1
|
Khan ES, Däinghaus T. HSP47 in human diseases: Navigating pathophysiology, diagnosis and therapy. Clin Transl Med 2024; 14:e1755. [PMID: 39135385 PMCID: PMC11319607 DOI: 10.1002/ctm2.1755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 08/16/2024] Open
Abstract
Heat shock protein 47 (HSP47) is a chaperone protein responsible for regulating collagen maturation and transport, directly impacting collagen synthesis levels. Aberrant HSP47 expression or malfunction has been associated with collagen-related disorders, most notably fibrosis. Recent reports have uncovered new functions of HSP47 in various cellular processes. Hsp47 dysregulation in these alternative roles has been linked to various diseases, such as cancer, autoimmune and neurodegenerative disorders, thereby highlighting its potential as both a diagnostic biomarker and a therapeutic target. In this review, we discuss the pathophysiological roles of HSP47 in human diseases, its potential as a diagnostic tool, clinical screening techniques and its role as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Essak. S. Khan
- Posttranscriptional Gene RegulationCancer Research and Experimental HemostasisUniversity Medical Center Mainz (UMCM)MainzGermany
- Center for Thrombosis and Hemostasis (CTH)UMCMMainzGermany
- German Consortium for Translational Cancer Research (DKTK)DKFZ Frankfurt‐MainzFrankfurt am MainGermany
| | - Tobias Däinghaus
- Posttranscriptional Gene RegulationCancer Research and Experimental HemostasisUniversity Medical Center Mainz (UMCM)MainzGermany
- Center for Thrombosis and Hemostasis (CTH)UMCMMainzGermany
| |
Collapse
|
2
|
Xia K, Huang X, Zhao Y, Yang I, Guo W. SERPINH1 enhances the malignancy of osteosarcoma via PI3K-Akt signaling pathway. Transl Oncol 2024; 39:101802. [PMID: 37839175 PMCID: PMC10728702 DOI: 10.1016/j.tranon.2023.101802] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Serpin Family H Member 1 (SERPINH1) may be involved in the regulation of occurrence and development of tumors. However, the role and mechanism of SERPINH1 in osteosarcoma remain poorly understood. The aim of this study is to investigate the expression and role of SRPINH1 in osteosarcoma and to elucidate its underlying mechanisms. METHODS First, we examined the expression of SERPINH1 in osteosarcoma and analyzed publicly available datasets to investigate whether SERPINH1 expression was associated with the prognosis of osteosarcoma. Then we constructed SERPINH1 overexpression and knockdown systems in osteosarcoma cells, and examined the proliferation, migration and invasion ability of osteosarcoma cells after SERPINH1 expression changes using CCK-8 assay, wound healing assay and transwell invasion assay. In addition, we constructed a subcutaneous xenograft tumor model to study the function of SERPINH1 in vivo. We also examined the downstream pathways of SERPINH1 by functional analysis and performed subsequent validation. RESULTS SERPINH1 was upregulated and associated with poor survival in patients with osteosarcoma. SERPINH1 promoted the proliferation, migration and invasion of osteosarcoma cells and promotes the growth of osteosarcoma in vivo by activating the PI3K-Akt signaling pathway. CONCLUSION SERPINH1 partakes in the biological process of osteosarcoma as a tumor promotor and may be an emerging biomarker in osteosarcoma.
Collapse
Affiliation(s)
- Kezhou Xia
- Department of Orthopaedics, Renmin hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Xinghan Huang
- Department of Orthopaedics, Renmin hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Yingchun Zhao
- Department of Orthopaedics, Renmin hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Isabelle Yang
- Department of Orthopaedics, Renmin hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Weichun Guo
- Department of Orthopaedics, Renmin hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China.
| |
Collapse
|
3
|
Abdelatty A, Sun Q, Hu J, Wu F, Wei G, Xu H, Zhou G, Wang X, Xia H, Lan L. Pan-Cancer Study on Protein Kinase C Family as a Potential Biomarker for the Tumors Immune Landscape and the Response to Immunotherapy. Front Cell Dev Biol 2022; 9:798319. [PMID: 35174160 PMCID: PMC8841516 DOI: 10.3389/fcell.2021.798319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/24/2021] [Indexed: 11/27/2022] Open
Abstract
The protein kinase C (PKC) family has been described with its role in some cancers, either as a promoter or suppressor. PKC signaling also regulates a molecular switch between transactivation and transrepression activity of the peroxisome proliferator-activated receptor alpha (PPARalpha). However, the role of different PKC enzymes in tumor immunity remains poorly defined. This study aims to investigate the correlation between PKC genes and tumor immunity, in addition to studying the probability of their use as predictive biomarkers for tumor immunity and immunotherapeutic response. The ssGSEA and the ESTIMATE methods were used to assess 28 tumor-infiltrating lymphocytes (TILs) and the immune component of each cancer, then correlated with PKC levels. Prediction of PKC levels-dependent immunotherapeutic response was based on human leukocytic antigen (HLA) gene enrichment scores and programmed cell death 1 ligand (PD-L1) expression. Univariate and multivariate Cox analysis was performed to evaluate the prognostic role of PKC genes in cancers. Methylation level and CNAs could drive the expression levels of some PKC members, especially PRKCI, whose CNGs are predicted to elevate their level in many cancer types. The most crucial finding in this study was that PKC isoenzymes are robust biomarkers for the tumor immune status, PRKCB, PRKCH, and PRKCQ as stimulators, while PRKCI and PRKCZ as inhibitors in most cancers. Also, PKC family gene levels can be used as predictors for the response to immunotherapies, especially HLAs dependent and PD-L1 blockade-dependent ones. In addition to its prognostic function, all PKC family enzymes are promising tumor immunity biomarkers and can help select suitable immune therapy in different cancers.
