1
|
Virgili AC, Salazar J, Gallardo A, López-Pousa A, Terés R, Bagué S, Orellana R, Fumagalli C, Mangues R, Alba-Castellón L, Unzueta U, Casanova I, Sebio A. CXCR4 Expression as a Prognostic Biomarker in Soft Tissue Sarcomas. Diagnostics (Basel) 2024; 14:1195. [PMID: 38893721 PMCID: PMC11172351 DOI: 10.3390/diagnostics14111195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Poor long-term survival in localized high-risk soft tissue sarcomas (STSs) of the extremities and trunk highlights the need to identify new prognostic factors. CXCR4 is a chemokine receptor involved in tumor progression, angiogenesis, and metastasis. The aim of this study was to evaluate the association between CXCR4 expression in tumor tissue and survival in STSs patients treated with neoadjuvant therapy. CXCR4 expression was retrospectively determined by immunohistochemical analysis in serial specimens including initial biopsies, tumors post-neoadjuvant treatment, and tumors after relapse. We found that a positive cytoplasmatic expression of CXCR4 in tumors after neoadjuvant treatment was a predictor of poor recurrence-free survival (RFS) (p = 0.003) and overall survival (p = 0.019) in synovial sarcomas. We also found that positive nuclear CXCR4 expression in the initial biopsies was associated with poor RFS (p = 0.022) in undifferentiated pleomorphic sarcomas. In conclusion, our study adds to the evidence that CXCR4 expression in tumor tissue is a promising prognostic factor for STSs.
Collapse
Affiliation(s)
- Anna C. Virgili
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.C.V.); (A.L.-P.); (R.T.)
- Department of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Translational Medical Oncology Laboratory, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain
| | - Juliana Salazar
- Translational Medical Oncology Laboratory, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain
| | - Alberto Gallardo
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.G.); (S.B.); (R.O.); (C.F.)
| | - Antonio López-Pousa
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.C.V.); (A.L.-P.); (R.T.)
- Translational Medical Oncology Laboratory, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain
| | - Raúl Terés
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.C.V.); (A.L.-P.); (R.T.)
- Translational Medical Oncology Laboratory, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain
| | - Silvia Bagué
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.G.); (S.B.); (R.O.); (C.F.)
| | - Ruth Orellana
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.G.); (S.B.); (R.O.); (C.F.)
| | - Caterina Fumagalli
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.G.); (S.B.); (R.O.); (C.F.)
| | - Ramon Mangues
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (R.M.); (L.A.-C.); (U.U.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Lorena Alba-Castellón
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (R.M.); (L.A.-C.); (U.U.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Ugutz Unzueta
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (R.M.); (L.A.-C.); (U.U.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Isolda Casanova
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (R.M.); (L.A.-C.); (U.U.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Ana Sebio
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.C.V.); (A.L.-P.); (R.T.)
- Translational Medical Oncology Laboratory, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain
| |
Collapse
|
2
|
Chauhan S, Sen S, Irshad K, Kashyap S, Pushker N, Meel R, Sharma MC. Receptor tyrosine kinase gene expression profiling of orbital rhabdomyosarcoma unveils MET as a potential biomarker and therapeutic target. Hum Cell 2024; 37:297-309. [PMID: 37914903 DOI: 10.1007/s13577-023-00993-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
Receptor tyrosine kinases (RTKs) serve as molecular targets for the development of novel personalized therapies in many malignancies. In the present study, expression pattern of receptor tyrosine kinases and its clinical significance in orbital RMS has been explored. Eighteen patients with histopathologically confirmed orbital RMS formed part of this study. Comprehensive q-PCR gene expression profiles of 19 RTKs were generated in the cases and controls. The patients were followed up for 59.53 ± 20.93 years. Clustering and statistical analysis tools were applied to identify the significant combination of RTKs associated with orbital rhabdomyosarcoma patients. mRNA overexpression of RTKs which included MET, AXL, EGFR was seen in 60-80% of cases; EGFR3, IGFR2, FGFR1, RET, PDGFR1, VEGFR2, PDGFR2 in 30-60% of cases; and EGFR4, FGFR3,VEGFR3 and ROS,IGFR1, EGFR1, FGFR2, VEGFR1 in 10-30% of cases. Immunoexpression of MET was seen in 89% of cases. A significant association was seen between MET mRNA and its protein expression. In all the cases MET gene expression was associated with worst overall survival (P = 0.03).There was a significant correlation of MET mRNA expression with RET, ROS, AXL, FGFR1, FGFR3, PDGFR1, IGFR1, VEGFR2, and EGFR3 genes. Association between MET gene and collective expression of RTKs was further evaluated by semi-supervised gene cluster analysis and Principal component analysis, which showed well-separated tumor clusters. MET gene overexpression could be a useful biomarker for identifying high risk orbital rhabdomyosarcoma patients. Well-separated tumor clusters confirmed the association between MET gene and collective expression of RTK genes. Therefore, the therapeutic potential of multi-kinase inhibitors targeting MET and the 9 other significant RTKs needs to be explored.
Collapse
Affiliation(s)
- Sheetal Chauhan
- Ocular Pathology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, Room No. 725, New Delhi, 110029, India
| | - Seema Sen
- Ocular Pathology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, Room No. 725, New Delhi, 110029, India.
| | - Khushboo Irshad
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Seema Kashyap
- Ocular Pathology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, Room No. 725, New Delhi, 110029, India
| | - Neelam Pushker
- Ophthalmoplasty Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rachna Meel
- Ophthalmoplasty Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
3
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
4
|
FGFR3 Nuclear Translocation Contributes to Proliferative Potential and Poor Prognosis in Pancreatic Ductal Adenocarcinoma. Pancreas 2022; 51:476-482. [PMID: 35858182 DOI: 10.1097/mpa.0000000000002056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Fibroblast growth factor receptor 3 (FGFR3) was revealed to have divergent, even opposite roles in different neoplasms. In pancreatic ductal adenocarcinoma (PDAC), its impact on biological behavior and prognosis was not well elucidated. METHODS Fibroblast growth factor receptor 3 was downregulated by RNA interference to explore its impact on cell proliferative proclivity in PDAC cells. Furthermore, tissue microarray-based immunohistochemistry for FGFR3 was performed in 326 patients with PDAC who underwent radical resection, and its clinicopathologic and prognostic implications were then evaluated. RESULTS First, successful FGFR3 knockdown remarkably decreased its expression, cell proliferation, and S-phase ratio in the cell cycle in 2 PDAC cell lines, BxPC-3 and AsPC-1. Meanwhile, alterations in p-Akt, cyclin D1, cyclin B1, and p21 were also observed. Subsequently, high nuclear FGFR3 expression, but not cytoplasmic, was significantly common in tumor tissues and positively associated with N stage and dismal overall survival in the entire cohort. In addition, nuclear FGFR3 expression was also prognostic in 10 of 14 subsets. Univariate and multivariate Cox regression analyses identified nuclear expression of FGFR3 as an independent prognosticator in the entire cohort. CONCLUSIONS Our data showed that FGFR3 nuclear translocation contributes to cell proliferative potential and predicts poor long-term prognosis in PDAC after surgical resection.
