1
|
Farias TG, Santos MSD, Mencalha AL, da Fonseca ADS. Low-power red laser and blue LED modulate telomere maintenance and length in human breast cancer cells. Lasers Med Sci 2024; 39:248. [PMID: 39370492 DOI: 10.1007/s10103-024-04194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Cancer cells have the ability to undergo an unlimited number of cell divisions, which gives them immortality. Thus, the cancer cell can extend the length of its telomeres, allowing these cells to divide unlimitedly and avoid entering the state of senescence or cellular apoptosis. One of the main effects of photobiomodulation (PBM) is the increase in the production of adenosine triphosphate (ATP) and free radicals, mainly reactive oxygen species (ROS). Existent data indicates that high levels of ROS can cause shortening and dysfunctional telomeres. Therefore, a better understanding of the effects induced by PBM on cancer cell telomere maintenance is needed. This work aimed to evaluate the effects of low-power red laser (658 nm) and blue LED (470 nm) on the TRF1 and TRF2 mRNA levels and telomere length in human breast cancer cells. MCF-7 and MDA-MB-231 cells were irradiated with a low-power red laser (69 J cm-2, 0.77 W/cm-2) and blue LED (482 J cm-2, 5.35 W/cm-2), alone or in combination, and the relative mRNA levels of the genes and telomere length were assessed by quantitative reverse transcription polymerase chain reaction. The results suggested that exposure to certain red laser and blue LED fluences decreased the TRF1 and TRF2 mRNA levels in both human breast cancer cells. Telomere length was increased in MCF-7 cells after exposure to red laser and blue LED. However, telomere length in MDA-MB-231 was shortened after exposure to red laser and blue LED at fluences evaluated. Our research suggests that photobiomodulation induced by red laser and low-power blue LED could alter telomere maintenance and length.
Collapse
Affiliation(s)
- Thayssa Gomes Farias
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Vila Isabel, Rio de Janeiro, 20551030, Brazil.
| | - Márcia Soares Dos Santos
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Vila Isabel, Rio de Janeiro, 20551030, Brazil
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Centro, Rio de Janeiro, 20211040, Brazil
- Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, 111, Alto, Teresópolis, Rio de Janeiro, 25964004, Brazil
| |
Collapse
|
2
|
Apolónio JD, Dias JS, Fernandes MT, Komosa M, Lipman T, Zhang CH, Leão R, Lee D, Nunes NM, Maia AT, Morera JL, Vicioso L, Tabori U, Castelo-Branco P. THOR is a targetable epigenetic biomarker with clinical implications in breast cancer. Clin Epigenetics 2022; 14:178. [PMID: 36529814 PMCID: PMC9759897 DOI: 10.1186/s13148-022-01396-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most frequently diagnosed cancer and a leading cause of death among women worldwide. Early BC is potentially curable, but the mortality rates still observed among BC patients demonstrate the urgent need of novel and more effective diagnostic and therapeutic options. Limitless self-renewal is a hallmark of cancer, governed by telomere maintenance. In around 95% of BC cases, this process is achieved by telomerase reactivation through upregulation of the human telomerase reverse transcriptase (hTERT). The hypermethylation of a specific region within the hTERT promoter, termed TERT hypermethylated oncological region (THOR) has been associated with increased hTERT expression in cancer. However, its biological role and clinical potential in BC have never been studied to the best of our knowledge. Therefore, we aimed to investigate the role of THOR as a biomarker and explore the functional impact of THOR methylation status in hTERT upregulation in BC. RESULTS THOR methylation status in BC was assessed by pyrosequencing on discovery and validation cohorts. We found that THOR is significantly hypermethylated in malignant breast tissue when compared to benign tissue (40.23% vs. 12.81%, P < 0.0001), differentiating malignant tumor from normal tissue from the earliest stage of disease. Using a reporter assay, the addition of unmethylated THOR significantly reduced luciferase activity by an average 1.8-fold when compared to the hTERT core promoter alone (P < 0.01). To further investigate its biological impact on hTERT transcription, targeted THOR demethylation was performed using novel technology based on CRISPR-dCas9 system and significant THOR demethylation was achieved. Cells previously demethylated on THOR region did not develop a histologic cancer phenotype in in vivo assays. Additional studies are required to validate these observations and to unravel the causality between THOR hypermethylation and hTERT upregulation in BC. CONCLUSIONS THOR hypermethylation is an important epigenetic mark in breast tumorigenesis, representing a promising biomarker and therapeutic target in BC. We revealed that THOR acts as a repressive regulatory element of hTERT and that its hypermethylation is a relevant mechanism for hTERT upregulation in BC.