Collapse
Affiliation(s)
- Alaa Abdelatty
- Department of Pathology in the School of Basic Medical Sciences and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Qi Sun
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Junhong Hu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fubing Wu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Guanqun Wei
- Department of Pathology in the School of Basic Medical Sciences and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
| | - Haojun Xu
- Department of Pathology in the School of Basic Medical Sciences and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
| | - Guoren Zhou
- Department of Oncology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, China
- *Correspondence: Guoren Zhou, ; Xiaoming Wang, ; Hongping Xia, ; Linhua Lan,
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- *Correspondence: Guoren Zhou, ; Xiaoming Wang, ; Hongping Xia, ; Linhua Lan,
| | - Hongping Xia
- Department of Pathology in the School of Basic Medical Sciences and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- *Correspondence: Guoren Zhou, ; Xiaoming Wang, ; Hongping Xia, ; Linhua Lan,
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Guoren Zhou, ; Xiaoming Wang, ; Hongping Xia, ; Linhua Lan,
| |
Collapse
|
4
|
Exploration of the Key Proteins of High-Grade Intraepithelial Neoplasia to Adenocarcinoma Sequence Using In-Depth Quantitative Proteomics Analysis. JOURNAL OF ONCOLOGY 2021; 2021:5538756. [PMID: 34880916 PMCID: PMC8648452 DOI: 10.1155/2021/5538756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/09/2021] [Indexed: 11/26/2022]
Abstract
Purpose In this study, we aimed to provide a comprehensive description of typical features and identify key proteins associated with the high-grade intraepithelial neoplasia- (HIN-) adenocarcinoma (AC) sequence. Methods We conducted tandem mass tag-based quantitative proteomic profiling of normal mucosa, HIN, and AC tissues. Protein clusters representative of the HIN-AC sequence were identified using heatmaps based on Pearson's correlation analysis. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) database, ClueGO plugin in Cytoscape, and the Metascape database. The prognostic value of the key proteins and their effects on the tumor microenvironment and consensus molecular subtype were explored based on The Cancer Genome Atlas. Results We identified 536 proteins categorized into three clusters. Among the biological processes and pathways of the highly expressed proteins in the HIN-AC sequence, proteins were predominantly enriched in response to gut microbiota, cell proliferation, leukocyte migration, and extracellular matrix (ECM) organization events. SERPINH1 and P3H1 were identified as the key proteins that promote the HIN-AC sequence. In the correlation analysis of infiltrating immune cells, both SERPINH1 and P3H1 expression correlated negatively with tumor purity, while correlating positively with abundance of CD8+ T cells, B cells, macrophage/monocytes, dendritic cells, cancer-associated fibroblasts, endothelial cells, neutrophils, and natural killer cells. Furthermore, both SERPINH1 and P3H1 expression positively correlated with common immune checkpoints and mesenchymal molecular subtype. High P3H1 expression was associated with poor disease-free survival and overall survival. Conclusions ECM-related biological processes and pathways are typical features of the HIN-AC sequence. SERPINH1 and P3H1 might be the key proteins in this sequence and be related to ECM remodeling and immune suppression status in CRC.
Collapse
|
5
|
Lønsmann I, Gudmann NS, Manon-Jensen T, Thiele M, Moreno YM, Langholm LL, Nielsen MJ, Detlefsen S, Karsdal MA, Krag AA, Leeming DJ. Serologically assessed heat shock protein 47 is related to fibrosis stage in early compensated alcohol-related liver disease. Clin Biochem 2021; 104:36-43. [DOI: 10.1016/j.clinbiochem.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/27/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022]
|
6
|
Solà Tapias N, Denadai-Souza A, Rolland-Fourcade C, Quaranta-Nicaise M, Blanpied C, Marcellin M, Edir A, Rolland C, Cirillo C, Dietrich G, Alric L, Portier G, Kirzin S, Bonnet D, Mas E, Burlet-Schiltz O, Deraison C, Bonnart C, Vergnolle N, Barreau F. Colitis Linked to Endoplasmic Reticulum Stress Induces Trypsin Activity Affecting Epithelial Functions. J Crohns Colitis 2021; 15:1528-1541. [PMID: 33609354 DOI: 10.1093/ecco-jcc/jjab035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIMS Intestinal epithelial cells [IECs] from inflammatory bowel disease [IBD] patients exhibit an excessive induction of endoplasmic reticulum stress [ER stress] linked to altered intestinal barrier function and inflammation. Colonic tissues and the luminal content of IBD patients are also characterized by increased serine protease activity. The possible link between ER stress and serine protease activity in colitis-associated epithelial dysfunctions is unknown. We aimed to study the association between ER stress and serine protease activity in enterocytes and its impact on intestinal functions. METHODS The impact of ER stress induced by Thapsigargin on serine protease secretion was studied using either human intestinal cell lines or organoids. Moreover, treating human intestinal cells with protease-activated receptor antagonists allowed us to investigate ER stress-resulting molecular mechanisms that induce proteolytic activity and alter intestinal epithelial cell biology. RESULTS Colonic biopsies from IBD patients exhibited increased epithelial trypsin-like activity associated with elevated ER stress. Induction of ER stress in human intestinal epithelial cells displayed enhanced apical trypsin-like activity. ER stress-induced increased trypsin activity destabilized intestinal barrier function by increasing permeability and by controlling inflammatory mediators such as C-X-C chemokine ligand 8 [CXCL8]. The deleterious impact of ER stress-associated trypsin activity was specifically dependent on the activation of protease-activated receptors 2 and 4. CONCLUSIONS Excessive ER stress in IECs caused an increased release of trypsin activity that, in turn, altered intestinal barrier function, promoting the development of inflammatory process.
Collapse
Affiliation(s)
- Núria Solà Tapias
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | | | | | | | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anissa Edir
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Corinne Rolland
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Carla Cirillo
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Laboratory for Enteric NeuroScience (LENS), TARGID, University of Leuven, Leuven, Belgium
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | | | | | | | - Emmanuel Mas
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Pole Digestif, CHU, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Céline Deraison
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Frédérick Barreau
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
7
|
Baldan-Martin M, Chaparro M, Gisbert JP. Tissue Proteomic Approaches to Understand the Pathogenesis of Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 27:1184-1200. [PMID: 33529308 DOI: 10.1093/ibd/izaa352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) has become a global disease encompassing a group of progressive disorders characterized by recurrent chronic inflammation of the gut with variable disease courses and complications. Despite recent advances in the knowledge of IBD pathophysiology, the elucidation of its etiopathology and progression is far from fully understood, requiring complex and multiple approaches. Therefore, limited clinical progress in diagnosis, assessment of disease activity, and optimal therapeutic regimens have been made over the past few decades. This review explores recent advances and challenges in tissue proteomics with an emphasis on biomarker discovery and better understanding of the molecular mechanisms underlying IBD pathogenesis. Future multi-omic studies are required for the comprehensive molecular characterization of disease biology in real time with a future impact on early detection, disease monitoring, and prediction of the clinical outcome.
Collapse
Affiliation(s)
- Montserrat Baldan-Martin
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - María Chaparro
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Javier P Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| |
Collapse
|
8
|
Levi-Galibov O, Lavon H, Wassermann-Dozorets R, Pevsner-Fischer M, Mayer S, Wershof E, Stein Y, Brown LE, Zhang W, Friedman G, Nevo R, Golani O, Katz LH, Yaeger R, Laish I, Porco JA, Sahai E, Shouval DS, Kelsen D, Scherz-Shouval R. Heat Shock Factor 1-dependent extracellular matrix remodeling mediates the transition from chronic intestinal inflammation to colon cancer. Nat Commun 2020; 11:6245. [PMID: 33288768 PMCID: PMC7721883 DOI: 10.1038/s41467-020-20054-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022] Open
Abstract
In the colon, long-term exposure to chronic inflammation drives colitis-associated colon cancer (CAC) in patients with inflammatory bowel disease. While the causal and clinical links are well established, molecular understanding of how chronic inflammation leads to the development of colon cancer is lacking. Here we deconstruct the evolving microenvironment of CAC by measuring proteomic changes and extracellular matrix (ECM) organization over time in a mouse model of CAC. We detect early changes in ECM structure and composition, and report a crucial role for the transcriptional regulator heat shock factor 1 (HSF1) in orchestrating these events. Loss of HSF1 abrogates ECM assembly by colon fibroblasts in cell-culture, prevents inflammation-induced ECM remodeling in mice and inhibits progression to CAC. Establishing relevance to human disease, we find high activation of stromal HSF1 in CAC patients, and detect the HSF1-dependent proteomic ECM signature in human colorectal cancer. Thus, HSF1-dependent ECM remodeling plays a crucial role in mediating inflammation-driven colon cancer.