Collapse
|
5
|
Napolitano A, Ostler AE, Jones RL, Huang PH. Fibroblast Growth Factor Receptor (FGFR) Signaling in GIST and Soft Tissue Sarcomas. Cells 2021; 10:cells10061533. [PMID: 34204560 PMCID: PMC8235236 DOI: 10.3390/cells10061533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/15/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Sarcomas are a heterogeneous group of rare malignancies originating from mesenchymal tissues with limited therapeutic options. Recently, alterations in components of the fibroblast growth factor receptor (FGFR) signaling pathway have been identified in a range of different sarcoma subtypes, most notably gastrointestinal stromal tumors, rhabdomyosarcomas, and liposarcomas. These alterations include genetic events such as translocations, mutations, and amplifications as well as transcriptional overexpression. Targeting FGFR has therefore been proposed as a novel potential therapeutic approach, also in light of the clinical activity shown by multi-target tyrosine kinase inhibitors in specific subtypes of sarcomas. Despite promising preclinical evidence, thus far, clinical trials have enrolled very few sarcoma patients and the efficacy of selective FGFR inhibitors appears relatively low. Here, we review the known alterations of the FGFR pathway in sarcoma patients as well as the preclinical and clinical evidence for the use of FGFR inhibitors in these diseases. Finally, we discuss the possible reasons behind the current clinical data and highlight the need for biomarker stratification to select patients more likely to benefit from FGFR targeted therapies.
Collapse
Affiliation(s)
- Andrea Napolitano
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (A.N.); (A.E.O.); (R.L.J.)
- Department of Medical Oncology, University Campus Bio-Medico, 00128 Rome, Italy
| | - Alexandra E. Ostler
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (A.N.); (A.E.O.); (R.L.J.)
| | - Robin L. Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (A.N.); (A.E.O.); (R.L.J.)
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Paul H. Huang
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Correspondence: ; Tel.: +44-207-153-5554
| |
Collapse
|
6
|
Bureta C, Setoguchi T, Saitoh Y, Tominaga H, Maeda S, Nagano S, Komiya S, Yamamoto T, Taniguchi N. TGF-β Promotes the Proliferation of Microglia In Vitro. Brain Sci 2019; 10:brainsci10010020. [PMID: 31905898 PMCID: PMC7016844 DOI: 10.3390/brainsci10010020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2019] [Revised: 12/21/2019] [Accepted: 12/27/2019] [Indexed: 12/17/2022] Open
Abstract
The activation and proliferation of microglia is characteristic of the early stages of brain pathologies. In this study, we aimed to identify a factor that promotes microglial activation and proliferation and examined the in vitro effects on these processes. We cultured microglial cell lines, EOC 2 and SIM-A9, with various growth factors and evaluated cell proliferation, death, and viability. The results showed that only transforming growth factor beta (TGF-β) caused an increase in the in vitro proliferation of both microglial cell lines. It has been reported that colony-stimulating factor 1 promotes the proliferation of microglia, while TGF-β promotes both proliferation and inhibition of cell death of microglia. However, upon comparing the most effective doses of both (assessed from the proliferation assay), we identified no statistically significant difference between the two factors in terms of cell death; thus, both have a proliferative effect on microglial cells. In addition, a TGF-β receptor 1 inhibitor, galunisertib, caused marked inhibition of proliferation in a dose-dependent manner, indicating that inhibition of TGF-β signalling reduces the proliferation of microglia. Therefore, galunisertib may represent a promising therapeutic agent for the treatment of neurodegenerative diseases via inhibition of nerve injury-induced microglial proliferation, which may result in reduced inflammatory and neuropathic and cancer pain.
Collapse
Affiliation(s)
- Costansia Bureta
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - Takao Setoguchi
- Department of Orthopaedic Surgery, Japanese Red Cross Kagoshima Hospital, Kagoshima 891-0133, Japan
- Correspondence: ; Tel.: +81-992-612-111; Fax: +81-992-610-491
| | - Yoshinobu Saitoh
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - Hiroyuki Tominaga
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - Shingo Maeda
- Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Satoshi Nagano
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - Setsuro Komiya
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - Takuya Yamamoto
- Department of Orthopaedic Surgery, Japanese Red Cross Kagoshima Hospital, Kagoshima 891-0133, Japan
| | - Noboru Taniguchi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| |
Collapse
|
7
|
Komiya S, Nagano S, Setoguchi T. Current therapeutic modalities and newly designed gene therapy for refractory sarcomas. J Orthop Sci 2019; 24:764-769. [PMID: 31196729 DOI: 10.1016/j.jos.2018.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/09/2018] [Revised: 09/12/2018] [Accepted: 10/11/2018] [Indexed: 10/26/2022]
Affiliation(s)
- Setsuro Komiya
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan; Shinkado Orthopaedic Clinic, 1-8-16 Chugo, Satsuma-Sendai, 895-0072, Japan.
| | - Satoshi Nagano
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - Takao Setoguchi
- The Near-Future Locomotor Organ Medicine Creation Course (Kusunoki Kai), Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| |
Collapse
|
8
|
Hayes MN, McCarthy K, Jin A, Oliveira ML, Iyer S, Garcia SP, Sindiri S, Gryder B, Motala Z, Nielsen GP, Borg JP, van de Rijn M, Malkin D, Khan J, Ignatius MS, Langenau DM. Vangl2/RhoA Signaling Pathway Regulates Stem Cell Self-Renewal Programs and Growth in Rhabdomyosarcoma. Cell Stem Cell 2019; 22:414-427.e6. [PMID: 29499154 DOI: 10.1016/j.stem.2018.02.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2017] [Revised: 12/14/2017] [Accepted: 02/06/2018] [Indexed: 01/09/2023]
Abstract
Tumor growth and relapse are driven by tumor propagating cells (TPCs). However, mechanisms regulating TPC fate choices, maintenance, and self-renewal are not fully understood. Here, we show that Van Gogh-like 2 (Vangl2), a core regulator of the non-canonical Wnt/planar cell polarity (Wnt/PCP) pathway, affects TPC self-renewal in rhabdomyosarcoma (RMS)-a pediatric cancer of muscle. VANGL2 is expressed in a majority of human RMS and within early mononuclear progenitor cells. VANGL2 depletion inhibited cell proliferation, reduced TPC numbers, and induced differentiation of human RMS in vitro and in mouse xenografts. Using a zebrafish model of embryonal rhabdomyosarcoma (ERMS), we determined that Vangl2 expression enriches for TPCs and promotes their self-renewal. Expression of constitutively active and dominant-negative isoforms of RHOA revealed that it acts downstream of VANGL2 to regulate proliferation and maintenance of TPCs in human RMS. Our studies offer insights into pathways that control TPCs and identify new potential therapeutic targets.
