internalized (PCI) driven intracellular siRNA delivery and the combination of 5-aminolevulinic acid (ALA) photodynamic therapy (PDT) offers a promising nano-theranostic-based cancer therapy via its targeted apoptosis-inducing feature. This review focuses on the combined advances in nanotechnology and material sciences utilizing the “89Zr-labeled CPP and TPP-loaded Lactosome particles” and future directions based on important milestones and recent developments in this platform.
Collapse
|
29
|
Fang J, Ding N, Guo X, Sun Y, Zhang Z, Xie B, Li Z, Wang H, Mao W, Lin Z, Qin F, Yuan M, Chu W, Qin H, Qian Q, Xu Q. αPD-1-mesoCAR-T cells partially inhibit the growth of advanced/refractory ovarian cancer in a patient along with daily apatinib. J Immunother Cancer 2021; 9:jitc-2020-001162. [PMID: 33589520 PMCID: PMC7887368 DOI: 10.1136/jitc-2020-001162] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 01/29/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of death among gynecological malignancies in China. In particular, advanced/refractory ovarian cancer lacks effective targeted therapies due to the immunosuppressive and proangiogenic tumor microenvironment. Mesothelin (MSLN) has been found to be highly expressive in most EOC. Targeting MSLN by antibodies or chimeric antigen receptor-modified T (CAR-T) cells and immune checkpoint blockades as well as apatinib, an anti-angiogenic drug, have been used in patients with refractory ovarian cancer. Apatinib was reported to promote the infiltration of CD8+ T cells in lung cancer. However, the combination therapy of CAR-T secreting anti-PD-1 antibody with apatinib in EOC has not been reported. CASE PRESENTATION Here we report a case of refractory EOC in a patient who had relapsed after multiline chemotherapy. The patient received autologous T cells that contained sequences encoding single-chain variable fragments specific for MSLN and full-length antibody for PD-1 (αPD-1). The modified T cells were called αPD-1-mesoCAR-T cells. After infusion, the copy number and PD-1 antibody secretion of the CAR-T cells were increased in the blood. By application of multimodality tumor tracking, MRI of the liver showed shrinkage of metastatic nodules from average diameter of 71.3-39.1 mm at month 2. The patient achieved partial response and survived more than 17 months. IL-6 levels in the patient fluctuated from the baseline to 2-4-folds after treatment, but side effects were mild with only grade 1 hypertension and fatigue. CONCLUSION αPD-1-mesoCAR-T cell therapy combined with apatinib demonstrates a potential therapeutic effect on advanced refractory ovarian cancer. TRIAL REGISTRATION NUMBER NCT03615313.
Collapse
Affiliation(s)
- Juemin Fang
- Department of Medical Oncology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200072, China,Department of Oncology, Shanghai Dermatology Hospital, Tongji University, Shanghai 200072, China
| | - Na Ding
- Department of Medical Oncology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200072, China,Cell Drug Business Unit, Shanghai Cell Therapy Group Corporation, Shanghai 201805, China
| | - Xinling Guo
- Department of Medical Oncology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200072, China,Department of Oncology, Shanghai Dermatology Hospital, Tongji University, Shanghai 200072, China
| | - Yan Sun
- Cell Drug Business Unit, Shanghai Cell Therapy Group Corporation, Shanghai 201805, China
| | - Zhiwei Zhang
- Cell Drug Business Unit, Shanghai Cell Therapy Group Corporation, Shanghai 201805, China,Department of Oncology, Affiliated Hospital of Hebei University of Engineering, Handan 056002, China
| | - Bailu Xie
- Cell Drug Business Unit, Shanghai Cell Therapy Group Corporation, Shanghai 201805, China
| | - Zhong Li
- Cell Drug Business Unit, Shanghai Cell Therapy Group Corporation, Shanghai 201805, China,Shanghai Cell Therapy Research Institute, Shanghai Mengchao Cancer Hospital, Shanghai University, Shanghai 201805, China
| | - Hui Wang
- Department of Medical Oncology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200072, China,Department of Oncology, Shanghai Dermatology Hospital, Tongji University, Shanghai 200072, China
| | - Wei Mao
- Department of Medical Oncology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zhicai Lin
- Cell Drug Business Unit, Shanghai Cell Therapy Group Corporation, Shanghai 201805, China
| | - Fei Qin
- Department of Medical Oncology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200072, China
| | - Min Yuan
- Department of Medical Oncology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200072, China,Department of Oncology, Shanghai Dermatology Hospital, Tongji University, Shanghai 200072, China
| | - Wenqi Chu
- Cell Drug Business Unit, Shanghai Cell Therapy Group Corporation, Shanghai 201805, China
| | - Huanlong Qin
- Department of Medical Oncology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200072, China,Department of Oncology, Shanghai Dermatology Hospital, Tongji University, Shanghai 200072, China
| | - Qijun Qian
- Cell Drug Business Unit, Shanghai Cell Therapy Group Corporation, Shanghai 201805, China,Shanghai Cell Therapy Research Institute, Shanghai Mengchao Cancer Hospital, Shanghai University, Shanghai 201805, China
| | - Qing Xu
- Department of Medical Oncology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200072, China,Department of Oncology, Shanghai Dermatology Hospital, Tongji University, Shanghai 200072, China
| |
Collapse
|
30
|
Mauricio D, Harold J, Tymon-Rosario JR, Zeybek B, Santin AD. Novel mesothelin antibody-drug conjugates: current evidence and future role in the treatment of ovarian cancer. Expert Opin Biol Ther 2021; 21:1087-1096. [PMID: 33356644 DOI: 10.1080/14712598.2021.1869210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Ovarian cancer is the deadliest gynecologic malignancy in the United States, and effective therapies for recurrent, advanced, and progressive disease are limited. Mesothelin is known to be expressed in ovarian cancers, and antibody-drug conjugates targeting mesothelin are a promising novel therapeutic agent.Areas Covered: This article reviews the currently available literature of anti-mesothelin antibody-drug conjugates as a novel treatment for ovarian cancer. Preclinical in vitro and in vivo data as well as clinical results are reviewed for each available agent. Additionally, adverse effects are covered.Expert Opinion: Anti-mesothelin antibody-drug conjugates and their combination with chemotherapeutic agents have undergone phase II trials with encouraging results and demonstrated favorable adverse effect profiles. Phase III data will be necessary to establish its role in ovarian cancer, particularly in recurrent, advanced, or progressive disease.