Collapse
Affiliation(s)
- Joana Dias Apolónio
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - João S Dias
- University Hospital Center of Algarve, Faro, Portugal
| | - Mónica Teotónio Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Escola Superior de Saúde (ESSUAlg), Universidade Do Algarve, Faro, Portugal
| | - Martin Komosa
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Tatiana Lipman
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Cindy H Zhang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Ricardo Leão
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Donghyun Lee
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Nuno Miguel Nunes
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Ana-Teresa Maia
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Center for Research in Health Technologies and Information Systems (CINTESIS@RISE), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - José L Morera
- University Hospital Center of Algarve, Faro, Portugal
| | - Luis Vicioso
- Faculty of Medicine, Department of Histology and Pathological Anatomy, University of Malaga, Malaga, Spain
| | - Uri Tabori
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Pedro Castelo-Branco
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139, Faro, Portugal.
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal.
- Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal.
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
3
|
Apiratikul N, Sriklung K, Dolsophon K, Thamvapee P, Watanapokasin R, Yingyongnarongkul B, Niyomtham N, Bremner JB, Watanavetch P, Samosorn S. Enhancing Anticancer Potency of a 13-Substituted Berberine Derivative with Cationic Liposomes. Chem Pharm Bull (Tokyo) 2022; 70:420-426. [PMID: 35342147 DOI: 10.1248/cpb.c21-01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cationic liposomal formulations of the telomeric G-quadruplex stabilizing ligand, 13-(2-naphthylmethoxy)berberine bromide (1), have been developed with the purpose of delivering 1 into the nucleus of cancer cells for potential telomere targeting. Berberine derivative 1 was encapsulated in various cationic lipids 2-4 by the thin film evaporation method; these lipids are cationic after amine protonation. The most appropriate liposomal berberine formulation was that of 1 and the cholesterol derived cationic lipid 4 in a weight ratio of 1:20 with 76.5% encapsulation efficiency of 1. Cellular uptake studies in the HeLa and HT-29 cancer cells line showed that the liposomal berberine derivative uptake in the cells was higher and more stable than for berberine derivative 1 alone while free 1 was completely decomposed in the cells within 60 min exposure to the cells. Anticancer activity of the liposomal berberine derivative 1 based on 4 was greater than that for the free berberine derivative 1 in the MCF-7, HeLa and HT-29 cell line by 2.3-, 4.9- and 5.3-fold, respectively, and also, interestingly, superior to the anticancer drug doxorubicin against the HT29 cancer cell line.
Collapse
Affiliation(s)
- Nuttapon Apiratikul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University
| | - Kanlayanee Sriklung
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University
| | - Kulvadee Dolsophon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University
| | | | | | - Boonek Yingyongnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaenng University
| | | | - John B Bremner
- School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong
| | - Petcharat Watanavetch
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University
| | - Siritron Samosorn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University
| |
Collapse
|
4
|
Culletta G, Allegra M, Almerico AM, Restivo I, Tutone M. In Silico Design, Synthesis, and Biological Evaluation of Anticancer Arylsulfonamide Endowed with Anti-Telomerase Activity. Pharmaceuticals (Basel) 2022; 15:ph15010082. [PMID: 35056139 PMCID: PMC8778141 DOI: 10.3390/ph15010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Telomerase, a reverse transcriptase enzyme involved in DNA synthesis, has a tangible role in tumor progression. Several studies have evidenced telomerase as a promising target for developing cancer therapeutics. The main reason is due to the overexpression of telomerase in cancer cells (85–90%) compared with normal cells where it is almost unexpressed. In this paper, we used a structure-based approach to design potential inhibitors of the telomerase active site. The MYSHAPE (Molecular dYnamics SHared PharmacophorE) approach and docking were used to screen an in-house library of 126 arylsulfonamide derivatives. Promising compounds were synthesized using classical and green methods. Compound 2C revealed an interesting IC50 (33 ± 4 µM) against the K-562 cell line compared with the known telomerase inhibitor BIBR1532 IC50 (208 ± 11 µM) with an SI ~10 compared to the BALB/3-T3 cell line. A 100 ns MD simulation of 2C in the telomerase active site evidenced Phe494 as the key residue as well as in BIBR1532. Each moiety of compound 2C was involved in key interactions with some residues of the active site: Arg557, Ile550, and Gly553. Compound 2C, as an arylsulfonamide derivative, is an interesting hit compound that deserves further investigation in terms of optimization of its structure to obtain more active telomerase inhibitors
Collapse
Affiliation(s)
- Giulia Culletta
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, 98166 Messina, Italy;
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, 90123 Palermo, Italy; (M.A.); (A.M.A.); (I.R.)