Collapse
Affiliation(s)
- Madeline N Hayes
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Karin McCarthy
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Alexander Jin
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Mariana L Oliveira
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Sowmya Iyer
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Sara P Garcia
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Sivasish Sindiri
- Oncogenomics Section, Center for Cancer Research, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Berkley Gryder
- Oncogenomics Section, Center for Cancer Research, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Zainab Motala
- Division of Hematology/Oncology, Hospital for Sick Children and Department of Pediatrics, University of Toronto, Toronto, ON M5G1X8, Canada
| | - G Petur Nielsen
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Univ UM105, Inst Paoli Calmettes, UMR7258 CNRS, U1068 INSERM, "Cell Polarity, Cell signalling and Cancer - Equipe labellisée Ligue Contre le Cancer," Marseille, France
| | - Matt van de Rijn
- Department of Pathology, Stanford University Medical Center, Stanford, CA 94305, USA
| | - David Malkin
- Division of Hematology/Oncology, Hospital for Sick Children and Department of Pediatrics, University of Toronto, Toronto, ON M5G1X8, Canada
| | - Javed Khan
- Oncogenomics Section, Center for Cancer Research, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Myron S Ignatius
- Molecular Medicine and Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX 78229, USA
| | - David M Langenau
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Genadry KC, Pietrobono S, Rota R, Linardic CM. Soft Tissue Sarcoma Cancer Stem Cells: An Overview. Front Oncol 2018; 8:475. [PMID: 30416982 PMCID: PMC6212576 DOI: 10.3389/fonc.2018.00475] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022] Open
Abstract
Soft tissue sarcomas (STSs) are an uncommon group of solid tumors that can arise throughout the human lifespan. Despite their commonality as non-bony cancers that develop from mesenchymal cell precursors, they are heterogeneous in their genetic profiles, histology, and clinical features. This has made it difficult to identify a single target or therapy specific to STSs. And while there is no one cell of origin ascribed to all STSs, the cancer stem cell (CSC) principle—that a subpopulation of tumor cells possesses stem cell-like properties underlying tumor initiation, therapeutic resistance, disease recurrence, and metastasis—predicts that ultimately it should be possible to identify a feature common to all STSs that could function as a therapeutic Achilles' heel. Here we review the published evidence for CSCs in each of the most common STSs, then focus on the methods used to study CSCs, the developmental signaling pathways usurped by CSCs, and the epigenetic alterations critical for CSC identity that may be useful for further study of STS biology. We conclude with discussion of some challenges to the field and future directions.
Collapse
Affiliation(s)
- Katia C Genadry
- Division of Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Silvia Pietrobono
- Department of Hematology-Oncology, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Hematology-Oncology, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Corinne M Linardic
- Division of Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States.,Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
10
|
Cancer stem cells in sarcomas: Getting to the stemness core. Biochim Biophys Acta Gen Subj 2018; 1862:2134-2139. [DOI: 10.1016/j.bbagen.2018.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/16/2022]
|
11
|
Abstract
Sarcomas arise from primitive mesenchymal cells, which are classified, into two main groups: Bone and soft tissue sarcomas. We have searched all-important electronic databases including Google scholar and PubMed for the collection of latest literature pertaining to pediatric sarcomas. Latest literature confirmed that these tumors are relatively rare and represent only 1% of all malignancies but they have higher incidence in children. Pediatric sarcomas comprise about 13% of all pediatric malignancies and are ranked third in childhood cancers. The highest incidence rates are reported among rhabdomyosarcoma, osteosarcoma and Ewing's sarcomas in children. All of these neoplasms often display highly aggressive behavior with tendency to form metastases. Important globally used management avenues include surgery with systemic chemotherapy and have success rate of 70% at 5-years. Furthermore, in the cases of advanced stages, the prognosis is poor, chances of treatment failure and recurrence are quite high. Utilization of cancer stem cells is the latest approach with great potential in management of above pathological state. The present review article discuss all-important aspects of commonly found pediatric sarcomas throughout the world.
Collapse
Affiliation(s)
- Junhua Cao
- Department of Pediatric Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Qi An
- Department of Pediatric Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Lei Wang
- Department of Pediatric Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
12
|
Kishimoto TE, Yashima S, Nakahira R, Onozawa E, Azakami D, Ujike M, Ochiai K, Ishiwata T, Takahashi K, Michishita M. Identification of tumor-initiating cells derived from two canine rhabdomyosarcoma cell lines. J Vet Med Sci 2017; 79:1155-1162. [PMID: 28529244 PMCID: PMC5559357 DOI: 10.1292/jvms.16-0412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022] Open
Abstract
Cancer stem cells or tumor-initiating cells (TICs) are a small subpopulation of cells that have the capacity to self-renew, differentiate and initiate tumors. These cells may function in tumor initiation, aggression and recurrence. Whether spheres derived from canine rhabdomyosarcoma cells have stem cell-like properties is unclear. We induced sphere formation in the canine rhabdomyosarcoma cell lines, CMS-C and CMS-J, and characterized the spheres in vitro and in vivo. Sphere-forming cells were more resistant to vincristine, mitoxantrone and doxorubicin than adherent cells. Xenograft transplantation demonstrated that 1 × 103 sphere-forming cells derived from CMS-C were sufficient for tumor formation. The sphere assay showed that the sphere-forming cells were present in these tumors. These results suggest that the spheres derived from canine rhabdomyosarcoma cells may possess characteristics of TICs. This study provides the foundation for elucidating the contribution of TICs to rhabdomyosarcoma tumorigenesis.
Collapse
Affiliation(s)
- Takuya Evan Kishimoto
- Department of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Shoko Yashima
- Department of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Rei Nakahira
- Department of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Eri Onozawa
- Department of Veterinary Nursing, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Daigo Azakami
- Department of Veterinary Nursing, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Makoto Ujike
- Department of Veterinary Infectious Diseases, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Kazuhiko Ochiai
- Department of Veterinary Nursing, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Kimimasa Takahashi
- Department of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Masaki Michishita
- Department of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| |
Collapse
|
13
|
Hedgehog Pathway Inhibition Hampers Sphere and Holoclone Formation in Rhabdomyosarcoma. Stem Cells Int 2017; 2017:7507380. [PMID: 28243259 PMCID: PMC5294584 DOI: 10.1155/2017/7507380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2016] [Revised: 12/02/2016] [Accepted: 12/28/2016] [Indexed: 01/06/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children and can be divided into two main subtypes: embryonal (eRMS) and alveolar (aRMS). Among the cellular heterogeneity of tumors, the existence of a small fraction of cells called cancer stem cells (CSC), thought to be responsible for the onset and propagation of cancer, has been demonstrated in some neoplasia. Although the existence of CSC has been reported for eRMS, their existence in aRMS, the most malignant subtype, has not been demonstrated to date. Given the lack of suitable markers to identify this subpopulation in aRMS, we used cancer stem cell-enriched supracellular structures (spheres and holoclones) to study this subpopulation. This strategy allowed us to demonstrate the capacity of both aRMS and eRMS cells to form these structures and retain self-renewal capacity. Furthermore, cells contained in spheres and holoclones showed significant Hedgehog pathway induction, the inhibition of which (pharmacologic or genetic) impairs the formation of both holoclones and spheres. Our findings point to a crucial role of this pathway in the maintenance of these structures and suggest that Hedgehog pathway targeting in CSC may have great potential in preventing local relapses and metastases.