Collapse
Affiliation(s)
- Oshrat Levi-Galibov
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Hagar Lavon
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Shimrit Mayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Yaniv Stein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Lauren E Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Wenhan Zhang
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Gil Friedman
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot, Israel
| | - Lior H Katz
- Gastroenterology Institute, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Department of Gastroenterology and Hepatology, Hadassah Medical Center, Jerusalem, Israel
| | - Rona Yaeger
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, and Weil Cornell Medical College, New York, NY, USA
| | - Ido Laish
- Gastroenterology Institute, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - John A Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | | | - Dror S Shouval
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - David Kelsen
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, and Weil Cornell Medical College, New York, NY, USA
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Mori K, Toiyama Y, Okugawa Y, Ichikawa T, Nagano Y, Oki S, Shimura T, Fujikawa H, Hiro J, Kobayash M, Araki T, Inoue Y, Mohri Y, Kusunoki M. Preoperative heat shock protein 47 levels identify colorectal cancer patients with lymph node metastasis and poor prognosis. Oncol Lett 2020; 20:333. [PMID: 33123244 PMCID: PMC7583735 DOI: 10.3892/ol.2020.12196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/28/2020] [Indexed: 11/23/2022] Open
Abstract
Accumulating evidence suggests that overexpression of heat shock protein 47 (HSP47) increases cancer progression, and that HSP47 level in the tumor-associated stroma may serve as a diagnostic marker in various cancers. The present study aimed to evaluate whether HSP47 gene expression in colorectal cancer (CRC) tissues could be used to identify lymph node (LN) metastasis status preoperatively in patients with CRC. To do so, HSP47 gene expression was determined and its association with the clinicopathological characteristics of patients with CRC was analyzed. A total of 139 surgical specimens from patients with CRC and 36 patients with benign colonic disease undergoing surgery at Mie University Hospital were analyzed. HSP47 gene expression was determined by reverse transcription quantitative PCR using Power SYBR Green PCR methods. Expression level of HSP47 was significantly higher in CRC tissues compared with normal tissue from patients with benign colonic disease. Furthermore, high HSP47 expression was significantly associated with tumor progression, including high T stage, lymph node metastasis and venous invasion, and high TNM stage. High HSP47 expression may therefore serve as a novel predictive biomarker for determining patients with CRC and LN metastasis. According to Kaplan-Meier analysis, patients with high HSP47 expression level had significantly poorer overall survival than those with low HSP47 expression level. Furthermore, multivariate analyses identified HSP47 expression as an independent predictive marker for LN metastasis and poor overall survival in patients with CRC. In summary, the present study demonstrated that HSP47 expression may be considered as a novel biomarker for predicting LN metastasis status and prognosis in patients with CRC.
Collapse
Affiliation(s)
- Koichiro Mori
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Takashi Ichikawa
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yuka Nagano
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Satoshi Oki
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Tadanobu Shimura
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hiroyuki Fujikawa
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Junichiro Hiro
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Minako Kobayash
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Toshimitsu Araki
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yasuhiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yasuhiko Mohri
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
10
|
Nakada N, Mikami T, Horie K, Nagashio R, Sakurai Y, Sanoyama I, Yoshida T, Sada M, Kobayashi K, Sato Y, Okayasu I, Murakumo Y. Expression of CA2 and CA9 carbonic anhydrases in ulcerative colitis and ulcerative colitis-associated colorectal cancer. Pathol Int 2020; 70:523-532. [PMID: 32410301 DOI: 10.1111/pin.12949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022]
Abstract
Ulcerative colitis (UC) is characterized by chronic inflammation in the colonic mucosa and submucosa with repeating relapse and remission, but the pathogenesis is unknown. Patients with long-standing UC are at high risk of neoplasm development. The aim of the present study was to identify molecules whose expression is associated with UC and UC-associated colorectal cancer (UCCA). Biopsy specimens from UC and normal colonic mucosae were analyzed using a proteomics approach, in which carbonic anhydrase 2 (CA2) was identified as a molecule downregulated in UC mucosae. Immunohistochemically, CA2 expression was detected in normal and diverticulitis mucosal epithelia, and its expression decreased as UC activity increased. CA2 expression was almost undetectable in UCCA. We also analyzed the expression of another carbonic anhydrase, CA9, and its upstream molecule, hypoxia-inducible factor-1α (HIF-1α), both of which are induced under hypoxic conditions. It was revealed that CA9 expression was relatively low in normal, diverticulitis and UC mucosae, and was upregulated in UCCA. HIF-1α expression was consistently low in all tissue types examined. In conclusion, these results suggest that CA2 and CA9 may be possible indicators of UC activity and UCCA development, respectively.
Collapse
Affiliation(s)
- Norihiro Nakada
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan.,Department of Pathology, Nakagami Hospital, Okinawa, Japan
| | - Tetuo Mikami
- Department of Pathology, Toho University Faculty of Medicine, Tokyo, Japan
| | - Kayo Horie
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Aomori, Japan
| | - Ryo Nagashio
- Department of Molecular Diagnostics, Kitasato University School of Allied Health Sciences, Kanagawa, Japan
| | - Yasutaka Sakurai
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Itaru Sanoyama
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Tsutomu Yoshida
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Miwa Sada
- Department of Gastroenterology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Kiyonori Kobayashi
- Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yuichi Sato
- Department of Molecular Diagnostics, Kitasato University School of Allied Health Sciences, Kanagawa, Japan
| | - Isao Okayasu
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yoshiki Murakumo
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| |
Collapse
|
11
|
Abstract
An organ-specific chronic inflammation–remodeling–carcinoma sequence has been proposed, mainly for the alimentary tract. As representative diseases, gastroesophageal reflux disease, chronic gastritis and inflammatory bowel disease (ulcerative colitis and Crohn’s disease of the colitis type) were adopted for this discussion. Tissue remodeling is such an important part of tumorigenesis in this sequence that an organ-specific chronic inflammation–remodeling–carcinoma sequence has been proposed in detail. Chronic inflammation accelerates the cycle of tissue injury and regeneration; in other words, cell necrosis (or apoptosis) and proliferation result in tissue remodeling in long-standing cases of inflammation. Remodeling encompasses epithelial cell metaplasia and stromal fibrosis, and modifies epithelial–stromal cell interactions. Further, the accumulation of genetic, epigenetic and molecular changes—as well as morphologic disorganization—also occurs during tissue remodeling. The expression of mucosal tissue adapted to chronic inflammatory injury is thought to occur at an early stage. Subsequently, dysplasia and carcinoma develop on a background of remodeling due to continuous, active inflammation. Accordingly, organ-specific chronic inflammation should be ameliorated or well controlled with appropriate monitoring if complete healing is unachievable.