Collapse
Affiliation(s)
- Dennis Mauricio
- Department of Obstetrics, Gynecology, And Reproductive Sciences Yale University School of Medicine, New Haven, CT, USA
| | - Justin Harold
- Department of Obstetrics, Gynecology, And Reproductive Sciences Yale University School of Medicine, New Haven, CT, USA
| | - Joan R Tymon-Rosario
- Department of Obstetrics, Gynecology, And Reproductive Sciences Yale University School of Medicine, New Haven, CT, USA
| | - Burak Zeybek
- Department of Obstetrics, Gynecology, And Reproductive Sciences Yale University School of Medicine, New Haven, CT, USA
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, And Reproductive Sciences Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
31
|
Lu HY, Tai YJ, Chen YL, Chiang YC, Hsu HC, Cheng WF. Ovarian cancer risk score predicts chemo-response and outcome in epithelial ovarian carcinoma patients. J Gynecol Oncol 2020; 32:e18. [PMID: 33327048 PMCID: PMC7930441 DOI: 10.3802/jgo.2021.32.e18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Cytoreductive surgery followed by adjuvant chemotherapy is a standard frontline treatment for epithelial ovarian cancer (EOC). We aimed to develop an ovarian cancer risk score (OVRS) based on the expression of 10 ovarian-cancer-related genes to predict the chemoresistance, and outcomes of EOC patients. METHODS We designed a case-control study with total 149 EOC women including 75 chemosensitives and 74 chemoresistants. Gene expression was measured using the quantitative real-time polymerase chain reaction. We tested for correlation between the OVRS and chemosensitivity or chemoresistance, disease-free survival (DFS), and overall survival (OS), and validated the OVRS by analyzing patients from the TCGA database. RESULTS The chemosensitive group had lower OVRS than the chemoresistant group (5 vs. 15, p≤0.001, Mann-Whitney U test). Patients with disease relapse (13 vs. 5, p<0.001, Mann-Whitney U test) or disease-related death (13.5 vs. 6, p<0.001) had higher OVRS than those without. OVRS ≥10 (hazard ratio=3.29; 95% confidence interval=1.94-5.58; p<0.001) was the only predictor for chemoresistance in multivariate analysis. The median DFS (5 months vs. 24 months) and OS (39 months vs. >60 months) of patients with OVRS ≥10 were significantly shorter than those of patients with OVRS <10). The high OVRS group also had significantly shorter median OS than the low OVRS group in 255 patients in the TCGA database (39 vs. 49 months, p=0.046). CONCLUSIONS Specific genes panel can be clinically applied in predicting the chemoresistance and outcome, and decision-making of epithelial ovarian cancer.
Collapse
Affiliation(s)
- Hsiao Yun Lu
- Graduate Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi Jou Tai
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu Li Chen
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying Cheng Chiang
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, National Taiwan University Hospital, Yun-Lin Branch, Douliou, Taiwan.
| | - Heng Cheng Hsu
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu City, Taiwan
| | - Wen Fang Cheng
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
32
|
Magalhaes I, Fernebro J, Abd Own S, Glaessgen D, Corvigno S, Remberger M, Mattsson J, Dahlstrand H. Mesothelin Expression in Patients with High-Grade Serous Ovarian Cancer Does Not Predict Clinical Outcome But Correlates with CD11c + Expression in Tumor. Adv Ther 2020; 37:5023-5031. [PMID: 33052561 PMCID: PMC7595982 DOI: 10.1007/s12325-020-01520-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Mesothelin (MSLN) is overexpressed in several tumors including ovarian cancer and is the target of current trials. There is limited and conflicting data on MSLN prognostic impact in ovarian cancer. METHODS We performed a retrospective study on patients with high-grade serous ovarian cancer, analyzing MSLN expression by immunohistochemistry and examining the correlation of its expression to overall and progression-free survival. Correlations of expression of MSLN, CD8, and macrophage markers in different tumor compartments were also investigated. RESULTS Positive MSLN expression was detected in 55.1% of primary tumors and 51.5% of the metastases. MSLN expression was not correlated with survival. We observed a significant positive correlation (r = 0.34, p = 0.01) between MSLN expression in the metastatic site and CD11c expression in total tumor area and perivascular area in the primary tumor. CONCLUSION Our results show that MSLN expression does not correlate with clinical outcome. The impact of the correlation between MSLN and CD11c+ cells on immunotherapy outcome should be further explored.