Collapse
|
14
|
Kimura T, Wang L, Tabu K, Tsuda M, Tanino M, Maekawa A, Nishihara H, Hiraga H, Taga T, Oda Y, Tanaka S. Identification and analysis of CXCR4-positive synovial sarcoma-initiating cells. Oncogene 2015; 35:3932-43. [DOI: 10.1038/onc.2015.461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2015] [Revised: 10/21/2015] [Accepted: 10/30/2015] [Indexed: 12/13/2022]
|
15
|
Zhou L, Yao LT, Liang ZY, Zhou WX, You L, Shao QQ, Huang S, Guo JC, Zhao YP. Nuclear translocation of fibroblast growth factor receptor 3 and its significance in pancreatic cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:14640-14648. [PMID: 26823787 PMCID: PMC4713573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Academic Contribution Register] [Received: 09/01/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Nuclear translocation of fibroblast growth factor receptor 3 (FGFR3) was previously observed in some kinds of cancer. However, whether the phenomenon occurs in pancreatic cancer (PC), a malignancy with very dismal prognosis, remains unknown. In the present study, FGFR3 expression was firstly detected by Western blot and immunohistochemical staining in specimens of PC. Then, its correlations with clinicopathologic features and patient survival were evaluated. It was shown that FGFR3 was highly expressed in all the nuclear extracts, but in only one out of four whole tissue lysates, of tumor tissues, in contrast to those of non-tumor ones. Using immunohistochemistry, nuclear expression of FGFR3 was found to mainly locate in tumor cells, and was significantly associated with N stage. Furthermore, high FGFR3 nuclear expression was revealed to be associated with poor overall and disease-free survival in univariate analysis. For overall survival in the whole cohort and disease-free survival in patients with curative resection, high nuclear expression of FGFR3 was significant or marginally significant in multivariate analysis. However, its cytoplasmic expression was not related to clinical, pathologic variables and prognosis. These data suggest that nuclear translocation of FGFR3 is frequent and carries clinicopathologic as well as prognostic significances in PC.
Collapse
Affiliation(s)
- Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing 100730, China
| | - Lu-Tian Yao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing 100730, China
| | - Zhi-Yong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing 100730, China
| | - Wei-Xun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing 100730, China
| | - Qian-Qian Shao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing 100730, China
| | - Shuai Huang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing 100730, China
| | - Jun-Chao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing 100730, China
| | - Yu-Pei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing 100730, China
| |
Collapse
|
16
|
Satheesha S, Manzella G, Bovay A, Casanova EA, Bode PK, Belle R, Feuchtgruber S, Jaaks P, Dogan N, Koscielniak E, Schäfer BW. Targeting hedgehog signaling reduces self-renewal in embryonal rhabdomyosarcoma. Oncogene 2015; 35:2020-30. [PMID: 26189795 PMCID: PMC5399168 DOI: 10.1038/onc.2015.267] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2014] [Revised: 04/14/2014] [Accepted: 06/19/2015] [Indexed: 12/11/2022]
Abstract
Current treatment regimens for rhabdomyosarcoma (RMS), the most common pediatric soft tissue cancer, rely on conventional chemotherapy, and although they show clinical benefit, there is a significant risk of adverse side effects and secondary tumors later in life. Therefore, identifying and targeting sub-populations with higher tumorigenic potential and self-renewing capacity would offer improved patient management strategies. Hedgehog signaling has been linked to the development of embryonal RMS (ERMS) through mouse genetics and rare human syndromes. However, activating mutations in this pathway in sporadic RMS are rare and therefore the contribution of hedgehog signaling to oncogenesis remains unclear. Here, we show by genetic loss- and gain-of-function experiments and the use of clinically relevant small molecule modulators that hedgehog signaling is important for controlling self-renewal of a subpopulation of RMS cells in vitro and tumor initiation in vivo. In addition, hedgehog activity altered chemoresistance, motility and differentiation status. The core stem cell gene NANOG was determined to be important for ERMS self-renewal, possibly acting downstream of hedgehog signaling. Crucially, evaluating the presence of a subpopulation of tumor-propagating cells in patient biopsies identified by GLI1 and NANOG expression had prognostic significance. Hence, this work identifies novel functional aspects of hedgehog signaling in ERMS, redefines the rationale for its targeting as means to control ERMS self-renewal and underscores the importance of studying functional tumor heterogeneity in pediatric cancers.
Collapse
Affiliation(s)
- S Satheesha
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - G Manzella
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - A Bovay
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - E A Casanova
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - P K Bode
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland.,Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - R Belle
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - S Feuchtgruber
- Department of Oncology/Hematology/Immunology, Olgahospital, Klinikum Stuttgart, Stuttgart, Germany
| | - P Jaaks
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - N Dogan
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - E Koscielniak
- Department of Oncology/Hematology/Immunology, Olgahospital, Klinikum Stuttgart, Stuttgart, Germany
| | - B W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
17
|
Nagao-Kitamoto H, Nagata M, Nagano S, Kitamoto S, Ishidou Y, Yamamoto T, Nakamura S, Tsuru A, Abematsu M, Fujimoto Y, Yokouchi M, Kitajima S, Yoshioka T, Maeda S, Yonezawa S, Komiya S, Setoguchi T. GLI2 is a novel therapeutic target for metastasis of osteosarcoma. Int J Cancer 2014; 136:1276-84. [PMID: 25082385 DOI: 10.1002/ijc.29107] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2013] [Accepted: 06/27/2014] [Indexed: 11/05/2022]
Abstract
Aberrant activation of the Hedgehog (Hh) pathway has been reported in several malignancies. We previously demonstrated that knockdown of GLI2 inhibited proliferation of osteosarcoma cells through regulation of the cell cycle. In this study, we analyzed the function of GLI2 in the pathogenesis of osteosarcoma metastasis. Immunohistochemical studies showed that GLI2 was overexpressed in patient osteosarcoma specimens. Knockdown of GLI2 inhibited migration and invasion of osteosarcoma cells. In contrast, the forced expression of constitutively active GLI2 in mesenchymal stem cells promoted invasion. In addition, xenograft models showed that knockdown of GLI2 decreased lung metastasis of osteosarcomas. To examine clinical applications, we evaluated the efficacy of arsenic trioxide (ATO), which is a Food and Drug Administration-approved antitumor drug, on osteosarcoma cells. ATO treatment suppressed the invasiveness of osteosarcoma cells by inhibiting the transcriptional activity of GLI2. In addition, the combination of Hh inhibitors including ATO, vismodegib and GANT61 prevented migration and metastasis of osteosarcoma cells. Consequently, our findings suggested that GLI2 regulated metastasis as well as the progression of osteosarcomas. Inhibition of the GLI2 transcription may be an effective therapeutic method for preventing osteosarcoma metastasis.