| | - Mario Allegra
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, 90123 Palermo, Italy; (M.A.); (A.M.A.); (I.R.)
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, 90123 Palermo, Italy; (M.A.); (A.M.A.); (I.R.)
| | - Ignazio Restivo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, 90123 Palermo, Italy; (M.A.); (A.M.A.); (I.R.)
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, 90123 Palermo, Italy; (M.A.); (A.M.A.); (I.R.)
- Correspondence:
| |
Collapse
|
5
|
Marconett CN, Sundar SN, Tseng M, Tin AS, Tran KQ, Mahuron KM, Bjeldanes LF, Firestone GL. Indole-3-carbinol downregulation of telomerase gene expression requires the inhibition of estrogen receptor-alpha and Sp1 transcription factor interactions within the hTERT promoter and mediates the G1 cell cycle arrest of human breast cancer cells. Carcinogenesis 2011; 32:1315-23. [PMID: 21693539 DOI: 10.1093/carcin/bgr116] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Indole-3-carbinol (I3C), a naturally occurring hydrolysis product of glucobrassicin from cruciferous vegetables such as broccoli, cabbage and Brussels sprouts, is an anticancer phytochemical that triggers complementary sets of antiproliferative pathways to induce a cell cycle arrest of estrogen-responsive MCF7 breast cancer cells. I3C strongly downregulated transcript expression of the catalytic subunit of the human telomerase (hTERT) gene, which correlated with the dose-dependent indole-mediated G(1) cell cycle arrest without altering the transcript levels of the RNA template (hTR) for telomerase elongation. Exogenous expression of hTERT driven by a constitutive promoter prevented the I3C-induced cell cycle arrest and rescued the I3C inhibition of telomerase enzymatic activity and activation of cellular senescence. Time course studies showed that I3C downregulated expression of estrogen receptor-alpha (ERα) and cyclin-dependent kinase-6 transcripts levels (which is regulated through the Sp1 transcription factor) prior to the downregulation of hTERT suggesting a mechanistic link. Chromatin immunoprecipitation assays demonstrated that I3C disrupted endogenous interactions of both ERα and Sp1 with an estrogen response element-Sp1 composite element within the hTERT promoter. I3C inhibited 17β-estradiol stimulated hTERT expression and stimulated the production of threonine-phosphorylated Sp1, which inhibits Sp1-DNA interactions. Exogenous expression of both ERα and Sp1, but not either alone, in MCF7 cells blocked the I3C-mediated downregulation of hTERT expression. These results demonstrate that I3C disrupts the combined ERα- and Sp1-driven transcription of hTERT gene expression, which plays a significant role in the I3C-induced cell cycle arrest of human breast cancer cells.