Collapse
|
12
|
Assadsangabi A, Evans CA, Corfe BM, Lobo A. Application of Proteomics to Inflammatory Bowel Disease Research: Current Status and Future Perspectives. Gastroenterol Res Pract 2019; 2019:1426954. [PMID: 30774653 PMCID: PMC6350533 DOI: 10.1155/2019/1426954] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing/remitting inflammatory illness of the gastrointestinal tract of unknown aetiology. Despite recent advances in decoding the pathophysiology of IBD, many questions regarding disease pathogenesis remain. Genome-wide association studies (GWAS) and knockout mouse models have significantly advanced our understanding of genetic susceptibility loci and inflammatory pathways involved in IBD pathogenesis. Despite their important contribution to a better delineation of the disease process in IBD, these genetic findings have had little clinical impact to date. This is because the presence of a given gene mutation does not automatically correspond to changes in its expression or final metabolic or structural effect(s). Furthermore, the existence of these gene susceptibility loci in the normal population suggests other driving prerequisites for the disease manifestation. Proteins can be considered the main functional units as almost all intracellular physiological functions as well as intercellular interactions are dependent on them. Proteomics provides methods for the large-scale study of the proteins encoded by the genome of an organism or a cell, to directly investigate the proteins and pathways involved. Understanding the proteome composition and alterations yields insights into IBD pathogenesis as well as identifying potential biomarkers of disease activity, mucosal healing, and cancer progression. This review describes the state of the art in the field with respect to the study of IBD and the potential for translation from biomarker discovery to clinical application.
Collapse
Affiliation(s)
- Arash Assadsangabi
- Gastroenterology Unit, Salford Royal Hospital, Salford, UK
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology and Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Caroline A. Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Bernard M. Corfe
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology and Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Alan Lobo
- Gastroenterology Unit, Salford Royal Hospital, Salford, UK
| |
Collapse
|
13
|
Duarte BDP, Bonatto D. The heat shock protein 47 as a potential biomarker and a therapeutic agent in cancer research. J Cancer Res Clin Oncol 2018; 144:2319-2328. [PMID: 30128672 DOI: 10.1007/s00432-018-2739-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/12/2018] [Indexed: 12/28/2022]
Abstract
Heat shock protein 47 (HSP47) is an important chaperone required for the correct folding and secretion of collagen. Several studies revealed that HSP47 has a role in numerous steps of collagen synthesis, preventing procollagen aggregation and inducing hydroxylation of proline and lysine residues. HSP47 is encoded by the SERPINH1 gene, which is located on chromosome 11q13.5, one of the most frequently amplified regions in human cancer. The altered expression levels of HSP47 have been correlated with several types of cancer, such as cervical, breast, pancreatic and gastric cancers. Studies have shown that HSP47 promotes tumor angiogenesis, growth, migration and metastatic capacity. In this review, we highlight the fundamental aspects of the interaction between HSP47 and collagen and the recent discoveries of the role of this chaperone in different types of malignant neoplasias. We also discuss recent treatments using HSP47 as a therapeutic target, and present evidences that HSP47 is an essential protein for cancer biology and a potential molecular target for chemotherapy.
Collapse
Affiliation(s)
- Beatriz Dal Pont Duarte
- Departamento de Biologia Molecular e Biotecnologia, Centro de Biotecnologia da UFRGS, Universidade Federal do Rio Grande do Sul-UFRGS, Avenida Bento Gonçalves, 9500, Prédio 43421, Sala 107, Caixa Postal 15005, Porto Alegre, Rio Grande Do Sul, 91509-900, Brazil.
| | - Diego Bonatto
- Departamento de Biologia Molecular e Biotecnologia, Centro de Biotecnologia da UFRGS, Universidade Federal do Rio Grande do Sul-UFRGS, Avenida Bento Gonçalves, 9500, Prédio 43421, Sala 107, Caixa Postal 15005, Porto Alegre, Rio Grande Do Sul, 91509-900, Brazil
| |
Collapse
|
14
|
Ibrahim FH, Abd Latip N, Abdul‐Wahab MF. Heat Shock Protein 47 (
HSP47
). ELS 2018:1-7. [DOI: 10.1002/9780470015902.a0028005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
15
|
Horie K, Mikami T, Yoshida T, Sato Y, Okayasu I. Peroxiredoxin 1 expression in active ulcerative colitis mucosa identified by proteome analysis and involvement of thioredoxin based on immunohistochemistry. Oncol Lett 2017; 15:2364-2372. [PMID: 29434945 PMCID: PMC5777129 DOI: 10.3892/ol.2017.7549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/29/2017] [Indexed: 01/01/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic, relapsing, inflammatory bowel disease, and patients with long-standing UC are at high risk of developing colorectal cancer as a typical case of the organ-specific chronic inflammation-carcinoma sequence. Interactions between epithelial and stromal cells and alterations in a variety of stromal microenvironments have been demonstrated to have important roles in the carcinogenesis of UC-associated carcinoma. Therefore, the identification of proteins in the inflammatory microenvironment is important not only in the epithelium, however also in the stroma of UC inflammatory foci. To identify proteins associated with UC-associated carcinoma, the present study used proteomic analysis with two-dimensional electrophoresis and mass spectrometry. Differentially expressed proteins were assessed between active and inactive UC biopsy specimens. Results were verified by immunohistochemistry. Peroxiredoxin 1 (PRDX1) was among the proteins identified to have increased expression in active compared with inactive UC. Immunohistochemical analysis indicated that the expression of both PRDX1 and thioredoxin (TRX) increased with increasing inflammation grade in epithelial cells in UC mucosal crypts. PRDX1-positive stromal cells in the lower half of the lamina propria increased along with colitis severity. Furthermore, the expression of both PRDX1 and TRX proteins was increased in UC-associated neoplastic lesions compared with normal mucosa. A stepwise increase in PRDX1 expression was clear with increasing tumor progression in UC-associated tumorigenesis. Since PRDX1 and TRX overexpression was a unique characteristic of UC activity and UC-associated neoplastic lesions, PRDX1 and TRX expression may reflect oxidative stress along with the severity of colitis activity and UC-associated tumorigenesis in patients with UC.
Collapse
Affiliation(s)
- Kayo Horie
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Tetuo Mikami
- Department of Pathology, Toho University School of Medicine, Ota-ku, Tokyo 143-8540, Japan
| | - Tsutomu Yoshida
- Department of Pathology, Kitasato University School of Medicine Sagamihara, Yokohama, Kanagawa 252-0374, Japan
| | - Yuichi Sato
- Department of Molecular Diagnostics, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa 252-0373, Japan
| | - Isao Okayasu
- Department of Pathology, Kitasato University School of Medicine Sagamihara, Yokohama, Kanagawa 252-0374, Japan
| |
Collapse
|
16
|
Kuppusamy P, Govindan N, Yusoff MM, Ichwan SJ. Proteins are potent biomarkers to detect colon cancer progression. Saudi J Biol Sci 2017; 24:1212-1221. [PMID: 28855814 PMCID: PMC5562385 DOI: 10.1016/j.sjbs.2014.09.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/21/2014] [Accepted: 09/24/2014] [Indexed: 01/11/2023] Open
Abstract
Colon cancer is the most common type of cancer and major cause of death worldwide. The detection of colon cancer is difficult in early stages. However, the secretory proteins have been used as ideal biomarker for the detection of colon cancer progress in cancer patients. Serum/tissue protein expression could help general practitioners to identify colon cancer at earlier stages. By this way, we use the biomarkers to evaluate the anticancer drugs and their response to therapy in cancer models. Recently, the biomarker discovery is important in cancer biology and disease management. Also, many measurable specific molecular components have been studied in colon cancer therapeutics. The biomolecules are mainly DNA, RNA, metabolites, enzymes, mRNA, aptamers and proteins. Thus, in this review we demonstrate the important protein biomarker in colon cancer development and molecular identification of protein biomarker discovery.