Collapse
Affiliation(s)
- Hiroko Nagao-Kitamoto
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tanoue K, Wang Y, Ikeda M, Mitsui K, Irie R, Setoguchi T, Komiya S, Natsugoe S, Kosai KI. Survivin-responsive conditionally replicating adenovirus kills rhabdomyosarcoma stem cells more efficiently than their progeny. J Transl Med 2014; 12:27. [PMID: 24467821 PMCID: PMC3925355 DOI: 10.1186/1479-5876-12-27] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2013] [Accepted: 01/22/2014] [Indexed: 12/13/2022] Open
Abstract
Background Effective methods for eradicating cancer stem cells (CSCs), which are highly tumorigenic and resistant to conventional therapies, are urgently needed. Our previous studies demonstrated that survivin-responsive conditionally replicating adenoviruses regulated with multiple factors (Surv.m-CRAs), which selectively replicate in and kill a broad range of cancer-cell types, are promising anticancer agents. Here we examined the therapeutic potentials of a Surv.m-CRA against rhabdomyosarcoma stem cells (RSCs), in order to assess its clinical effectiveness and usefulness. Methods Our previous study demonstrated that fibroblast growth factor receptor 3 (FGFR3) is a marker of RSCs. We examined survivin mRNA levels, survivin promoter activities, relative cytotoxicities of Surv.m-CRA in RSC-enriched (serum-minus) vs. RSC-exiguous (serum-plus) and FGFR3-positive vs. FGFR3-negative sorted rhabdomyosarcoma cells, and the in vivo therapeutic effects of Surv.m-CRAs on subcutaneous tumors in mice. Results Both survivin mRNA levels and survivin promoter activities were significantly elevated under RSC-enriched relative to RSC-exiguous culture conditions, and the elevation was more prominent in FGFR3-positive vs. FGFR3-negative sorted cells than in RSC-enriched vs. RSC-exiguous conditions. Although Surv.m-CRA efficiently replicated and potently induced cell death in all populations of rhabdomyosarcoma cells, the cytotoxic effects were more pronounced in RSC-enriched or RSC-purified cells than in RSC-exiguous or progeny-purified cells. Injections of Surv.m-CRAs into tumor nodules generated by transplanting RSC-enriched cells induced significant death of rhabdomyosarcoma cells and regression of tumor nodules. Conclusions The unique therapeutic features of Surv.m-CRA, i.e., not only its therapeutic effectiveness against all cell populations but also its increased effectiveness against CSCs, suggest that Surv.m-CRA is promising anticancer agent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ken-Ichiro Kosai
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
19
|
Lafitte M, Moranvillier I, Garcia S, Peuchant E, Iovanna J, Rousseau B, Dubus P, Guyonnet-Dupérat V, Belleannée G, Ramos J, Bedel A, de Verneuil H, Moreau-Gaudry F, Dabernat S. FGFR3 has tumor suppressor properties in cells with epithelial phenotype. Mol Cancer 2013; 12:83. [PMID: 23902722 PMCID: PMC3750311 DOI: 10.1186/1476-4598-12-83] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/12/2013] [Accepted: 07/19/2013] [Indexed: 02/07/2023] Open
Abstract
Background Due to frequent mutations in certain cancers, FGFR3 gene is considered as an oncogene. However, in some normal tissues, FGFR3 can limit cell growth and promote cell differentiation. Thus, FGFR3 action appears paradoxical. Results FGFR3 expression was forced in pancreatic cell lines. The receptor exerted dual effects: it suppressed tumor growth in pancreatic epithelial-like cells and had oncogenic properties in pancreatic mesenchymal-like cells. Distinct exclusive pathways were activated, STATs in epithelial-like cells and MAP Kinases in mesenchymal-like cells. Both FGFR3 splice variants had similar effects and used the same intracellular signaling. In human pancreatic carcinoma tissues, levels of FGFR3 dropped in tumors. Conclusion In tumors from epithelial origin, FGFR3 signal can limit tumor growth, explaining why the 4p16.3 locus bearing FGFR3 is frequently lost and why activating mutations of FGFR3 in benign or low grade tumors of epithelial origin are associated with good prognosis. The new hypothesis that FGFR3 can harbor both tumor suppressive and oncogenic properties is crucial in the context of targeted therapies involving specific tyrosine kinase inhibitors (TKIs). TKIs against FGFR3 might result in adverse effects if used in the wrong cell context.
Collapse
Affiliation(s)
- Marie Lafitte
- INSERM U1035, Université Bordeaux Segalen, 146 rue Léo Saignat, Bordeaux 33076, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sokolowski E, Turina CB, Kikuchi K, Langenau DM, Keller C. Proof-of-concept rare cancers in drug development: the case for rhabdomyosarcoma. Oncogene 2013; 33:1877-89. [PMID: 23665679 DOI: 10.1038/onc.2013.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2013] [Revised: 02/22/2013] [Accepted: 02/27/2013] [Indexed: 12/14/2022]
Abstract
Rare diseases typically affect fewer than 200,000 patients annually, yet because thousands of rare diseases exist, the cumulative impact is millions of patients worldwide. Every form of childhood cancer qualifies as a rare disease-including the childhood muscle cancer, rhabdomyosarcoma (RMS). The next few years promise to be an exceptionally good era of opportunity for public-private collaboration for rare and childhood cancers. Not only do certain governmental regulation advantages exist, but these advantages are being made permanent with special incentives for pediatric orphan drug-product development. Coupled with a growing understanding of sarcoma tumor biology, synergy with pharmaceutical muscle disease drug-development programs, and emerging publically available preclinical and clinical tools, the outlook for academic-community-industry partnerships in RMS drug development looks promising.
Collapse
Affiliation(s)
- E Sokolowski
- Department of Student Affairs, Oregon State University, Corvallis, OR, USA
| | - C B Turina
- 1] Department of Student Affairs, Oregon State University, Corvallis, OR, USA [2] Pediatric Cancer Biology Program, Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| | - K Kikuchi
- Pediatric Cancer Biology Program, Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| | - D M Langenau
- 1] Division of Molecular Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA, USA [2] Harvard Medical School and Harvard Stem Cell Institute, Boston, MA, USA
| | - C Keller
- Pediatric Cancer Biology Program, Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
21
|
Naumov VA, Generozov EV, Solovyov YN, Aliev MD, Kushlinsky NE. Association of FGFR3 and MDM2 gene nucleotide polymorphisms with bone tumors. Bull Exp Biol Med 2013; 153:869-73. [PMID: 23113306 DOI: 10.1007/s10517-012-1847-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
Abstract
Association study of 6 candidate single-nucleotide polymorphisms (rs7921, rs7956547, rs3761243, rs11737764, rs6599400, rs1690916) was carried out in a group of patients with bone tumors of different histological structure (n=68) and control group of normal subjects (n=96). Significant associations of rs6599400 and rs1690916 polymorphisms with disease risk were detected (odds ratio 2.15 [1.06-4.24] and 0.39 [0.19-0.78], respectively). These polymorphisms were located in untranslated genome regions: polymorphism rs6599400 in the 5' region of fibroblast growth factor-3 receptor gene (FGFR3), rs1690916 in the 3' region of mouse MDM2 p53-binding protein homolog (MDM2). These data indicated a possible role of hereditary genetic factors in the formation of predisposition to bone sarcomas and confirmed previous findings according to which these genes should be regarded among the most probable factors involved in tumor development, including tumors of the bone and cartilage tissues.