Collapse
Affiliation(s)
- Isabelle Magalhaes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | - Josefin Fernebro
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sulaf Abd Own
- Division of Pathology, Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Daria Glaessgen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sara Corvigno
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mats Remberger
- Department of Medical Sciences, Uppsala University, and KFUE, Uppsala University Hospital, Uppsala, Sweden
| | - Jonas Mattsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Hanna Dahlstrand
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Klampatsa A, Dimou V, Albelda SM. Mesothelin-targeted CAR-T cell therapy for solid tumors. Expert Opin Biol Ther 2020; 21:473-486. [PMID: 33176519 DOI: 10.1080/14712598.2021.1843628] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Mesothelin (MSLN) is a tumor differentiation antigen normally restricted to the body's mesothelial surfaces, but significantly overexpressed in a broad range of solid tumors. For this reason, MSLN has emerged as an important target for the development of novel immunotherapies. This review focuses on anti-MSLN chimeric antigen receptor (CAR) T cell immunotherapy approaches.Areas covered: A brief overview of MSLN as a therapeutic target and existing anti-MSLN antibody-based drugs and vaccines is provided. A detailed account of anti-MSLN CAR-T cell approaches utilized in preclinical models is presented. Finally, a comprehensive summary of currently ongoing and completed anti-MSLN CAR-T cell clinical trials is discussed.Expert opinion: Initial trials using anti-MSLN CAR-T cells have been safe, but efficacy has been limited. Employing regional routes of delivery, introducing novel modifications leading to enhanced tumor infiltration and persistence, and improved safety profiles and combining anti-MSLN CAR-T cells with standard therapies, could render them more efficacious in the treatment of solid malignancies.
Collapse
Affiliation(s)
- Astero Klampatsa
- Thoracic Oncology Immunotherapy Group, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Vivian Dimou
- Thoracic Oncology Immunotherapy Group, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Steven M Albelda
- Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Significance of mesothelin expression in preoperative endoscopic biopsy specimens for colorectal cancer prognosis. Oncotarget 2020; 11:3807-3817. [PMID: 33196692 PMCID: PMC7597413 DOI: 10.18632/oncotarget.27774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/29/2020] [Indexed: 01/30/2023] Open
Abstract
Mesothelin (MSLN) is a cell surface glycoprotein that is normally expressed in the mesothelial cells but highly expressed in several malignant tumors, where the high expression is generally associated with poor prognosis. In this work, 512 patients with stage III colorectal cancer (CRC) were examined to ascertain the prognostic value of MSLN expression in preoperative endoscopic biopsy specimens. MSLN expression was evaluated by immunohistochemical staining. The tumor cells were MSLN-positive in 61 of the 512 patients (11.9%). MSLN expression was associated with a shorter disease-specific survival (DSS) period (5-year DSS = 68.7%, P = 0.0008). Besides, by multivariate analysis, MSLN expression was identified to be a marker of poor prognosis by multivariate analysis (P = 0.0033, hazard ratio (HR) = 2.31) as well as macroscopic type (P = 0.047, HR = 1.82) among the factors that can be evaluated preoperatively. MSLN-positive patients had a significantly poorer prognosis regardless of adjuvant chemotherapy administration (P = 0.0081 and P = 0.0018 for surgery alone and chemotherapy, respectively). MSLN-positive patients in the adjuvant chemotherapy group exhibited a significantly lower risk of recurrence when compared with those in the surgery alone group (P = 0.0090). In conclusion, high MSLN expression observed in preoperative endoscopic biopsy specimens of stage III CRC was an independent poor prognostic factor. Preoperative evaluation of MSLN by immunohistochemical staining might be applied to select individuals for intensive preoperative chemotherapy among the stage III CRC patients.
Collapse
|
35
|
Nunes M, Henriques Abreu M, Bartosch C, Ricardo S. Recycling the Purpose of Old Drugs to Treat Ovarian Cancer. Int J Mol Sci 2020; 21:ijms21207768. [PMID: 33092251 PMCID: PMC7656306 DOI: 10.3390/ijms21207768] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023] Open
Abstract
The main challenge in ovarian cancer treatment is the management of recurrences. Facing this scenario, therapy selection is based on multiple factors to define the best treatment sequence. Target therapies, such as bevacizumab and polymerase (PARP) inhibitors, improved patient survival. However, despite their achievements, ovarian cancer survival remains poor; these therapeutic options are highly costly and can be associated with potential side effects. Recently, it has been shown that the combination of repurposed, conventional, chemotherapeutic drugs could be an alternative, presenting good patient outcomes with few side effects and low costs for healthcare institutions. The main aim of this review is to strengthen the importance of repurposed drugs as therapeutic alternatives, and to propose an in vitro model to assess the therapeutic value. Herein, we compiled the current knowledge on the most promising non-oncological drugs for ovarian cancer treatment, focusing on statins, metformin, bisphosphonates, ivermectin, itraconazole, and ritonavir. We discuss the primary drug use, anticancer mechanisms, and applicability in ovarian cancer. Finally, we propose the use of these therapies to perform drug efficacy tests in ovarian cancer ex vivo cultures. This personalized testing approach could be crucial to validate the existing evidences supporting the use of repurposed drugs for ovarian cancer treatment.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal;
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
| | - Miguel Henriques Abreu
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPOP), 4200-162 Porto, Portugal
| | - Carla Bartosch
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-162 Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center—Portuguese Oncology Institute of Porto (CI-IPOP), 4200-162 Porto, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal;
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal
- Correspondence: ; Tel.: +351-225-570-700
| |
Collapse
|
36
|
Benard E, Casey NP, Inderberg EM, Wälchli S. SJI 2020 special issue: A catalogue of Ovarian Cancer targets for CAR therapy. Scand J Immunol 2020; 92:e12917. [PMID: 32557659 DOI: 10.1111/sji.12917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Ovarian Cancer (OC) is currently difficult to cure, mainly due to its late detection and the advanced state of the disease at the time of diagnosis. Therefore, conventional treatments such as debulking surgery and combination chemotherapy are rarely able to control progression of the tumour, and relapses are frequent. Alternative therapies are currently being evaluated, including immunotherapy and advanced T cell-based therapy. In the present review, we will focus on a description of those Chimeric Antigen Receptors (CARs) that have been validated in the laboratory or are being tested in the clinic. Numerous target antigens have been defined due to the identification of OC biomarkers, and many are being used as CAR targets. We provide an exhaustive list of these constructs and their current status. Despite being innovative and efficient, the OC-specific CARs face a barrier to their clinical efficacy: the tumour microenvironment (TME). Indeed, effector cells expressing CARs have been shown to be severely inhibited, rendering the CAR T cells useless once at the tumour site. Herein, we give a thorough description of the highly immunosuppressive OC TME and present recent studies and innovations that have enabled CAR T cells to counteract this negative environment and to destroy tumours.