Collapse
Affiliation(s)
- Palaniselvam Kuppusamy
- Mammalian Cell Technology Laboratory, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Natanamurugaraj Govindan
- Mammalian Cell Technology Laboratory, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Mashitah M. Yusoff
- Mammalian Cell Technology Laboratory, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Solachuddin J.A. Ichwan
- Kulliyyah of Dentistry, International Islamic University Malaysia, Bandar Indera Mahkota 125200, Kuantan, Pahang, Malaysia
| |
Collapse
|
17
|
Song X, Liao Z, Zhou C, Lin R, Lu J, Cai L, Tan X, Zeng W, Lu X, Zheng W, Chen J, Su Z. HSP47 is associated with the prognosis of laryngeal squamous cell carcinoma by inhibiting cell viability and invasion and promoting apoptosis. Oncol Rep 2017; 38:2444-2452. [PMID: 28849239 DOI: 10.3892/or.2017.5893] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/24/2017] [Indexed: 11/05/2022] Open
Abstract
Heat shock protein 47 (HSP47) is a 47 kDa collagen binding protein that has a close relationship with the development and progression of tumours. However, little is known concerning the expression profile of HSP47 in laryngeal squamous cell carcinoma (LSCC) patients and there is still insufficient data concerning the underlying mechanisms. The aim of the present study was to explore the expression of HSP47 in LSCC and provide an overview of its association with tumourigenicity and clinical prognosis. The expression of HSP47 in LSCC and adjacent non-cancerous laryngeal tissues was assessed via western blotting and immunohistochemical studies. The prognostic significance of HSP47 expression was analysed using a Kaplan-Meier survival curve. To investigate the influence of HSP47 on the viability, invasion and apoptosis of a LSCC cell line, we performed an in vitro analysis with plasmid vectors and small interfering RNA (siRNA). Our results showed that HSP47 protein expression in the LSCC tissues was markedly decreased compared to that noted in the adjacent non-cancerous tissues, and low expression of HSP47 was correlated with poor prognosis in LSCC patients. Upregulation of HSP47 via plasmid vectors inhibited the proliferation, reduced the invasive ability, increased the sensitivity to cisplatin chemotherapy, promoted apoptosis, and induced the G1 phase arrest of LSCC cells in vitro. The expression of apoptosis-regulating proteins was also altered when HSP47 was upregulated, involving increased expression of cleaved caspase-7/-8/-9, PARP, and Bax and decreased expression of Bcl-2. Our present data suggest that HSP47 is an important prognostic factor and an attractive therapeutic target in LSCC due to its influence on the biological behaviour of LSCC cells.
Collapse
Affiliation(s)
- Xiaoxiao Song
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhisu Liao
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chunchun Zhou
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Renyu Lin
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jianglong Lu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lin Cai
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaohua Tan
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenjian Zeng
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xianghe Lu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Weiming Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jianfu Chen
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhipeng Su
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
18
|
Gemoll T, Kollbeck SL, Karstens KF, Hò GG, Hartwig S, Strohkamp S, Schillo K, Thorns C, Oberländer M, Kalies K, Lehr S, Habermann JK. EB1 protein alteration characterizes sporadic but not ulcerative colitis associated colorectal cancer. Oncotarget 2017; 8:54939-54950. [PMID: 28903393 PMCID: PMC5589632 DOI: 10.18632/oncotarget.18978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/17/2017] [Indexed: 12/29/2022] Open
Abstract
Background While carcinogenesis in Sporadic Colorectal Cancer (SCC) has been thoroughly studied, less is known about Ulcerative Colitis associated Colorectal Cancer (UCC). This study aimed to identify and validate differentially expressed proteins between clinical samples of SCC and UCC to elucidate new insights of UCC/SCC carcinogenesis and progression. Results Multiplex-fluorescence two-dimensional gel electrophoresis (2-D DIGE) and mass spectrometry identified 67 proteoforms representing 43 distinct proteins. After analysis by Ingenuity Pathway Analysis® (IPA), subsequent Western blot validation proofed the differential expression of Heat shock 27 kDA protein 1 (HSPB1) and Microtubule-associated protein R/EB family, member 1 (EB1) while the latter one showed also expression differences by immunohistochemistry. Materials and Methods Fresh frozen tissue of UCC (n = 10) matched with SCC (n = 10) was investigated. Proteins of cancerous intestinal mucosal cells were obtained by Laser Capture Microdissection (LCM) and compared by 2-D DIGE. Significant spots were identified by mass spectrometry. After IPA, three proteins [EB1, HSPB1, and Annexin 5 (ANXA5)] were chosen for further validation by Western blotting and tissue microarray-based immunohistochemistry. Conclusions This study identified significant differences in protein expression of colorectal carcinoma cells from UCC patients compared to patients with SCC. Particularly, EB1 was validated in an independent clinical cohort.
Collapse
Affiliation(s)
- Timo Gemoll
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Sophie L Kollbeck
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Karl F Karstens
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Gia G Hò
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Düsseldorf, Leibniz Center for Diabetes Research, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Sarah Strohkamp
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Katharina Schillo
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Christoph Thorns
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Martina Oberländer
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, D-23538 Lübeck, Germany
| | - Stefan Lehr
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Düsseldorf, Leibniz Center for Diabetes Research, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Jens K Habermann
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| |
Collapse
|
19
|
Mori K, Toiyama Y, Otake K, Fujikawa H, Saigusa S, Hiro J, Kobayashi M, Ohi M, Tanaka K, Inoue Y, Kobayashi Y, Kobayashi I, Mohri Y, Goel A, Kusunoki M. Proteomics analysis of differential protein expression identifies heat shock protein 47 as a predictive marker for lymph node metastasis in patients with colorectal cancer. Int J Cancer 2017; 140:1425-1435. [PMID: 27925182 DOI: 10.1002/ijc.30557] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/24/2016] [Indexed: 12/21/2022]
Abstract
The discovery of biomarkers to predict the potential for lymph node (LN) metastasis in patients with colorectal cancer (CRC) is essential for developing improved strategies for treating CRC. In the present study, they used isobaric tags for relative and absolute quantitation to conduct a proteomic analysis designed to identify novel biomarkers for predicting LN metastasis in patients with CRC. They identified 60 differentially expressed proteins specifically associated with LN metastasis in CRC patients and classified the molecular and functional characteristics of these proteins by bioinformatic approaches. A literature search led them to select heat shock protein 47 (HSP47) as the most suitable candidate biomarker for predicting LN metastasis. Validation analysis by immunohistochemistry showed that HSP47 expression in patients with CRC and the number of HSP47-positive spindle cells in the tumor stroma were significantly higher compared with those in adjacent normal colonic mucosa, and the number of the latter cells increased with tumor progression. Further, the number of HSP47-positive spindle cells in stroma was a more informative marker for identifying LN metastasis than HSP47expression. Multivariate analysis identified spindle cells that expressed elevated levels of HSP47 as an independent predictive biomarker for CRC with LN metastasis. Moreover, these cells served as an independent marker of disease-free and overall survival of patients with CRC. Their data indicate that the number of HSP47-positive spindle cells in the stroma of CRC may serve as a novel predictive biomarker of LN metastasis, early recurrence and poor prognosis.