Collapse
Affiliation(s)
- V A Naumov
- Institute of Physicochemical Medicine, Federal Biomedical Agency of Russia, Moscow, Russia
| | | | | | | | | |
Collapse
|
22
|
Pressey JG, Haas MC, Pressey CS, Kelly VM, Parker JN, Gillespie GY, Friedman GK. CD133 marks a myogenically primitive subpopulation in rhabdomyosarcoma cell lines that are relatively chemoresistant but sensitive to mutant HSV. Pediatr Blood Cancer 2013; 60:45-52. [PMID: 22408058 PMCID: PMC3374896 DOI: 10.1002/pbc.24117] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/19/2012] [Accepted: 02/02/2012] [Indexed: 11/11/2022]
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is characterized by features of skeletal muscle and is comprised of two major histological subtypes, embryonal (E-RMS), and alveolar (A-RMS). Subsets of each RMS subtype demonstrate resistance to multimodal therapy leading to treatment failure. Cancer stem cells or cancer-initiating cells (CIC) represent a theorized population of cells that give rise to tumors and are responsible for treatment resistance. PROCEDURE We investigated the ability of CD133, a putative CIC marker, to distinguish a chemoresistant, myogenically primitive population in alveolar (RH30), and embryonal (RD) RMS cell lines. We tested CD133+/- cells for sensitivity to engineered herpes simplex virus (oHSV). RESULTS Relative to CD133- cells, CD133+ A-RMS, and E-RMS cells demonstrate an enhanced colony-forming ability, are less differentiated myogenically, and are more resistant to cytotoxic chemotherapy but equally sensitive to oHSV oncolysis. Compared to CD133- RD cells, CD133+ cells express relatively high levels of genes typically expressed in skeletal muscle progenitor satellite cells including PAX7, c-MET, and the GLI effectors of the hedgehog signaling pathway. In contrast, CD133+ RH30 cells were not associated with enhanced expression of satellite cell markers or Hh targets. CONCLUSIONS Our findings demonstrate that CD133+ cells from A-RMS and E-RMS cell lines are characterized by a myogenically primitive phenotype. These cells have the capacity to form colonies in vitro and are more resistant to chemotherapy than CD133- cells. CD133 expression may denote a subset of RMS cells with an important role in tumorigenesis and treatment failure. These resistant cells may be effectively targeted by oHSV therapy.
Collapse
Affiliation(s)
- Joseph G. Pressey
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Marilyn C. Haas
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Christine S. Pressey
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Virginia M. Kelly
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Jacqueline N. Parker
- Division of Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | | | - Gregory K. Friedman
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
23
|
Simon-Keller K, Barth S, Vincent A, Marx A. Targeting the fetal acetylcholine receptor in rhabdomyosarcoma. Expert Opin Ther Targets 2012; 17:127-38. [PMID: 23231343 DOI: 10.1517/14728222.2013.734500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Recent efforts to enhance overall survival of patients with clinically advanced RMS have failed and there is a demand for conceptually novel treatments. Immune therapeutic options targeting the fetal nicotinic acetylcholine receptor (fnAChR), which is broadly expressed on RMS, are novel approaches to overcome the therapeutic resistance of RMS. Expression of the fnAChR is restricted to developing fetal muscles, some apparently dispensable ocular muscle fibers and thymic myoid cells. Therefore, after-birth fnAChR is a tumor-associated and almost tumor-specific antigen on RMS cells. AREAS COVERED This review gives an overview on nAChR function and expression pattern in RMS tumor cells, and deals with the immunological significance of fnAChR-expressing cells, including the risk of anti-nAChR autoimmunity as a potential side effect of fnAChR-directed immunotherapies. The article also addresses the advantages and disadvantages of vaccination strategies, immunotoxins and chimeric T cells targeting the fnAChR. EXPERT OPINION Finally, we suggest technical and biological strategies to improve the available immunotherapeutic tools including increasing the in vivo expression of the target fnAChR on RMS cells.
Collapse
Affiliation(s)
- Katja Simon-Keller
- University Medical Centre Mannheim, University of Heidelberg, Institute of Pathology, Theodor-Kutzer-Ufer 1-3, D-68135 Mannheim, Germany.
| | | | | | | |
Collapse
|
24
|
Kelleher FC, Cain JE, Healy JM, Watkins DN, Thomas DM. Prevailing importance of the hedgehog signaling pathway and the potential for treatment advancement in sarcoma. Pharmacol Ther 2012; 136:153-68. [PMID: 22906929 DOI: 10.1016/j.pharmthera.2012.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 12/19/2022]
Abstract
The hedgehog signaling pathway is important in embryogenesis and post natal development. Constitutive activation of the pathway due to mutation of pathway components occurs in ~25% of medulloblastomas and also in basal cell carcinomas. In many other malignancies the therapeutic role for hedgehog inhibition though intriguing, based on preclinical data, is far from assured. Hedgehog inhibition is not an established part of the treatment paradigm of sarcoma but the scientific rationale for a possible benefit is compelling. In chondrosarcoma there is evidence of hedgehog pathway activation and an ontologic comparison between growth plate chondrocyte differentiation and different chondrosarcoma subtypes. Immunostaining epiphyseal growth plate for Indian hedgehog is particularly positive in the zone of pre-hypertrophic chondrocytes which correlates ontologically with conventional chondrosarcoma. In Ewing sarcoma/PNET tumors the Gli1 transcription factor is a direct target of the EWS-FLI1 oncoprotein present in 85% of cases. In many cases of rhabdomyosarcomas there is increased expression of Gli1 (Ragazzini et al., 2004). Additionally, a third of embryonal rhabdomyosarcomas have loss of Chr.9q22 that encompasses the patched locus (Bridge et al., 2000). The potential to treat osteosarcoma by inhibition of Gli2 and the role of the pathway in ovarian fibromas and other connective tissue tumors is also discussed (Nagao et al., 2011; Hirotsu et al., 2010). Emergence of acquired secondary resistance to targeted therapeutics is an important issue that is also relevant to hedgehog inhibition. In this context secondary resistance of medulloblastomas to treatment with a smoothened antagonist in two tumor mouse models is examined.
Collapse
Affiliation(s)
- Fergal C Kelleher
- Sarcoma Service, Peter MacCallum Cancer Centre, 12 St. Andrew's Place, A'Beckitt Street, Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
25
|
Nagao H, Setoguchi T, Kitamoto S, Ishidou Y, Nagano S, Yokouchi M, Abematsu M, Kawabata N, Maeda S, Yonezawa S, Komiya S. RBPJ is a novel target for rhabdomyosarcoma therapy. PLoS One 2012; 7:e39268. [PMID: 22792167 PMCID: PMC3392254 DOI: 10.1371/journal.pone.0039268] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2012] [Accepted: 05/22/2012] [Indexed: 01/20/2023] Open
Abstract
The Notch pathway regulates a broad spectrum of cell fate decisions and differentiation processes during fetal and postnatal development. In addition, the Notch pathway plays an important role in controlling tumorigenesis. However, the role of RBPJ, a transcription factor in the Notch pathway, in the development of tumors is largely unknown. In this study, we focused on the role of RBPJ in the pathogenesis of rhabdomyosarcoma (RMS). Our data showed that Notch pathway genes were upregulated and activated in human RMS cell lines and patient samples. Inhibition of the Notch pathway by a γ-secretase inhibitor (GSI) decreased the in vitro proliferation of RMS cells. Knockdown of RBPJ expression by RNAi inhibited the anchorage-independent growth of RMS cells and the growth of xenografts in vivo. Additionally, overexpression of RBPJ promoted the anchorage-independent growth of RMS cells. Further, we revealed that RBPJ regulated the cell cycle in RMS xenograft tumors and decreased proliferation. Our findings suggest that RBPJ regulates the RMS growth, and that the inhibition of RBPJ may be an effective therapeutic approach for patients with RMS.