Collapse
Affiliation(s)
- Crystal N Marconett
- Department of Molecular and Cell Biology and The Cancer Research Laboratory, University of California, Berkeley, CA 94720-3200, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Drygin D, Siddiqui-Jain A, O'Brien S, Schwaebe M, Lin A, Bliesath J, Ho CB, Proffitt C, Trent K, Whitten JP, Lim JKC, Von Hoff D, Anderes K, Rice WG. Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res 2009; 69:7653-61. [PMID: 19738048 DOI: 10.1158/0008-5472.can-09-1304] [Citation(s) in RCA: 426] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hallmark deregulated signaling in cancer cells drives excessive ribosome biogenesis within the nucleolus, which elicits unbridled cell growth and proliferation. The rate-limiting step of ribosome biogenesis is synthesis of rRNA (building blocks of ribosomes) by RNA Polymerase I (Pol I). Numerous kinase pathways and products of proto-oncogenes can up-regulate Pol I, whereas tumor suppressor proteins can inhibit rRNA synthesis. In tumorigenesis, activating mutations in certain cancer-associated kinases and loss-of-function mutations in tumor suppressors lead to deregulated signaling that stimulates Pol I transcription with resultant increases in ribosome biogenesis, protein synthesis, cell growth, and proliferation. Certain anticancer therapeutics, such as cisplatin and 5-fluorouracil, reportedly exert, at least partially, their activity through disruption of ribosome biogenesis, yet many prime targets for anticancer drugs within the ribosome synthetic machinery of the nucleolus remain largely unexploited. Herein, we describe CX-3543, a small molecule nucleolus-targeting agent that selectively disrupts nucleolin/rDNA G-quadruplex complexes in the nucleolus, thereby inhibiting Pol I transcription and inducing apoptosis in cancer cells. CX-3543 is the first G-quadruplex interactive agent to enter human clinical trials, and it is currently under evaluation against carcinoid/neuroendocrine tumors in a phase II clinical trial.
Collapse
Affiliation(s)
- Denis Drygin
- Cylene Pharmaceuticals, Inc., San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
DNA adducts of antitumor cisplatin preclude telomeric sequences from forming G quadruplexes. J Biol Inorg Chem 2009; 14:959-68. [PMID: 19390878 DOI: 10.1007/s00775-009-0508-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
Abstract
We studied the effect of antitumor cisplatin and inefficient transplatin on the structure and stability of G quadruplexes formed by the model human telomere sequence 5'-GGG(TTAGGG)(3)-3' using circular dichroism, UV-monitored thermal denaturation, and gel electrophoresis. In addition, to investigate whether there is a connection between the ability of cisplatin or transplatin to affect telomerase activity and stability of G quadruplexes, we also used a modified telomere repeat amplification protocol assay that uses an oligonucleotide substrate for telomerase elongation susceptible to forming a G quadruplex. The results indicate that cisplatin is more efficient than transplatin in disturbing the quadruplex structure, thereby precluding telomeric sequences from forming quadruplexes. On the other hand, the results of this work also demonstrate that in absence of free platinum complex, DNA adducts of antitumor cisplatin inhibit telomerase catalysis, so the mechanism underlying this inhibition does not involve formation of the G quadruplexes which are not elongated by telomerase.
Collapse
|
8
|
Spiropoulou T, Ferekidou L, Angelopoulou K, Stathopoulou A, Talieri M, Lianidou ES. Effect of antineoplastic agents on the expression of human telomerase reverse transcriptase beta plus transcript in MCF-7 cells. Clin Biochem 2004; 37:299-304. [PMID: 15003732 DOI: 10.1016/j.clinbiochem.2003.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 12/10/2003] [Accepted: 12/11/2003] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To evaluate the effect of antineoplastic agents on the expression of human telomerase reverse transcriptase (hTERT) splice variants in MCF-7 cells. DESIGN AND METHODS We have developed a luminometric hybridization assay for hTERT beta plus transcript. MCF-7 cells were isolated before and after treatment with antineoplastic agents. A combination of nested RT-PCR and the developed luminometric hybridization assay was used for the specific detection of hTERT beta plus transcript in treated and untreated MCF-7 cells. Amplification of all hTERT splicing variants by nested PCR in the same samples was also performed. RESULTS MCF-7 cells treated with taxol and etoposide were found positive for all hTERT splicing variants, while the expression of hTERT beta plus transcript did not differ significantly before and after exposure. MCF-7 cells treated with doxorubicin and 5-fluorouracil did not express any of hTERT splicing variants. In the presence of cisplatin, three splicing variants of hTERT were detected. CONCLUSIONS The developed hybridization assay is highly sensitive and specific for the detection of hTERT beta plus transcript in clinical samples.