Collapse
Affiliation(s)
- Emmanuelle Benard
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Nicholas P Casey
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Else Marit Inderberg
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
37
|
Kravchenko Y, Chumakov SP, Frolova EI. New anti-mesothelin single-domain antibodies and cell models for developing targeted breast cancer therapy. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most triple negative breast cancers (TNBC) are characterized by elevated expression of mesothelin (MSLN), a cell surface antigen and one of the preferred targets for the therapy of solid tumors. Most continuous TNBC cell lines are MSLN-negative, which obstructs the development of MSLN-targeted therapy for TNBC. The aim of this study was to identify TNBC cell lines with MSLN hyperexpression and to obtain single-domain antibodies (nanobodies) capable of recognizing MSLN in TNBC cells. Mesothelin expression levels were measured in the panel of TNBC cell lines by real-time reverse-transcription PCR. PCR results were verified by measuring concentrations of the megakaryocyte potentiating factor (the secreted fragment of the mesothelin precursor) using sandwich ELISA. Immune phage-display VHH fragment libraries were prepared from mononuclear cells of Vicugna pacos using a modified library enrichment protocol. Two nanobody variants with high specificity for the target and Kd of about 140 and 95 nmol, respectively were obtained. Two MSLN+ and three MSLN– cell lines were identified in the TNBC cell lines panel. The nanobodies demonstrated the ability to recognize the target antigen in MSLN+ cells and had the low ability to bind to MSLN– cells. Thus, we found a convenient MSLN+ TNBC cell model for MSLN-targeted therapy testing. The new single-domain antibodies can be used as targeting components of chimeric antigen receptors.
Collapse
Affiliation(s)
- YuE Kravchenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - SP Chumakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - EI Frolova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
38
|
Abou-El-Naga AM, Abo El-Khair SM, Mahmoud AZ, Hamza M, Elshazli RM. Association of genetic variants in the 3'-untranslated region of the mesothelin (MSLN) gene with ovarian carcinoma. J Biochem Mol Toxicol 2020; 35:e22637. [PMID: 32997381 DOI: 10.1002/jbt.22637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
Limited information has been offered regarding the association of mesothelin (MSLN) gene variants at the 3'-untranslated region with the risk of ovarian carcinoma. The primary objective of this work is to assess the impact of the MSLN (rs1057147 and rs57272256) variants on the progression of ovarian carcinoma among Egyptian women. The study was conceived based on 127 women diagnosed with ovarian carcinoma and 106 unrelated cancer-free controls. Genomic DNA of these MSLN variants was genotyped utilizing the PCR technique. The frequencies of the MSLN (rs1057147) variant revealed a significant association with increased risk of ovarian carcinoma under allelic and dominant models (P < .05). Nonetheless, ovarian cancer patients with the MSLN (rs57272256) variant did not attain considerable significance under all genetic models (P > .05). Together, our findings suggested that the MSLN (rs1057147) variant was associated with an increased risk of ovarian carcinoma, but not the MSLN (rs57272256) variant.
Collapse
Affiliation(s)
| | - Salwa M Abo El-Khair
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ashraf Z Mahmoud
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Mohamed Hamza
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Rami M Elshazli
- Department of Biochemistry, Faculty of Physical Therapy, Horus University - Egypt, New Damietta, Egypt
| |
Collapse
|
39
|
Shen J, Sun X, Zhou J. Insights Into the Role of Mesothelin as a Diagnostic and Therapeutic Target in Ovarian Carcinoma. Front Oncol 2020; 10:1263. [PMID: 32983962 PMCID: PMC7485315 DOI: 10.3389/fonc.2020.01263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/18/2020] [Indexed: 11/13/2022] Open
Abstract
Ovarian malignancies remain the leading cause of death in female gynecological tumors. More than 70% of patients are diagnosed with advanced stage with extensive metastatic lesions in abdominal cavity due to lack of symptoms in early stage and sensitive diagnostic approaches. Mesothelin (MSLN), a glycosylphosphatidylinositol-anchored membrane glycoprotein, participates in cell adhesion, tumor progression, metastasis, and drug resistance. Despite this, the mechanism is still poorly understood. The differential expression pattern of MSLN in normal and cancer tissues makes it a promising target for diagnosis and therapeutic applications. Several clinical trials are underway to evaluate the safety and efficacy of MSLN-targeted drugs, including CAR T cells, immunotoxin, antibody-drug conjugates, and vaccine. This review is aimed to briefly discuss the characteristics of MSLN and the latest progress in MSLN targeting therapies.
Collapse
Affiliation(s)
- Jiayu Shen
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiwen Sun
- Department of Obstetrics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
40
|
Giampaolino P, Foreste V, Della Corte L, Di Filippo C, Iorio G, Bifulco G. Role of biomarkers for early detection of ovarian cancer recurrence. Gland Surg 2020; 9:1102-1111. [PMID: 32953625 DOI: 10.21037/gs-20-544] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is frequently diagnosed at an advanced stage and a fraction of these patients fail to respond to primary therapy and relapses in 70% of cases. On account of the high recurrence probability and the poor outcomes after recurrence, there is an urgent need to predict progression as early as possible and thus found the strategies to detect and prevent a recurrence. Considering that biomarkers have contributed to the management of ovarian cancer by distinguishing benign and malignant pelvic masses and monitoring response to treatment, in this review, we aim to discuss the latest evidence reported in the literature about the use of biomarkers to detect OC recurrence. In detail, we summarized all the evidence of the most quoted biomarkers like HE4, osteopontin, mesothelin (MSLN), Folate receptor α (FOLR1), paraneoplastic antigens, miRNA, cancer stem cells (CSCs) and a combination of them to evaluate their role as prognostic biomarkers for ovarian cancer recurrence.