Collapse
Affiliation(s)
- Koichiro Mori
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kohei Otake
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hiroyuki Fujikawa
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Susumu Saigusa
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Junichiro Hiro
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Minako Kobayashi
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaki Ohi
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Koji Tanaka
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yasuhiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yuhko Kobayashi
- Center for Molecular Biology and Genetics, Mie University, Tsu, Mie, Japan
| | - Issei Kobayashi
- Center for Molecular Biology and Genetics, Mie University, Tsu, Mie, Japan
| | - Yasuhiko Mohri
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Ajay Goel
- Center for Gastrointestinal Research & Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, TX
| | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
20
|
Lee HW, Kwon J, Kang MC, Noh MK, Koh JS, Kim JH, Park JH. Overexpression of HSP47 in esophageal squamous cell carcinoma: clinical implications and functional analysis. Dis Esophagus 2016; 29:848-855. [PMID: 25953518 DOI: 10.1111/dote.12359] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several biomarkers of esophageal squamous cell carcinoma (ESCC) have been explored to improve the prognosis of this disease. One of these, the 47-kDa heat shock protein (HSP47), has been screened as a potential biomarker by genomic profiling and is known to be overexpressed in some malignant diseases. In this study, we explored the role and evaluated the prognostic value of HSP47 expression in ESCC. The function of this protein was analyzed by assaying proliferation, wound healing, and colony formation in an HSP47-knockdown ESCC line. The prognostic implication of HSP47 expression was analyzed by immunohistochemical staining in 157 surgical specimens. HSP47 expression level and other clinical variables were analyzed using multivariate Cox proportional hazards models. Silencing of the HSP47 gene in the ESCC cell line inhibited cell proliferation and colony formation. HSP47 was highly expressed in ESCC tissue samples, compared with normal esophageal tissues. The level of immunohistochemical staining of HSP47 and pathologic stage were significantly correlated with overall and recurrence-free survival, as shown by multivariate analysis (P = 0.014 and 0.044, respectively). We found that overexpression of HSP47 is associated with poor prognosis in patients with ESCC and that this is consistent with the function of HSP47 in terms of increased cell proliferation and colony formation. These results suggest that HSP47 is a potential prognostic biomarker for ESCC and merits further research for novel diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- H W Lee
- Department of Thoracic Surgery, Korea Cancer Center Hospital, Seoul, Korea
| | - J Kwon
- Department of Translational Research, Korea Cancer Center Hospital, Seoul, Korea
| | - M C Kang
- Department of Thoracic Surgery, Korea Cancer Center Hospital, Seoul, Korea
| | - M-K Noh
- Korea Institute of Science and Technology Information, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - J S Koh
- Department of Pathology, Korea Cancer Center Hospital, Seoul, Korea
| | - J H Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - J H Park
- Department of Thoracic Surgery, Korea Cancer Center Hospital, Seoul, Korea.
| |
Collapse
|
21
|
Chan PPY, Wasinger VC, Leong RW. Current application of proteomics in biomarker discovery for inflammatory bowel disease. World J Gastrointest Pathophysiol 2016; 7:27-37. [PMID: 26909226 PMCID: PMC4753187 DOI: 10.4291/wjgp.v7.i1.27] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/13/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Recently, the field of proteomics has rapidly expanded in its application towards clinical research with objectives ranging from elucidating disease pathogenesis to discovering clinical biomarkers. As proteins govern and/or reflect underlying cellular processes, the study of proteomics provides an attractive avenue for research as it allows for the rapid identification of protein profiles in a biological sample. Inflammatory bowel disease (IBD) encompasses several heterogeneous and chronic conditions of the gastrointestinal tract. Proteomic technology provides a powerful means of addressing major challenges in IBD today, especially for identifying biomarkers to improve its diagnosis and management. This review will examine the current state of IBD proteomics research and its use in biomarker research. Furthermore, we also discuss the challenges of translating proteomic research into clinically relevant tools. The potential application of this growing field is enormous and is likely to provide significant insights towards improving our future understanding and management of IBD.
Collapse
|
22
|
Bertram S, Padden J, Kälsch J, Ahrens M, Pott L, Canbay A, Weber F, Fingas C, Hoffmann AC, Vietor A, Schlaak JF, Eisenacher M, Reis H, Sitek B, Baba HA. Novel immunohistochemical markers differentiate intrahepatic cholangiocarcinoma from benign bile duct lesions. J Clin Pathol 2016; 69:619-26. [PMID: 26729014 DOI: 10.1136/jclinpath-2015-203418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/30/2015] [Indexed: 12/17/2022]
Abstract
AIMS The distinction between intrahepatic cholangiocarcinoma (ICC) and benign bile duct lesions can be challenging. Using our previously identified potential biomarkers for ICC, we examined whether these are useful for the differential diagnosis of ICC, bile duct adenoma and reactive bile duct proliferations in an immunohistochemical approach and identified a diagnostic marker panel including known biomarkers. METHODS Subjects included samples from 77 patients with ICC, 33 patients with bile duct adenoma and 47 patients with ductular reactions in liver cirrhosis. Our previously identified biomarkers (stress-induced phosphoprotein 1 (STIP1), SerpinH1, 14-3-3Sigma) were tested immunohistochemically following comparison with candidates from the literature (cluster of differentiation 56, heat shock protein (HSP)27, HSP70, B-cell-lymphoma2, p53, ki67). RESULTS The expression of SerpinH1 and 14-3-3Sigma was significantly higher in ICC than in bile duct adenomas and ductular reactions (p<0.05), whereas STIP1 expression was significantly higher (p<0.05) in ICC than in ductular reactions, but the difference to the bile duct adenoma group was not significant. A panel of the biomarker SerpinH1, 14-3-3Sigma and ki67 (≥2 marker positive) showed a high diagnostic accuracy (sensitivity 87.8%, specificity 95.9%, accuracy 91.8%) in the differential diagnosis of ICC versus non-malignant bile duct lesions. CONCLUSIONS This suggests that 14-3-3Sigma and SerpinH1 may be useful in the differential diagnosis of malignant, benign and reactive bile duct lesions in addition to ki67 where a cut-off of >5% might be used for the distinction of malignant and non-malignant lesions.
