1
|
Philip AB, Brohan J, Goudra B. The Role of GABA Receptors in Anesthesia and Sedation: An Updated Review. CNS Drugs 2024:10.1007/s40263-024-01128-6. [PMID: 39465449 DOI: 10.1007/s40263-024-01128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/29/2024]
Abstract
GABA (γ-aminobutyric acid) receptors are constituents of many inhibitory synapses within the central nervous system. They are formed by 5 subunits out of 19 various subunits: α1-6, β1-3, γ1-3, δ, ε, θ, π, and ρ1-3. Two main subtypes of GABA receptors have been identified, namely GABAA and GABAB. The GABAA receptor (GABAAR) is formed by a variety of combinations of five subunits, although both α and β subunits must be included to produce a GABA-gated ion channel. Other subunits are γ, δ, ε, π, and ϴ. GABAAR has many isoforms, that dictate, among other properties, their differing affinities and conductance. Drugs acting on GABAAR form the cornerstone of anesthesia and sedation practice. Some such GABAAR agonists used in anesthesia practice are propofol, etomidate, methohexital, thiopental, isoflurane, sevoflurane, and desflurane. Ketamine, nitrous oxide, and xenon are not GABAR agonists and instead inhibit glutamate receptors-mainly NMDA receptors. Inspite of its many drawbacks such as pain in injection, quick and uncontrolled conversion from sedation to general anesthesia and dose-related cardiovascular depression, propofol remains the most popular GABAR agonist employed by anesthesia providers. In addition, being formulated in a lipid emulsion, contamination and bacterial growth is possible. Literature is rife with newer propofol formulations, aiming to address many of these drawbacks, and with some degree of success. A nonemulsion propofol formulation has been developed with cyclodextrins, which form inclusion complexes with drugs having lipophilic properties while maintaining aqueous solubility. Inhalational anesthetics are also GABA agonists. The binding sites are primarily located within α+/β- and β+/α- subunit interfaces, with residues in the α+/γ- interface. Isoflurane and sevoflurane might have slightly different binding sites providing unexpected degree of selectivity. Methoxyflurane has made a comeback in Europe for rapid provision of analgesia in the emergency departments. Penthrox (Galen, UK) is the special device designed for its administration. With better understanding of pharmacology of GABAAR agonists, newer sedative agents have been developed, which utilize "soft pharmacology," a term pertaining to agents that are rapidly metabolized into inactive metabolites after producing desired therapeutic effect(s). These newer "soft" GABAAR agonists have many properties of ideal sedative agents, as they can offer well-controlled, titratable activity and ultrashort action. Remimazolam, a modified midazolam and methoxycarbonyl-etomidate (MOC-etomidate), an ultrashort-acting etomidate analog are two such examples. Cyclopropyl methoxycarbonyl metomidate is another second-generation soft etomidate analog that has a greater potency and longer half-life than MOC-etomidate. Additionally, it might not cause adrenal axis suppression. Carboetomidate is another soft analog of etomidate with low affinity for 11β-hydroxylase and is, therefore, unlikely to have clinically significant adrenocortical suppressant effects. Alphaxalone, a GABAAR agonist, is recently formulated in combination with 7-sulfobutylether-β-cyclodextrin (SBECD), which has a low hypersensitivity profile.
Collapse
Affiliation(s)
| | | | - Basavana Goudra
- Department of Anesthesiology, Jefferson Surgical Center Endoscopy, Sidney Kimmel Medical College, Jefferson Health, 111 S 11th Street, #7132, Philadelphia, PA, 19107, USA.
| |
Collapse
|
2
|
Chojnacka W, Teng J, Kim JJ, Jensen AA, Hibbs RE. Structural insights into GABA A receptor potentiation by Quaalude. Nat Commun 2024; 15:5244. [PMID: 38898000 PMCID: PMC11187190 DOI: 10.1038/s41467-024-49471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Methaqualone, a quinazolinone marketed commercially as Quaalude, is a central nervous system depressant that was used clinically as a sedative-hypnotic, then became a notorious recreational drug in the 1960s-80s. Due to its high abuse potential, medical use of methaqualone was eventually prohibited, yet it persists as a globally abused substance. Methaqualone principally targets GABAA receptors, which are the major inhibitory neurotransmitter-gated ion channels in the brain. The restricted status and limited accessibility of methaqualone have contributed to its pharmacology being understudied. Here, we use cryo-EM to localize the GABAA receptor binding sites of methaqualone and its more potent derivative, PPTQ, to the same intersubunit transmembrane sites targeted by the general anesthetics propofol and etomidate. Both methaqualone and PPTQ insert more deeply into subunit interfaces than the previously-characterized modulators. Binding of quinazolinones to this site results in widening of the extracellular half of the ion-conducting pore, following a trend among positive allosteric modulators in destabilizing the hydrophobic activation gate in the pore as a mechanism for receptor potentiation. These insights shed light on the underexplored pharmacology of quinazolinones and further elucidate the molecular mechanisms of allosteric GABAA receptor modulation through transmembrane binding sites.