Collapse
Affiliation(s)
- Pierluigi Giampaolino
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Virginia Foreste
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Luigi Della Corte
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Claudia Di Filippo
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giuseppe Iorio
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giuseppe Bifulco
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
41
|
Abstract
Abstract
Purpose
The aim of this review is to summarize the main applications of mesothelin-targeting agents in the diagnosis of different types of cancers with a brief mention of nuclear magnetic resonance.
Methods
The articles taken into account were selected from PubMed, Scopus, and Web of Sciences, including research articles and abstracts that deal with radioimmunotherapy and new tracers for nuclear medicine and radiodiagnosis. Articles that are not in English have been excluded.
Results
Mesothelin-targeting agents were the subject of the selected articles in which tracers as 64Cu-DOTA-11-25mAb anti MSLN, 111In-MORAb-009-CHX-A″, 89Zr-MMOT0530A, 111In-amatuximab, 99mTc-A1, 89Zr-AMA, 89Zr-amatuximab, 64Cu-amatuximab, 89Zr-labeled MMOT0530A and 89Zr-B3 found application in detection of malignancies that overexpressed mesothelin. Only one article approached magnetic resonance imaging (MRI) diagnosis using superparamagnetic iron oxide nanoparticles linked to anti-mesothelin antibodies. The tracers proved to be highly sensitive in detecting mesothelin positive cells. 89Zr-labeled MMOT0530A could also be used to predict the suitability of patients to radioimmunotherapy.
Conclusions
Radiolabeled anti-mesothelin antibodies could be crucial as a treatment tool and for predicting the eligibility and the response of the patient to radioimmunotherapy through the study of the expression grade of mesothelin. They can be a relevant tool for pancreatic adenocarcinoma, lung cancer, human epidermoid carcinoma, ovarian cancer, malignant mesothelioma in which mesothelin is widely expressed.
Collapse
|
42
|
Coelho R, Ricardo S, Amaral AL, Huang YL, Nunes M, Neves JP, Mendes N, López MN, Bartosch C, Ferreira V, Portugal R, Lopes JM, Almeida R, Heinzelmann-Schwarz V, Jacob F, David L. Regulation of invasion and peritoneal dissemination of ovarian cancer by mesothelin manipulation. Oncogenesis 2020; 9:61. [PMID: 32612258 PMCID: PMC7329842 DOI: 10.1038/s41389-020-00246-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 11/09/2022] Open
Abstract
Peritoneal dissemination is a particular form of metastasis typically observed in ovarian cancer and the major cause for poor patient’s outcome. Identification of the molecular players involved in ovarian cancer dissemination can offer an approach to develop treatment strategies to improve clinical prognosis. Here, we identified mesothelin (MSLN) as a crucial protein in the multistep process of peritoneal dissemination of ovarian cancer. We demonstrated that MSLN is overexpressed in primary and matched peritoneal metastasis of high-grade serous carcinomas (HGSC). Using several genetically engineered ovarian cancer cell lines, resulting in loss or gain of function, we found that MSLN increased cell survival in suspension and invasion of tumor cells through the mesothelial cell layer in vitro. Intraperitoneal xenografts established with MSLNhigh ovarian cancer cell lines showed enhanced tumor burden and spread within the peritoneal cavity. These findings provide strong evidences that MSLN is a key player in ovarian cancer progression by triggering peritoneal dissemination and provide support for further clinical investigation of MSLN as a therapeutic target in HGSC.
Collapse
Affiliation(s)
- Ricardo Coelho
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Sara Ricardo
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ana Luísa Amaral
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Yen-Lin Huang
- Glyco-Oncology, Ovarian Cancer Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mariana Nunes
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,ICBAS, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - José Pedro Neves
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Pathology Department, Centro Hospitalar de São João, Porto, Portugal
| | - Nuno Mendes
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Histology and Electron Microscopy, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Mónica Nuñez López
- Glyco-Oncology, Ovarian Cancer Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Verónica Ferreira
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Raquel Portugal
- Pathology Department, Centro Hospitalar de São João, Porto, Portugal
| | - José Manuel Lopes
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal.,Pathology Department, Centro Hospitalar de São João, Porto, Portugal.,Cancer Cell Signaling and Metabolism Group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Raquel Almeida
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal.,Biology Department, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Viola Heinzelmann-Schwarz
- Gynecological Cancer Center and Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Francis Jacob
- Glyco-Oncology, Ovarian Cancer Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Leonor David
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal. .,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal. .,Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
43
|
Mesothelin-Targeted Recombinant Immunotoxins for Solid Tumors. Biomolecules 2020; 10:biom10070973. [PMID: 32605175 PMCID: PMC7408136 DOI: 10.3390/biom10070973] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Mesothelin (MSLN) is a cell surface glycoprotein normally expressed only on serosal surfaces, and not found in the parenchyma of vital organs. Many solid tumors also express MSLN, including mesothelioma and pancreatic adenocarcinoma. Due to this favorable expression profile, MSLN represents a viable target for directed anti-neoplastic therapies, such as recombinant immunotoxins (iToxs). Pre-clinical testing of MSLN-targeted iTox’s has yielded a strong body of evidence for activity against a number of solid tumors. This has led to multiple clinical trials, testing the safety and efficacy of the clinical leads SS1P and LMB-100. While promising clinical results have been observed, neutralizing anti-drug antibody (ADA) formation presents a major challenge to overcome in the therapeutic development process. Additionally, on-target, off-tumor toxicity from serositis and non-specific capillary leak syndrome (CLS) also limits the dose, and therefore, impact anti-tumor activity. This review summarizes existing pre-clinical and clinical data on MSLN-targeted iTox’s. In addition, we address the potential future directions of research to enhance the activity of these anti-tumor agents.