Collapse
Affiliation(s)
- Tonia Spiropoulou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, 15771 Athens, Greece
| | | | | | | | | | | |
Collapse
|
9
|
Colangelo D, Ghiglia A, Viano I, Mahboobi H, Ghezzi A, Cassino C, Osella D. Might telomerase enzyme be a possible target for trans-Pt(II) complexes? J Inorg Biochem 2004; 98:61-7. [PMID: 14659633 DOI: 10.1016/j.jinorgbio.2003.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Telomerase is a ribonucleoprotein polymerase that synthesizes telomeric DNA (TTAGGG) repeats. Previously, we have studied the effect on telomerase enzyme of several cis-platinum(II) complexes bearing aromatic amines as bulky carrier groups. All these complexes possess cis-geometry, according to the Cleare and Hoschele's rule. Since recent reports have dealt with the anti-cancer activity of trans-platinum compounds, in this study we have investigated the Farrell's prototypical trans-[Pt(Cl)2(pyridine)2], hereafter called trans-PtPy, in order to understand whether it may possess any anti-telomerase activity. The trans-PtPy has low water solubility and requires dimethyl sulfoxide (DMSO) as co-solvent, thus making the biological tests problematic. The effect of trans-PtPy on MCF-7 cell line concerning log-term telomerase inhibition, telomerase-related gene expression, viability, and apoptosis was evaluated. In a cell-free biochemical assay, trans-PtPy showed significant and dose-dependent inhibition of semi-purified telomerase. The bulk of data indicate that trans-PtPy acts as a non-properly selective anti-proliferative agent, although it shows an initial telomerase inhibitory effect. Telomere length reduction seems not to be the main mechanism causing the observed cell apoptosis. For comparison purpose, results on cis-[Pt(Cl)2(pyridine)2], hereafter cis-PtPy, are reported.
Collapse
Affiliation(s)
- Donato Colangelo
- Dipartimento di Scienze Mediche, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, I-28100 Novara, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Furuta M, Nozawa K, Takemura M, Izuta S, Murate T, Tsuchiya M, Yoshida K, Taka N, Nimura Y, Yoshida S. A novel platinum compound inhibits telomerase activity in vitro and reduces telomere length in a human hepatoma cell line. Int J Cancer 2003; 104:709-15. [PMID: 12640677 DOI: 10.1002/ijc.11022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Telomerase activity is detectable in most human tumors but not in most normal somatic cells or tissues. Telomerase inhibition has, therefore, been proposed as a novel and potentially selective strategy for antitumor therapy. In the present study, we found that platinum compounds, including cisplatin [cis-diamminedichloro-platinum (II)], strongly inhibited the activity of partially purified rat telomerase. Among the agents tested, 2,3-dibromosuccinato [2-(methylaminomethyl)pyridine]platinum (II) (compound E) exhibited the strongest inhibition, with an median inhibitory concentration (IC(50)) of 0.8 micro M. The mode of inhibition was noncompetitive with either dNTPs or TS (first) primer, with K(i) values estimated to be 2.3 or 3.9 micro M for varied TS primer or dNTPs, respectively. Notably, cisplatin also inhibited the telomerase activity, with an IC(50) of 2.0 micro M. Again, the mode of inhibition was noncompetitive, with K(i) values estimated as 7.3 or 8.1 micro M. Preincubation of TS primer with compound E did not affect the telomerase inhibition, whereas preincubation with cisplatin caused remarkable enhancement. Treatment of a human hepatoma cell line HepG2 with a low concentration of compound E gradually reduced the telomere length, indicating that this compound was able to inhibit telomerase in living cells as well as in vitro.