Collapse
Affiliation(s)
- Hiroko Nagao
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- The Near-Future Locomotor Organ Medicine Creation Course (Kusunoki Kai), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takao Setoguchi
- The Near-Future Locomotor Organ Medicine Creation Course (Kusunoki Kai), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- * E-mail:
| | - Sho Kitamoto
- Department of Human Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yasuhiro Ishidou
- Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Satoshi Nagano
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masahiro Yokouchi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masahiko Abematsu
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- The Near-Future Locomotor Organ Medicine Creation Course (Kusunoki Kai), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Naoya Kawabata
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shingo Maeda
- Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Suguru Yonezawa
- Department of Human Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Setsuro Komiya
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
26
|
Hu X, Chen H, Jin M, Wang X, Lee J, Xu W, Zhang R, Li S, Niu J. Molecular cytogenetic characterization of undifferentiated embryonal sarcoma of the liver: a case report and literature review. Mol Cytogenet 2012; 5:26. [PMID: 22551002 PMCID: PMC3478990 DOI: 10.1186/1755-8166-5-26] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2011] [Accepted: 02/26/2012] [Indexed: 12/14/2022] Open
Abstract
Undifferentiated embryonal sarcoma of the liver (UESL) represents a heterogeneous group of tumors derived from mesenchymal tissues. Earlier cytogenetic studies in limited cases demonstrated that UESL is associated with a recurrent translocation t(11;19)(q11;q13.3-q13.4) or add(19)(q13.4). In this report, we present our array comparative genomic hybridization (aCGH), fluorescence in situ hybridization (FISH) findings, and a missense mutation of TP53 gene by DNA sequencing in a 19-year-old patient with UESL. The data were compared to laboratory findings reported by previous studies.
Collapse
Affiliation(s)
- Xiaoxia Hu
- Department of Internal Medicine, The First Hospital of Jilin University, Jilin 130021, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rengaswamy V, Kontny U, Rössler J. New approaches for pediatric rhabdomyosarcoma drug discovery: targeting combinatorial signaling. Expert Opin Drug Discov 2011; 6:1103-25. [PMID: 22646865 DOI: 10.1517/17460441.2011.611498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Rhabdomyosarcomas (RMS) are rare heterogeneous pediatric tumors that are treated by surgery, chemotherapy and irradiation. New therapeutic approaches are needed, especially in the advanced stages to target the pro-oncogenic signals. Exploring the molecular interactions of the regulatory signals and their roles in the developmental aspects of different subtypes of RMS is essential to identify potential targets and develop new therapeutic drugs. AREAS COVERED Insights into different drug discovery approaches are discussed with specific emphasis on gene expression profiling, fusion protein, role of small interfering RNA (siRNA)- and microRNA (miRNA)-based discovery approaches, targeting cancer stem cells, and in vitro and in vivo model systems. Targeting some overexpressed signals along with the possibilities of combination therapy of validated drug targets is discussed. Additionally, methods to overcome the limitations of discovery-based research are briefly discussed. EXPERT OPINION Due to drug resistance, ineffective therapy in advanced stages and relapse, there is a demand to explore new drug targets and discovery approaches. Implementing miRNA-based profiling would reveal the extent of miR-based regulation, various biomarkers and potential targets in RMS. A suitable combination of innovative techniques and the use of model systems might assist the identification and validation of novel targets and drug discovery methods. Combining specific drugs along with type-specific target inhibition of overexpressed mRNAs through siRNA approaches would enable the development of personalized therapy.
Collapse
Affiliation(s)
- Venkatesh Rengaswamy
- University Hospital Freiburg, Center for Pediatrics and Adolescent Medicine, Clinic IV: Pediatric Hematology and Oncology, Mathildenstr. 1, 79106 Freiburg , Germany +49 761 270 43000 ; +49 761 270 45180 ;
| | | | | |
Collapse
|
28
|
Abstract
FGFs (fibroblast growth factors) and their receptors (FGFRs) play essential roles in tightly regulating cell proliferation, survival, migration and differentiation during development and adult life. Deregulation of FGFR signalling, on the other hand, has been associated with many developmental syndromes, and with human cancer. In cancer, FGFRs have been found to become overactivated by several mechanisms, including gene amplification, chromosomal translocation and mutations. FGFR alterations are detected in a variety of human cancers, such as breast, bladder, prostate, endometrial and lung cancers, as well as haematological malignancies. Accumulating evidence indicates that FGFs and FGFRs may act in an oncogenic fashion to promote multiple steps of cancer progression by inducing mitogenic and survival signals, as well as promoting epithelial-mesenchymal transition, invasion and tumour angiogenesis. Therapeutic strategies targeting FGFs and FGFRs in human cancer are therefore currently being explored. In the present review we will give an overview of FGF signalling, the main FGFR alterations found in human cancer to date, how they may contribute to specific cancer types and strategies for therapeutic intervention.
Collapse
|
29
|
CD133 positive embryonal rhabdomyosarcoma stem-like cell population is enriched in rhabdospheres. PLoS One 2011; 6:e19506. [PMID: 21602936 PMCID: PMC3094354 DOI: 10.1371/journal.pone.0019506] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2011] [Accepted: 03/30/2011] [Indexed: 12/25/2022] Open
Abstract
Cancer stem cells (CSCs) have been identified in a number of solid tumors, but not yet in rhabdomyosarcoma (RMS), the most frequently occurring soft tissue tumor in childhood. Hence, the aim of this study was to identify and characterize a CSC population in RMS using a functional approach. We found that embryonal rhabdomyosarcoma (eRMS) cell lines can form rhabdomyosarcoma spheres (short rhabdospheres) in stem cell medium containing defined growth factors over several passages. Using an orthotopic xenograft model, we demonstrate that a 100 fold less sphere cells result in faster tumor growth compared to the adherent population suggesting that CSCs were enriched in the sphere population. Furthermore, stem cell genes such as oct4, nanog, c-myc, pax3 and sox2 are significantly upregulated in rhabdospheres which can be differentiated into multiple lineages such as adipocytes, myocytes and neuronal cells. Surprisingly, gene expression profiles indicate that rhabdospheres show more similarities with neuronal than with hematopoietic or mesenchymal stem cells. Analysis of these profiles identified the known CSC marker CD133 as one of the genes upregulated in rhabdospheres, both on RNA and protein levels. CD133(+) sorted cells were subsequently shown to be more tumorigenic and more resistant to commonly used chemotherapeutics. Using a tissue microarray (TMA) of eRMS patients, we found that high expression of CD133 correlates with poor overall survival. Hence, CD133 could be a prognostic marker for eRMS. These experiments indicate that a CD133(+) CSC population can be enriched from eRMS which might help to develop novel targeted therapies against this pediatric tumor.