Collapse
|
44
|
Montemagno C, Cassim S, Pouyssegur J, Broisat A, Pagès G. From Malignant Progression to Therapeutic Targeting: Current Insights of Mesothelin in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:E4067. [PMID: 32517181 PMCID: PMC7312874 DOI: 10.3390/ijms21114067] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), accounting for 90% of all pancreatic tumors, is a highly devastating disease with poor prognosis and rising incidence. The lack of available specific diagnostics tests and the limited treatment opportunities contribute to this pejorative issue. Over the last 10 years, a growing interest pointing towards mesothelin (MSLN) as a promising PDAC-associated antigen has emerged. The limited expression of MSLN in normal tissues (peritoneum, pleura and pericardium) and its overexpression in 80 to 90% of PDAC make it an attractive candidate for therapeutic management of PDAC patients. Moreover, its role in malignant progression related to its involvement in tumor cell proliferation and resistance to chemotherapy has highlighted the relevance of its targeting. Hence, several clinical trials are investigating anti-MSLN efficacy in PDAC. In this review, we provide a general overview of the different roles sustained by MSLN during PDAC progression. Finally, we also summarize the different MSLN-targeted therapies that are currently tested in the clinic.
Collapse
Affiliation(s)
- Christopher Montemagno
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.P.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Université Cote d’Azur, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, 06200 Nice, France
| | - Shamir Cassim
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.P.); (G.P.)
| | - Jacques Pouyssegur
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.P.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Université Cote d’Azur, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, 06200 Nice, France
| | - Alexis Broisat
- Laboratoire Radiopharmaceutiques Biocliniques, INSERM, 1039-Université de Grenoble, 38700 La Tronche, France;
| | - Gilles Pagès
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.P.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Université Cote d’Azur, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, 06200 Nice, France
| |
Collapse
|
45
|
Moentenich V, Comut E, Gebauer F, Tuchscherer A, Bruns C, Schroeder W, Buettner R, Alakus H, Loeser H, Zander T, Quaas A. Mesothelin expression in esophageal adenocarcinoma and squamous cell carcinoma and its possible impact on future treatment strategies. Ther Adv Med Oncol 2020; 12:1758835920917571. [PMID: 32547645 PMCID: PMC7249595 DOI: 10.1177/1758835920917571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/06/2020] [Indexed: 12/29/2022] Open
Abstract
Background Mesothelin is expressed at very low levels by normal mesothelial cells but is overexpressed in several human cancers. This makes mesothelin a promising target for immunotherapy. Limited data exist about mesothelin expression in esophageal carcinoma. In a current clinical trial, the highly potent anti-mesothelin antibody anetumab ravtansine is used in patients with mesothelin-positive tumors. Response rates are correlated with mesothelin expression (using the Ventana antibody) in tumor cells. No data are available on expression levels using the Ventana antibody. Most data have been generated using the Novocastra antibody. As patients are selected for clinical trials based on antibody staining of tumor samples, a comparison of these two available antibodies is crucial. Methods We analyzed 481 esophageal carcinomas [373 esophageal adenocarcinomas (EACs), 108 esophageal squamous cell carcinomas (ESCCs)] using two different monoclonal antibodies (Novocastra and Ventana) for mesothelin expression (low-mid and high-level expression, as used in one clinical trial). We also checked for the correlation of these results with clinical and molecular data. Results We revealed different staining results for both antibodies in EACs: Ventana: 53.6% (low expression: 25.3%; high expression: 28.3%) and Novocastra: 35.7% (low expression: 21.2%; high expression 14.5%). In ESCC we found comparable staining results: Ventana: 13.3% (low expression: 9.5%; high expression: 3.8%) and Novocastra: 13% (low expression: 11.1%; high expression: 1.9%). ARID1a-deficient EAC patients demonstrated significantly higher rates of mesothelin-positive tumors than ARID1a intact EAC patients. No correlations were found with other molecular alterations (TP53 mutation, ERBB2 amplification) or survival rates. Conclusion To the best of our knowledge, this is the largest study analyzing the importance of mesothelin expression in esophageal carcinoma. This study revealed a significant number of mesothelin-positive esophageal carcinomas, especially adenocarcinomas. New therapeutic targets are urgently required to improve the outcome of patients with locally advanced or metastasized esophageal carcinoma. The inhibition of mesothelin can be a new attractive target.