Collapse
Affiliation(s)
- Miho Furuta
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Maesawa C, Inaba T, Sato H, Iijima S, Ishida K, Terashima M, Sato R, Suzuki M, Yashima A, Ogasawara S, Oikawa H, Sato N, Saito K, Masuda T. A rapid biosensor chip assay for measuring of telomerase activity using surface plasmon resonance. Nucleic Acids Res 2003; 31:E4-4. [PMID: 12527793 PMCID: PMC140529 DOI: 10.1093/nar/gng004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Considerable interest has been focused on telomerase because of its potential use in assays for cancer diagnosis, and for anti-telomerase drugs as a strategy for cancer chemotherapy. A number of assays based on the polymerase chain reaction (PCR) have been developed for evaluation of telomerase activity. To overcome the disadvantages of the conventional telomerase assay [telomeric repeat amplification protocol (TRAP)] related to PCR artifacts and troublesome post-PCR procedures, we have developed a telomeric repeat elongation (TRE) assay which directly measures telomerase activity as the telomeric elongation rate by biosensor technology using surface plasmon resonance (SPR). 5'-Biotinylated oligomers containing telomeric repeats were immobilized on streptavidin-pretreated dextran sensor surfaces in situ using the BIACORE apparatus. Subsequently, the oligomers associated with the telomerase extracts were elongated in the BIACORE apparatus. The rate of TRE was calculated by measuring the SPR signals. We examined elongation rates by the TRE assay in 18 cancer and three normal human fibroblast cell lines, and 12 human primary carcinomas and matching normal tissues. The elongation rates increased in a concentration- and time-dependent manner. Those of cancer cells were two to 10 times higher than fibroblast cell lines and normal tissues. Telomerase activities and its inhibitory effects of anti-telomerase agents as measured by both the TRE and TRAP assays showed a good correlation. Our assay allows precise quantitative comparison of a wide range of human cells from somatic cells to carcinoma cells. TRE assay is suitable for practical use in the assessment of telomerase activity in preclinical and clinical trials of telomerase-based therapies, because of its reproducibility, rapidity and simplicity.
Collapse
Affiliation(s)
- Chihaya Maesawa
- Department of Pathology, Iwate Medical University School of Medicine, Uchimaru 19-1, Morioka 202-8505, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Miracco C, Margherita De Santi M, Schürfeld K, Santopietro R, Lalinga AV, Fimiani M, Biagioli M, Brogi M, De Felice C, Luzi P, Andreassi L. Quantitative in situ evaluation of telomeres in fluorescence in situ hybridization-processed sections of cutaneous melanocytic lesions and correlation with telomerase activity. Br J Dermatol 2002; 146:399-408. [PMID: 11952539 DOI: 10.1046/j.1365-2133.2002.04600.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Telomere length is correlated with cellular ageing and immortalization processes. In some human cancers telomere length measurement has proved to be of diagnostic and prognostic value. Results comparable with the traditional terminal restriction fragment length determination by Southern blotting have been obtained in metaphase and interphase cells in some studies by fluorescence in situ hybridization (FISH) analysis; FISH additionally allows for the quantification of telomeres at the cellular level. OBJECTIVES In this study, 32 melanocytic lesions were analysed by FISH, aiming at investigating possible telomere differences among various benign and malignant lesions and correlation with telomerase activity (TA) level. METHODS FISH was performed on paraffin sections from six common naevi, eight Spitz naevi, 12 melanomas, six melanoma metastases and nine control samples of normal skin. Telomere mean maximum diameter (Feret max), area and number per nuclear area were calculated by image analysis on fluorescent images elaborated through KS400 and in situ imaging system (ISIS) for FISH analysis programs. Mean TA level was also calculated in all lesions and correlated with telomere parameters. RESULTS Telomere number per nuclear area was significantly lower in melanomas and metastases than in benign common and Spitz naevi and in control skin (7 small middle dot24 +/- 3.3; 6.11 +/- 3 vs. 14.46 +/- 5.6; 16.92 +/- 7.8; and 12.59 +/- 3.4, respectively; P < 0 .001). No significant differences were found for the other telomere parameters. In common and Spitz naevi, telomere number was positively correlated with Feret max (P = 0.046 and P < 0.0001, respectively). TA was significantly higher in melanomas and metastases than in the other groups (70.18 +/- 25.2; 105.07 +/- 30 vs. 2.16 +/- 2.4; 2 .99 +/- 2.1; 2 +/- 1.2, respectively; P< or = 0. 001) and it was inversely correlated with telomere number per nuclear area in melanomas (P = 0.0041). No other significant correlations were found. CONCLUSIONS Encouraging results have been obtained from quantitative telomere evaluation in the diagnosis of melanocytic lesions, although an analysis of a larger number of cases would be necessary to provide more reliable data. An extreme shortening of some telomeres probably results in the decrease of telomeric signals and the lower mean number of detectable telomeres in melanomas and metastases. In melanomas, telomere number per nuclear area is also inversely correlated with TA levels. Quantitative FISH of melanocytic lesions could give more specific information at the cellular level in telomere and telomerase fields of investigation.