Collapse
|
30
|
Nagao H, Ijiri K, Hirotsu M, Ishidou Y, Yamamoto T, Nagano S, Takizawa T, Nakashima K, Komiya S, Setoguchi T. Role of GLI2 in the growth of human osteosarcoma. J Pathol 2011; 224:169-79. [DOI: 10.1002/path.2880] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2010] [Revised: 02/12/2011] [Accepted: 02/20/2011] [Indexed: 12/20/2022]
|
31
|
Suppression of osteosarcoma cell invasion by chemotherapy is mediated by urokinase plasminogen activator activity via up-regulation of EGR1. PLoS One 2011; 6:e16234. [PMID: 21283769 PMCID: PMC3024416 DOI: 10.1371/journal.pone.0016234] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2010] [Accepted: 12/17/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The cellular and molecular mechanisms of tumour response following chemotherapy are largely unknown. We found that low dose anti-tumour agents up-regulate early growth response 1 (EGR1) expression. EGR1 is a member of the immediate-early gene group of transcription factors which modulate transcription of multiple genes involved in cell proliferation, differentiation, and development. It has been reported that EGR1 act as either tumour promoting factor or suppressor. We therefore examined the expression and function of EGR1 in osteosarcoma. METHODS We investigated the expression of EGR1 in human osteosarcoma cell lines and biopsy specimens. We next examined the expression of EGR1 following anti-tumour agents treatment. To examine the function of EGR1 in osteosarcoma, we assessed the tumour growth and invasion in vitro and in vivo. RESULTS Real-time PCR revealed that EGR1 was down-regulated both in osteosarcoma cell lines and osteosarcoma patients' biopsy specimens. In addition, EGR1 was up-regulated both in osteosarcoma patient' specimens and osteosarcoma cell lines following anti-tumour agent treatment. Although forced expression of EGR1 did not prevent osteosarcoma growth, forced expression of EGR1 prevented osteosarcoma cell invasion in vitro. In addition, forced expression of EGR1 promoted down-regulation of urokinase plasminogen activator, urokinase receptor, and urokinase plasminogen activity. Xenograft mice models showed that forced expression of EGR1 prevents osteosarcoma cell migration into blood vessels. CONCLUSIONS These findings suggest that although chemotherapy could not prevent osteosarcoma growth in chemotherapy-resistant patients, it did prevent osteosarcoma cell invasion by down-regulation of urokinase plasminogen activity via up-regulation of EGR1 during chemotherapy periods.
Collapse
|
32
|
Receptor tyrosine kinases as therapeutic targets in rhabdomyosarcoma. Sarcoma 2011; 2011:756982. [PMID: 21253475 PMCID: PMC3022188 DOI: 10.1155/2011/756982] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2010] [Accepted: 11/01/2010] [Indexed: 12/20/2022] Open
Abstract
Rhabdomyosarcomas (RMSs) are the most common soft tissue sarcomas of childhood and adolescence. To date, there are no effective treatments that target the genetic abnormalities in RMS, and current treatment options for high-risk groups are not adequate. Over the past two decades, research into the molecular mechanisms of RMS has identified key genes and signaling pathways involved in disease pathogenesis. In these studies, members of the receptor tyrosine kinase (RTK) family of cell surface receptors have been characterized as druggable targets for RMS. Through small molecule inhibitors, ligand-neutralizing agents, and monoclonal receptor-blocking antibodies, RTK activity can be manipulated to block oncogenic properties associated with RMS. Herein, we review the members of the RTK family that are implicated in RMS tumorigenesis and discuss both the problems and promise of targeting RTKs in RMS.
Collapse
|
33
|
Abstract
Rhabdomyosarcomas (RMS) are very heterogeneous tumors that can be divided into three major groups: alveolar rhabdomyosarcoma, embryonal rhabdomyosarcoma, and pleomorphic rhabdomyosarcoma. Concerted efforts over the past a decade have led to an understanding of the genetic underpinnings of many human tumors through genetically engineered models; however, left largely behind in this effort have been rare tumors with poorly understood chromosomal abnormalities including the vast majority of RMS lacking a pathognomonic translocation, i.e. fusion-negative RMS. In this chapter, we review the characteristic genetic abnormalities associated with human RMS and the genetically engineered animal models for these fusion-negative RMS. We explore not only how specific combinations of mutations and cell of origin give rise to different histologically and biologically distinguishable pediatric and adult RMS subtypes, but we also examine how tumor cell phenotype (and tumor "stem" cell phenotype) can vary markedly from the cell of origin.
Collapse
Affiliation(s)
- Ken Kikuchi
- Department of Pediatrics, Pape' Family Pediatric Research Institute, Oregon Health and Science University, Portland, Oregon, USA
| | | | | |
Collapse
|
34
|
Hirotsu M, Setoguchi T, Sasaki H, Matsunoshita Y, Gao H, Nagao H, Kunigou O, Komiya S. Smoothened as a new therapeutic target for human osteosarcoma. Mol Cancer 2010; 9:5. [PMID: 20067614 PMCID: PMC2818696 DOI: 10.1186/1476-4598-9-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2009] [Accepted: 01/12/2010] [Indexed: 12/26/2022] Open
Abstract
Background The Hedgehog signaling pathway functions as an organizer in embryonic development. Recent studies have demonstrated constitutive activation of Hedgehog pathway in various types of malignancies. However, it remains unclear how Hedgehog pathway is involved in the pathogenesis of osteosarcoma. To explore the involvement of aberrant Hedgehog pathway in the pathogenesis of osteosarcoma, we investigated the expression and activation of Hedgehog pathway in osteosarcoma and examined the effect of SMOOTHENED (SMO) inhibition. Results To evaluate the expression of genes of Hedgehog pathway, we performed real-time PCR and immunohistochemistry using osteosarcoma cell lines and osteosarcoma biopsy specimens. To evaluate the effect of SMO inhibition, we did cell viability, colony formation, cell cycle in vitro and xenograft model in vivo. Real-time PCR revealed that osteosarcoma cell lines over-expressed Sonic hedgehog, Indian hedgehog, PTCH1, SMO, and GLI. Real-time PCR revealed over-expression of SMO, PTCH1, and GLI2 in osteosarcoma biopsy specimens. These findings showed that Hedgehog pathway is activated in osteosarcomas. Inhibition of SMO by cyclopamine, a specific inhibitor of SMO, slowed the growth of osteosarcoma in vitro. Cell cycle analysis revealed that cyclopamine promoted G1 arrest. Cyclopamine reduced the expression of accelerators of the cell cycle including cyclin D1, cyclin E1, SKP2, and pRb. On the other hand, p21cip1 wprotein was up-regulated by cyclopamine treatment. In addition, knockdown of SMO by SMO shRNA prevents osteosarcoma growth in vitro and in vivo. Conclusions These findings suggest that inactivation of SMO may be a useful approach to the treatment of patients with osteosarcoma.
Collapse
Affiliation(s)
- Masataka Hirotsu
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|