Collapse
Affiliation(s)
- Valeska Moentenich
- Department of Oncology and Hematology, University of Cologne, Kerpener Strasse 62, Cologne 50937, Germany
| | - Erdem Comut
- Institute of Pathology, Pammukale University, Turkey
| | - Florian Gebauer
- Department of Visceral Surgery, University of Cologne, Germany
| | - Armin Tuchscherer
- Department of Oncology and Hematology, University of Cologne, Germany
| | | | | | | | - Hakan Alakus
- Department of Visceral Surgery, University of Cologne, Germany
| | - Heike Loeser
- Institute of Pathology, University of Cologne, Germany
| | - Thomas Zander
- Department of Oncology and Hematology, University of Cologne, Germany
| | | |
Collapse
|
46
|
Hassan R, Blumenschein GR, Moore KN, Santin AD, Kindler HL, Nemunaitis JJ, Seward SM, Thomas A, Kim SK, Rajagopalan P, Walter AO, Laurent D, Childs BH, Sarapa N, Elbi C, Bendell JC. First-in-Human, Multicenter, Phase I Dose-Escalation and Expansion Study of Anti-Mesothelin Antibody-Drug Conjugate Anetumab Ravtansine in Advanced or Metastatic Solid Tumors. J Clin Oncol 2020; 38:1824-1835. [PMID: 32213105 PMCID: PMC7255978 DOI: 10.1200/jco.19.02085] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE This phase I study, which to our knowledge is the first-in-human study of this kind, investigates the safety, tolerability, pharmacokinetics, and clinical activity of anetumab ravtansine, an antibody–drug conjugate of anti-mesothelin antibody linked to maytansinoid DM4, in patients with advanced, metastatic, or recurrent solid tumors known to express the tumor-differentiation antigen mesothelin. PATIENTS AND METHODS This phase I, open-label, multicenter, dose-escalation and dose-expansion study of anetumab ravtansine enrolled 148 adult patients with multiple solid tumor types. Ten dose-escalation cohorts of patients with advanced or metastatic solid tumors (0.15-7.5 mg/kg) received anetumab ravtansine once every 3 weeks, and 6 expansion cohorts of patients with advanced, recurrent ovarian cancer or malignant mesothelioma received anetumab ravtansine at the maximum tolerated dose once every 3 weeks, 1.8 mg/kg once per week, and 2.2 mg/kg once per week. RESULTS Forty-five patients were enrolled across the 10 dose-escalation cohorts. The maximum tolerated dose of anetumab ravtansine was 6.5 mg/kg once every 3 weeks or 2.2 mg/kg once per week. Thirty-two patients were enrolled in the 6.5 mg/kg once-every-3-weeks, 35 in the 1.8 mg/kg once-per-week, and 36 in the 2.2 mg/kg once-per-week expansion cohorts. The most common drug-related adverse events were fatigue, nausea, diarrhea, anorexia, vomiting, peripheral sensory neuropathy, and keratitis/keratopathy. There were no drug-related deaths. Anetumab ravtansine pharmacokinetics were dose proportional; the average half-life was 5.5 days. Among 148 patients with mesothelioma or ovarian, pancreatic, non–small-cell lung, and breast cancers, 1 had a complete response, 11 had partial responses, and 66 had stable disease. High levels of tumor mesothelin expression were detected in patients with clinical activity. CONCLUSION Anetumab ravtansine exhibited a manageable safety and favorable pharmacokinetic profile with encouraging preliminary antitumor activity in heavily pretreated patients with mesothelin-expressing solid tumors. The results allowed for the determination of recommended doses, schedules, and patient populations for anetumab ravtansine in phase II studies.
Collapse
Affiliation(s)
- Raffit Hassan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - George R Blumenschein
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kathleen N Moore
- Stephenson Oklahoma Cancer Center at University of Oklahoma, Oklahoma City, OK/Sarah Cannon Research Institute, Nashville, TN
| | | | | | - John J Nemunaitis
- Division of Hematology and Medical Oncology, Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Shelly M Seward
- Wayne State University Karmanos Cancer Institute, Huntington Woods, MI
| | - Anish Thomas
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | | | | | | | | | | | | | - Cem Elbi
- Bayer HealthCare Pharmaceuticals, Whippany, NJ
| | | |
Collapse
|
47
|
Fekete JT, Ősz Á, Pete I, Nagy GR, Vereczkey I, Győrffy B. Predictive biomarkers of platinum and taxane resistance using the transcriptomic data of 1816 ovarian cancer patients. Gynecol Oncol 2020; 156:654-661. [DOI: 10.1016/j.ygyno.2020.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/22/2019] [Accepted: 01/02/2020] [Indexed: 12/24/2022]
|
48
|
Shiraishi T, Shinto E, Nearchou IP, Tsuda H, Kajiwara Y, Einama T, Caie PD, Kishi Y, Ueno H. Prognostic significance of mesothelin expression in colorectal cancer disclosed by area-specific four-point tissue microarrays. Virchows Arch 2020; 477:409-420. [PMID: 32107600 DOI: 10.1007/s00428-020-02775-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/17/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023]
Abstract
Mesothelin (MSLN) is a cell surface glycoprotein present in many cancer types. Its expression is generally associated with an unfavorable prognosis. This study examined the prognostic significance of MSLN expression in different areas of individual colorectal cancers (CRCs) using tissue microarrays (TMAs) by enrolling 314 patients with stage II (T3-T4, N0, M0) CRCs. Using formalin-fixed paraffin-embedded tissue blocks from patients, TMA blocks were constructed. Tissue core specimens were obtained from submucosal invasive front (Fr-sm), subserosal invasive front (Fr-ss), central area (Ce), and rolled edge (Ro) of each tumor. Using these four-point TMA sets, MSLN expression was immunohistochemically surveyed. The area-specific prognostic significance of MSLN expression was evaluated. A deep learning convolutional neural network algorithm was used for imaging analysis and evaluating our judgment's objectivity. MSLN staining ratio was positively correlated between the manual and machine-learning analyses (r = 0.71). The correlation coefficient between Ro and Ce, Ro and Fr-sm, and Ro and Fr-ss was r = 0.63, r = 0.54, and r = 0.61, respectively. Disease-specific survival curves for the MSLN-positive and MSLN-negative groups in Fr-sm, Fr-ss, and Ro were significantly different (five-year survival rates 88.1% and 95.5% (P = 0.024), 85.0 and 96.2% (P = 0.0087), 87.8 and 95.5% (P = 0.051), and 77.9 and 95.8% (P = 0.046) for Fr-sm, Fr-ss, Ce, and Ro, respectively). The analysis performed using area-specific four-point TMAs clearly demonstrated that MSLN expression in stage II CRC was relatively homogeneous within tumors. Additionally, high MSLN expression showed or tended to show unfavorable prognostic significance regardless of the tumor area.