Collapse
Affiliation(s)
- C Miracco
- Institute of Pathological Anatomy and Histology, University of Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
In normal somatic cells, the ends of chromosomes (the telomeres) shorten with each cell division. By contrast, in tumour cells, telomere length is maintained, generally through the reactivation of the reverse transcriptase enzyme, telomerase. At least three applications relating to telomeres and telomerase have been proposed: in cancer diagnosis and prognosis (especially through measurements of the catalytic component of telomerase, hTERT) and as a means of monitoring tumour response to therapy; as an aid to tissue engineering; and inhibition as a cancer therapeutic strategy. Mouse knockout, hTERT dominant negative, and antisense experiments suggest that telomerase inhibitors will confer anticancer activity, especially in tumours with short telomeres. Inhibitory strategies have focused on antisense molecules, inhibitors of reverse transcriptases, and small molecules able to interact with and stabilise four-stranded (G-quadruplex) structures formed by telomeres. Clinical trials involving telomerase inhibitors require careful consideration compared to those looking at conventional anticancer cytotoxic drugs.
Collapse
Affiliation(s)
- L R Kelland
- Cancer Research Campaign Centre for Cancer Therapeutics, Institute of Cancer Research, Sutton, UK.
| |
Collapse
|
14
|
Abstract
In the past decade, a great deal has been learnt about the maintenance of telomeres in mammalian cells by the specialized reverse transcriptase, telomerase, and its associated proteins. The catalytic component of telomerase, hTERT, appears to be selectively activated in the vast majority of tumors relative to most somatic cells suggesting that its inhibition may result in antitumor effects. Although beset with some unusual issues as a drug target, recent 'target validation' studies using hTERT dominant-negative and antisense approaches strongly support the view that potent and selective telomerase inhibitors will induce inhibitory effects on tumors, especially in those possessing relatively short telomeres. Inhibitory strategies have focused on three main areas: antisense molecules (oligonucleotides, RNA molecules, ribozymes and peptide nucleic acids) directed against the hTR RNA component of telomerase, small molecule reverse transcriptase inhibitors (e.g. azidothymidine), and, probably most advanced, small molecules capable of interacting with and stabilizing four-stranded (G-quadruplex) structures formed by telomeres. G-quadruplex interactive agents that inhibit telomerase at sub-micromolar concentrations in cell-free assays have been described. Lead optimization and preclinical whole-cell and animal antitumor and pharmacology studies are now progressing which should result in the first generation of telomerase inhibitors being evaluated in the clinic within the next few years.
Collapse
Affiliation(s)
- L R Kelland
- CRC Centre for Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, UK.
| |
Collapse
|
15
|
Soda H, Raymond E, Sharma S, Lawrence R, Davidson K, Oka M, Kohno S, Izbicka E, Von Hoff DD. Effects of androgens on telomerase activity in normal and malignant prostate cells in vitro. Prostate 2000; 43:161-8. [PMID: 10797490 DOI: 10.1002/(sici)1097-0045(20000515)43:3<161::aid-pros1>3.0.co;2-o] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Recent studies have shown that sex hormones regulate telomerase activity in endometrium and breast tissues. The present study was designed to clarify the effects of androgen on telomerase activity in normal and malignant prostate cells. METHODS Androgen-sensitive (LNCaP) and -independent (TSU-Pr1 and DU145) prostate cancer cell lines and normal prostate cells including basal cells were cultured in the presence or absence of 5alpha-dihydrotestosterone (DHT). RESULTS Prostate cancer cell lines exhibited high telomerase activity, and normal prostate cells showed low activity. Short or prolonged androgen-deprivation reduced telomerase activity in LNCaP cells, and DHT induced telomerase activity at the G(1) phase of the cell cycle. DHT did not modulate telomerase activity in TSU-Pr1, DU145, and normal cells. CONCLUSIONS LNCaP cells had an androgen-dependent pathway to activate telomerase, whereas TSU-Pr1 and DU145 cells as well as normal prostate cells had an androgen-independent pathway. These findings suggest that the regulatory mechanism of telomerase varies during the progression of prostate cancers.