Collapse
Affiliation(s)
- Stefanie Bertram
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Juliet Padden
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Julia Kälsch
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Maike Ahrens
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Leona Pott
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Ali Canbay
- Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Frank Weber
- Department of General, Visceral and Transplantation Surgery, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Christian Fingas
- Department of General, Visceral and Transplantation Surgery, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas C Hoffmann
- West German Cancer Center Essen, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Antonie Vietor
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Joerg F Schlaak
- Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Henning Reis
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Hideo A Baba
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
23
|
Park JM, Han NY, Han YM, Chung MK, Lee HK, Ko KH, Kim EH, Hahm KB. Predictive proteomic biomarkers for inflammatory bowel disease-associated cancer: Where are we now in the era of the next generation proteomics? World J Gastroenterol 2014; 20:13466-13476. [PMID: 25309077 PMCID: PMC4188898 DOI: 10.3748/wjg.v20.i37.13466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/10/2014] [Accepted: 06/17/2014] [Indexed: 02/06/2023] Open
Abstract
Recent advances in genomic medicine have opened up the possibility of tailored medicine that may eventually replace traditional “one-size-fits all” approaches to the treatment of inflammatory bowel disease (IBD). In addition to exploring the interactions between hosts and microbes, referred to as the microbiome, a variety of strategies that can be tailored to an individual in the coming era of personalized medicine in the treatment of IBD are being investigated. These include prompt genomic screening of patients at risk of developing IBD, the utility of molecular discrimination of IBD subtypes among patients diagnosed with IBD, and the discovery of proteome biomarkers to diagnose or predict cancer risks. Host genetic factors influence the etiology of IBD, as do microbial ecosystems in the human bowel, which are not uniform, but instead represent many different microhabitats that can be influenced by diet and might affect processes essential to bowel metabolism. Further advances in basic research regarding intestinal inflammation may reveal new insights into the role of inflammatory mediators, referred to as the inflammasome, and the macromolecular complex of metabolites formed by intestinal bacteria. Collectively, knowledge of the inflammasome and metagenomics will lead to the development of biomarkers for IBD that target specific pathogenic mechanisms involved in the spontaneous progress of IBD. In this review article, our recent results regarding the discovery of potential proteomic biomarkers using a label-free quantification technique are introduced and on-going projects contributing to either the discrimination of IBD subtypes or to the prediction of cancer risks are accompanied by updated information from IBD biomarker research.
Collapse
|
24
|
Elias A, Crayton SH, Warden-Rothman R, Tsourkas A. Quantitative comparison of tumor delivery for multiple targeted nanoparticles simultaneously by multiplex ICP-MS. Sci Rep 2014; 4:5840. [PMID: 25068300 PMCID: PMC4894420 DOI: 10.1038/srep05840] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 06/11/2014] [Indexed: 12/20/2022] Open
Abstract
Given the rapidly expanding library of disease biomarkers and targeting agents, the number of unique targeted nanoparticles is growing exponentially. The high variability and expense of animal testing often makes it unfeasible to examine this large number of nanoparticles in vivo. This often leads to the investigation of a single formulation that performed best in vitro. However, nanoparticle performance in vivo depends on many variables, many of which cannot be adequately assessed with cell-based assays. To address this issue, we developed a lanthanide-doped nanoparticle method that allows quantitative comparison of multiple targeted nanoparticles simultaneously. Specifically, superparamagnetic iron oxide (SPIO) nanoparticles with different targeting ligands were created, each with a unique lanthanide dopant. Following the simultaneous injection of the various SPIO compositions into tumor-bearing mice, inductively coupled plasma mass spectroscopy was used to quantitatively and orthogonally assess the concentration of each SPIO composition in serial blood and resected tumor samples.
Collapse
Affiliation(s)
- Andrew Elias
- 1] Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia PA, 19104 USA [2]
| | - Samuel H Crayton
- 1] Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia PA, 19104 USA [2]
| | - Robert Warden-Rothman
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia PA, 19104 USA
| | - Andrew Tsourkas
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia PA, 19104 USA
| |
Collapse
|
25
|
Heat shock protein 47 regulated by miR-29a to enhance glioma tumor growth and invasion. J Neurooncol 2014; 118:39-47. [DOI: 10.1007/s11060-014-1412-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/19/2014] [Indexed: 10/25/2022]
|
26
|
Hong S, Park K, Kim JH, Han SH, Lee JB, Seong GJ. Role of heat shock protein 47 in transdifferentiation of human tenon's fibroblasts to myofibroblasts. BMC Ophthalmol 2012; 12:49. [PMID: 22967132 PMCID: PMC3490793 DOI: 10.1186/1471-2415-12-49] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 08/30/2012] [Indexed: 11/10/2022] Open
Abstract
Background Heat shock protein 47 (Hsp47) is a well-known molecular chaperone in collagen synthesis and maturation. The aim of this study is to investigate its putative role in the transdifferentiation of Tenon’s fibroblasts to myofibroblasts. Methods Primary cultured human Tenon’s fibroblasts were exposed to transforming growth factor-β1 (TGF-β1) for up to 48 hours. The mRNA levels of Hsp47 and α smooth muscle actin (αSMA) were determined by quantitative real time RT-PCR. After delivery of small interfering RNA (siRNA) molecules targeting Hsp47 into the cells, the expression of Hsp47 and αSMA proteins was determined by western immunoblotting. Results TGF-β1 increased the mRNA expressions of both Hsp47 and αSMA in human Tenon’s fibroblasts, as determined by quantitative real time RT-PCR. However, it induced the protein expression of only αSMA but not Hsp47, as determined by western immunoblots. When siRNAs specific for Hsp47 were introduced into those cells, the TGF-β1-induced expression of αSMA was significantly attenuated on western immunoblots; after 48 hours of exposure to TGF-β1, the relative densities of immunobands were 11.58 for the TGF-β1 only group and 2.75 for the siRNA treatment group, compared with the no treatment control group (p < 0.001). Conclusions Our data suggest that Hsp47 may be related to the TGF-β1-induced transdifferentiation of human Tenon’s fibroblasts to myofibroblasts.
Collapse
Affiliation(s)
- Samin Hong
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
27
|
Global gene expression and functional network analysis of gastric cancer identify extended pathway maps and GPRC5A as a potential biomarker. Cancer Lett 2012; 326:105-13. [PMID: 22867946 DOI: 10.1016/j.canlet.2012.07.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/09/2012] [Accepted: 07/30/2012] [Indexed: 01/05/2023]
Abstract
To get more understanding of the molecular mechanisms underlying gastric cancer, 25 paired samples were applied to gene expression microarray analysis. Here, expression microarray, quantitative reverse transcription-PCR (qRT-PCR) and immunohistochemical analysis indicated that GPRC5A was significantly elevated in gastric cancer tissues. The integrative network analysis of deregulated genes generated eight subnetworks. We also mapped copy number variations (CNVs) and associated mRNA expression changes into pathways and identified WNT, RTK-Ras-PI3K-AKT, NF-κB, and PLAU-JAK-STAT pathways involved in proliferation, evading apoptosis and sustained angiogenesis, respectively. Taken together, our results reveal several interesting genes including GPRC5A as potential biomarkers for gastric cancer, and highlight more systematical insight of deregulated genes in genetic pathways of gastric carcinogenesis.