Collapse
Affiliation(s)
- Takehiro Shiraishi
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-0042, Japan
| | - Eiji Shinto
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-0042, Japan.
| | - Ines P Nearchou
- Quantitative and Digital Pathology, School of Medicine, University of St. Andrews, St. Andrews, KY16 9TF, UK
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-0042, Japan
| | - Yoshiki Kajiwara
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-0042, Japan
| | - Takahiro Einama
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-0042, Japan
| | - Peter D Caie
- Quantitative and Digital Pathology, School of Medicine, University of St. Andrews, St. Andrews, KY16 9TF, UK
| | - Yoji Kishi
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-0042, Japan
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-0042, Japan
| |
Collapse
|
49
|
Sirois AR, Deny DA, Li Y, Fall YD, Moore SJ. Engineered Fn3 protein has targeted therapeutic effect on mesothelin-expressing cancer cells and increases tumor cell sensitivity to chemotherapy. Biotechnol Bioeng 2019; 117:330-341. [PMID: 31631324 DOI: 10.1002/bit.27204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/05/2019] [Accepted: 10/13/2019] [Indexed: 12/12/2022]
Abstract
Mesothelin is a protein expressed at high levels on the cell surface in a variety of cancers, with limited expression in healthy tissues. The presence of mesothelin on tumor tissue correlates with increased invasion and metastasis, and resistance to traditional chemotherapies, through mechanisms that remain poorly understood. Molecules that specifically recognize mesothelin and interrupt its contribution to tumor progression have significant potential for targeted therapy and targeted drug delivery applications. A number of mesothelin-targeting therapies are in preclinical and clinical development, although none are currently approved for routine clinical use. In this work, we report the development of a mesothelin-targeting protein based on the fibronectin type-III non-antibody protein scaffold, which offers opportunities for applications where antibodies have limitations. We engineered protein variants that bind mesothelin with high affinity and selectively initiate apoptosis in tumor cells expressing mesothelin. Interestingly, apoptosis does not occur through a caspase-mediated pathway and does not require downregulation of cell-surface mesothelin, suggesting a currently unknown pathway through which mesothelin contributes to cancer progression. Importantly, simultaneous treatment with mesothelin-binding protein and chemotherapeutic mitomycin C had a greater cytotoxic effect on mesothelin-positive cells compared to either molecule alone, underscoring the potential for combination therapy including biologics targeting mesothelin.
Collapse
Affiliation(s)
- Allison R Sirois
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts.,Picker Engineering Program, Smith College, Northampton, Massachusetts
| | - Daniela A Deny
- Biochemistry Program, Smith College, Northampton, Massachusetts
| | - Yanxuan Li
- Picker Engineering Program, Smith College, Northampton, Massachusetts
| | - Yacine D Fall
- Biochemistry Program, Smith College, Northampton, Massachusetts
| | - Sarah J Moore
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts.,Picker Engineering Program, Smith College, Northampton, Massachusetts.,Department of Biological Sciences, Smith College, Northampton, Massachusetts
| |
Collapse
|
50
|
Galaine J, Turco C, Vauchy C, Royer B, Mercier-Letondal P, Queiroz L, Loyon R, Mouget V, Boidot R, Laheurte C, Lakkis Z, Jary M, Adotévi O, Borg C, Godet Y. CD4 T cells target colorectal cancer antigens upregulated by oxaliplatin. Int J Cancer 2019; 145:3112-3125. [PMID: 31396953 DOI: 10.1002/ijc.32620] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/07/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
Immune checkpoint blockade has proven its efficacy in hypermutated subtypes of metastatic colorectal cancers (mCRC). Immunogenic potential can also be observed with conventional chemotherapies, but this property has never been explored thoroughly in CRC patients. The CRC therapeutic arsenal includes oxaliplatin, a well-characterized platinum drug already described as immunogenic. Here, we investigated the impact of the oxaliplatin-based treatment on mCRC immunopeptidome. We demonstrated that oxaliplatin-resistant CRC cell lines overexpressed telomerase reverse transcriptase (TERT), colorectal-associated-tumor antigen-1 (COA-1) and mesothelin tumor-associated antigens. We identified new HLA class-II-restricted and promiscuous peptides derived from COA-1 and mesothelin. The two naturally processed peptides COA-1331-345 and Meso366-380 appear to be the most immunogenic in mCRC patients. A prospective cohort of 162 mCRC patients enabled us to explore the impact of oxaliplatin exposure on the antitumor-specific immune response. Interestingly, chemotherapy-naive mCRC patients present high immune CD4 T-cell responses directed against TERT, COA-1 and mesothelin-derived peptides. These antitumor T-cell responses were maintained after 3 months of oxaliplatin-based treatment. Altogether, these findings highlight the interest of immunostimulatory agents to improve the management of chemoresistant mCRC patients. Finally, the high frequency of immune responses targeting the new immunogenic peptides derived from COA-1 and mesothelin support their use in immunomonitoring strategies.
Collapse
Affiliation(s)
- Jeanne Galaine
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Célia Turco
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Gastrointestinal Surgery, Besançon, France
| | - Charline Vauchy
- INSERM CIC-1431, University Hospital of Besançon, Clinical Investigation Center un Biotherapy, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Besançon, France
| | - Bernard Royer
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of pharmacotoxicology, Besançon, France
| | - Patricia Mercier-Letondal
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Lise Queiroz
- INSERM CIC-1431, University Hospital of Besançon, Clinical Investigation Center un Biotherapy, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Besançon, France
| | - Romain Loyon
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Virginie Mouget
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Romain Boidot
- Centre Georges-François Leclerc, Platform for Transfer to Cancer Biology, Dijon, France
| | - Caroline Laheurte
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,EFS Bourgogne Franche-Comté, INSERM CIC-1431, CHRU Besançon, Plateforme de BioMonitoring, Besançon, France
| | - Zaher Lakkis
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Gastrointestinal Surgery, Besançon, France
| | - Marine Jary
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| | - Olivier Adotévi
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| | - Christophe Borg
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| | - Yann Godet
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| |
Collapse
|