Collapse
Affiliation(s)
- H Soda
- Institute for Drug Development, Cancer Therapy and Research Center, San Antonio, TX, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Raymond E, Soria JC, Izbicka E, Boussin F, Hurley L, Von Hoff DD. DNA G-quadruplexes, telomere-specific proteins and telomere-associated enzymes as potential targets for new anticancer drugs. Invest New Drugs 2000; 18:123-37. [PMID: 10857992 DOI: 10.1023/a:1006373812586] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Telomeres and telomerase have been subjects to a tremendous attention from scientists and oncologists during the past 5 years. This interest has been motivated by the potential of telomerase as a tumor marker for the diagnosis and the prognosis of cancer. The possible use of telomerase or telomeres as new targets for anticancer drugs also triggered investigations. The expression of telomerase was found in overall 85% of cancers. Telomerase is early expressed during oncogenesis with a gradient indicating that a high level of telomerase expression could be associated with a bad prognosis. Therefore, drugs targeting telomerase and telomeres might be useful in many human tumors with little restrictions regarding the tumor type or on the stage of the disease. Moreover, since telomerase is not or slightly expressed in normal cells, it has been postulated that drugs targeting telomerase would induce low toxicity. The race for the discovery of telomerase inhibitors has started while the identification of the components controlling telomerase, telomeres, cell survival, senescence, and apoptosis was still in progress. The recent identification of components regulating telomere length and telomerase expression (TRF1, TRF2, and tankyrase) opened a variety of new opportunities to control telomerase/telomere interactions. Meanwhile, a proof of principle was provided that changing telomere interactions with telomere binding proteins by chemical or biological means can induce cancer cell death. Interestingly, recent data challenge the old paradigm which suggested that a long exposure to telomerase and telomere inhibitors is necessary to induce anticancer effects. In this paper, we review the most recent information concerning the regulation of telomere length and telomerase expression, with emphasis on mechanisms that might translate into new drug discovery.
Collapse
Affiliation(s)
- E Raymond
- Department of Medicine, Institute Gustave-Roussy, Villejuif, France.
| | | | | | | | | | | |
Collapse
|
17
|
Lavelle F, Riou JF, Laoui A, Mailliet P. Telomerase: a therapeutic target for the third millennium? Crit Rev Oncol Hematol 2000; 34:111-26. [PMID: 10799836 DOI: 10.1016/s1040-8428(00)00057-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Telomerase offers the potential opportunity to control cell proliferation by interfering with a totally new and unique biological process which is cell senescence. The aim of this review is to impartially present the state of the art in telomerase with the pros and the cons of the current scientific situation of this fast-growing and fascinating topic for answering the key question asked by experimental and medical oncologists: Will telomerase be a therapeutic target for the third millenium? The most convincing argument (which is a scientifically documented one) for going ahead with this target is obviously the strong correlation existing between the level and frequency of telomerase expression and the malignant properties of tumors. This has been now largely documented in established tumor cell lines and fresh tumor samples obtained from patients. Noteworthy is the very important difference of telomerase expression between malignant and normal tissues. This difference is much higher than those observed for classical enzymatic targets of chemotherapy such as thymidylate synthetase, dihydrofolate reductase and topoisomerases. If this translates to the clinical situation, telomerase inhibitors might display a good selectivity for tumor cells with a minimal toxicity for normal tissues. The most appealing criticism (which is still purely speculative) is obviously the clinical relevance of inhibiting telomerase in cancer patients. According to the paradigm currently proposed for telomeres and telomerases, it can be predicted that telomerase inhibition will not affect a tumor until its telomeres reach the critical size for entering senescence. This means that during anti-telomerase therapy, the tumor cells will continue grow undergoing 20-30 divisions until the telomeres reach a critical size leading to tumor senescence. Does this make sense, especially in patients with advanced tumors at the beginning of the therapy? Ultimately, the definitive answer to the question will not come from intellectual speculation but from the properties of telomerase inhibitors, first in tumor bearing animals, then finally in cancer patients! Several institutions are very active in the development of telomerase inhibitors. Different stategies are used: direct inhibition of telomerase, interference with telomeres (G quartets), interaction with other proteins involved in the regulation of telomerase and telomeres.
Collapse
Affiliation(s)
- F Lavelle
- Centre de Recherche de Vitry-Alfortvide, Rhône-Poulenc Rorer, 94403, Vitry-sur-Seine, France.
| | | | | | | |
Collapse
|