Collapse
|
28
|
Poulsen NA, Andersen V, Møller JC, Møller HS, Jessen F, Purup S, Larsen LB. Comparative analysis of inflamed and non-inflamed colon biopsies reveals strong proteomic inflammation profile in patients with ulcerative colitis. BMC Gastroenterol 2012; 12:76. [PMID: 22726388 PMCID: PMC3441502 DOI: 10.1186/1471-230x-12-76] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/15/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Accurate diagnostic and monitoring tools for ulcerative colitis (UC) are missing. Our aim was to describe the proteomic profile of UC and search for markers associated with disease exacerbation. Therefore, we aimed to characterize specific proteins associated with inflamed colon mucosa from patients with acute UC using mass spectrometry-based proteomic analysis. METHODS Biopsies were sampled from rectum, sigmoid colon and left colonic flexure from twenty patients with active proctosigmoiditis and from four healthy controls for proteomics and histology. Proteomic profiles of whole colonic biopsies were characterized using 2D-gel electrophoresis, and peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was applied for identification of differently expressed protein spots. RESULTS A total of 597 spots were annotated by image analysis and 222 of these had a statistically different protein level between inflamed and non-inflamed tissue in the patient group. Principal component analysis clearly grouped non-inflamed samples separately from the inflamed samples indicating that the proteomic signature of colon mucosa with acute UC is strong. Totally, 43 individual protein spots were identified, including proteins involved in energy metabolism (triosephosphate isomerase, glycerol-3-phosphate-dehydrogenase, alpha enolase and L-lactate dehydrogenase B-chain) and in oxidative stress (superoxide dismutase, thioredoxins and selenium binding protein). CONCLUSIONS A distinct proteomic profile of inflamed tissue in UC patients was found. Specific proteins involved in energy metabolism and oxidative stress were identified as potential candidate markers for UC.
Collapse
|
29
|
Okayasu I. Development of ulcerative colitis and its associated colorectal neoplasia as a model of the organ-specific chronic inflammation-carcinoma sequence. Pathol Int 2012; 62:368-80. [DOI: 10.1111/j.1440-1827.2012.02807.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Dittmar T, Zänker KS. Horizontal gene transfers with or without cell fusions in all categories of the living matter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 714:5-89. [PMID: 21506007 PMCID: PMC7120942 DOI: 10.1007/978-94-007-0782-5_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reviews the history of widespread exchanges of genetic segments initiated over 3 billion years ago, to be part of their life style, by sphero-protoplastic cells, the ancestors of archaea, prokaryota, and eukaryota. These primordial cells shared a hostile anaerobic and overheated environment and competed for survival. "Coexist with, or subdue and conquer, expropriate its most useful possessions, or symbiose with it, your competitor" remain cellular life's basic rules. This author emphasizes the role of viruses, both in mediating cell fusions, such as the formation of the first eukaryotic cell(s) from a united crenarchaeon and prokaryota, and the transfer of host cell genes integrated into viral (phages) genomes. After rising above the Darwinian threshold, rigid rules of speciation and vertical inheritance in the three domains of life were established, but horizontal gene transfers with or without cell fusions were never abolished. The author proves with extensive, yet highly selective documentation, that not only unicellular microorganisms, but the most complex multicellular entities of the highest ranks resort to, and practice, cell fusions, and donate and accept horizontally (laterally) transferred genes. Cell fusions and horizontally exchanged genetic materials remain the fundamental attributes and inherent characteristics of the living matter, whether occurring accidentally or sought after intentionally. These events occur to cells stagnating for some 3 milliard years at a lower yet amazingly sophisticated level of evolution, and to cells achieving the highest degree of differentiation, and thus functioning in dependence on the support of a most advanced multicellular host, like those of the human brain. No living cell is completely exempt from gene drains or gene insertions.
Collapse
Affiliation(s)
- Thomas Dittmar
- Inst. Immunologie, Universität Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| | - Kurt S. Zänker
- Institute of Immunologie, University of Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| |
Collapse
|
31
|
Lee SS, Tseng LH, Li YC, Tsai CH, Chang YC. Heat shock protein 47 expression in oral squamous cell carcinomas and upregulated by arecoline in human oral epithelial cells. J Oral Pathol Med 2010; 40:390-6. [PMID: 21198874 DOI: 10.1111/j.1600-0714.2010.00998.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Heat shock protein 47 (HSP47) is a product of CBP2 gene located at chromosome 11q13.5, a region frequently amplified in human cancers. Areca quid chewing is a major risk factor of oral squamous cell carcinoma (OSCC). The aim of this study was to compare HSP47 expression in normal human oral epithelium and OSCC and further to explore the potential mechanisms that may lead to induce HSP47 expression. METHODS Thirty-two OSCC specimens and ten normal oral tissue biopsy samples without areca quid chewing were analyzed by immunohistochemistry. The oral epithelial cell line OC2 cells were challenged with arecoline, a major areca nut alkaloid, by using Western blot analysis. Furthermore, glutathione precursor N-acetyl-l-cysteine (NAC), extracellular signal-regulated protein kinase (ERK) inhibitor PD98059, phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, cyclooxygenase-2 inhibitor NS-398, and tyrosine kinase inhibitor herbimycin A were added to find the possible regulatory mechanisms. RESULTS HSP47 expression was significantly higher in OSCC specimens than normal epithelium (P<0.05). No significant difference in HSP47 expression was observed with respect to age, sex, T category, stage, and differentiation (P>0.05). The lower HSP47 expression was associated with lymph node metastasis (P=0.015). Arecoline was found to elevate HSP47 expression in a dose- and time-dependent manner (P<0.05). The addition of NAC, PD98059, LY294002, NS398, and herbimycin A markedly inhibited the arecoline-induced HSP47 expression (P<0.05). CONCLUSION Our findings demonstrated that HSP47 expression is significantly upregulated in areca quid chewing-associated OSCCs. HSP47 could be used clinically as a marker for lymph node metastasis of oral carcinogenesis. In addition, arecoline-induced HSP47 expression was downregulated by NAC, PD98059, LY294002, NS398, and herbimycin A.
Collapse
Affiliation(s)
- Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), is a chronic inflammatory disorder of the gastrointestinal tract. The initiation and development of IBD involve environmental and genetic factors, such as microorganisms. Complicated pathogenesis, diverse risk factors and atypical clinical features lead to a difficult diagnosis of IBD. The emergence of proteomics has given new impetus to IBD research. In this article, we will review the application of proteomics to the diagnosis of IBD and prediction of IBD-associated tumors.
Collapse
|
33
|
Okayasu I, Yoshida T, Mikami T, Hana K, Yokozawa M, Araki K, Mitsuhashi J, Kikuchi M, Adachi E, Sada M. Mucosal remodeling in long-standing ulcerative colitis with colorectal neoplasia: Significant alterations of NCAM+ or α-SMA+ subepithelial myofibroblasts and interstitial cells. Pathol Int 2009; 59:701-11. [DOI: 10.1111/j.1440-1827.2009.02432.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|