Collapse
Affiliation(s)
- Weronika Chojnacka
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Jinfeng Teng
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Jeong Joo Kim
- Protein Structure and Function, Loxo@Lilly, Louisville, CO, USA
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ryan E Hibbs
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Ding S, Li K, Han X, Lin W, Qin Y, Cao R, Ren Y. Long-term use of etomidate disrupts the intestinal homeostasis and nervous system in mice. Toxicology 2024; 504:153802. [PMID: 38604439 DOI: 10.1016/j.tox.2024.153802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
Etomidate (ETO) is used as an anesthetic in surgery, but it is being abused in some populations. The damage caused by long-term intake of ETO to intestinal and brain functions is not yet clear, and it remains to be determined whether the drug affects the central nervous system through the gut-brain axis. This study aimed to investigate the neurotoxic and gastrointestinal effects of ETO at doses of 1 mg/kg and 3 mg/kg in mice over 14 consecutive days. The results showed that long-term injection of ETO led to drug resistance in mice, affecting their innate preference for darkness and possibly inducing dependence on ETO. The levels of 5-hydroxytryptamine in the brain, serum, and colon decreased by 37%, 51%, and 42% respectively, while the levels of γ-aminobutyric acid reduced by 38%, 52%, and 41% respectively. H&E staining revealed that ETO reduced goblet cells in the colon and damaged the intestinal barrier. The expression of tight junction-related genes Claudin4 and ZO-1 was downregulated. The intestinal flora changed, the abundance of Akkermansia and Lactobacillus decreased by 33% and 14%, respectively, while Klebsiella increased by 18%. TUNEL results showed that high-dose ETO increased apoptotic cells in the brain. The expression of Claudin1 in the brain was downregulated. Untargeted metabolomics analysis of the colon and brain indicated that ETO caused abnormalities in glycerophospholipid metabolism. Abnormal lipid metabolism might lead to the production or accumulation of lipotoxic metabolites, causing central nervous system diseases. ETO induced changes in the intestinal flora and metabolism, further affecting the central nervous system through the gut-brain axis. The study unveiled the detrimental effects on the brain and gastrointestinal system resulting from long-term intake of ETO, which holds significant implications for comprehending the adverse impact of ETO abuse on human health.
Collapse
Affiliation(s)
- Siming Ding
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Kan Li
- National Anti-Drug Laboratory Guangdong Regional Center, Guangzhou 510230, PR China; Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, PR China
| | - Xing Han
- National Anti-Drug Laboratory Guangdong Regional Center, Guangzhou 510230, PR China; Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, PR China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yingjun Qin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Renjuan Cao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, PR China.
| |
Collapse
|
4
|
Koniuszewski F, Vogel FD, Dajić I, Seidel T, Kunze M, Willeit M, Ernst M. Navigating the complex landscape of benzodiazepine- and Z-drug diversity: insights from comprehensive FDA adverse event reporting system analysis and beyond. Front Psychiatry 2023; 14:1188101. [PMID: 37457785 PMCID: PMC10345211 DOI: 10.3389/fpsyt.2023.1188101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Medications which target benzodiazepine (BZD) binding sites of GABAA receptors (GABAARs) have been in widespread use since the nineteen-sixties. They carry labels as anxiolytics, hypnotics or antiepileptics. All benzodiazepines and several nonbenzodiazepine Z-drugs share high affinity binding sites on certain subtypes of GABAA receptors, from which they can be displaced by the clinically used antagonist flumazenil. Additional binding sites exist and overlap in part with sites used by some general anaesthetics and barbiturates. Despite substantial preclinical efforts, it remains unclear which receptor subtypes and ligand features mediate individual drug effects. There is a paucity of literature comparing clinically observed adverse effect liabilities across substances in methodologically coherent ways. Methods In order to examine heterogeneity in clinical outcome, we screened the publicly available U.S. FDA adverse event reporting system (FAERS) database for reports of individual compounds and analyzed them for each sex individually with the use of disproportionality analysis. The complementary use of physico-chemical descriptors provides a molecular basis for the analysis of clinical observations of wanted and unwanted drug effects. Results and Discussion We found a multifaceted FAERS picture, and suggest that more thorough clinical and pharmacoepidemiologic investigations of the heterogenous side effect profiles for benzodiazepines and Z-drugs are needed. This may lead to more differentiated safety profiles and prescription practice for particular compounds, which in turn could potentially ease side effect burden in everyday clinical practice considerably. From both preclinical literature and pharmacovigilance data, there is converging evidence that this very large class of psychoactive molecules displays a broad range of distinctive unwanted effect profiles - too broad to be explained by the four canonical, so-called "diazepam-sensitive high-affinity interaction sites". The substance-specific signatures of compound effects may partly be mediated by phenomena such as occupancy of additional binding sites, and/or synergistic interactions with endogenous substances like steroids and endocannabinoids. These in turn drive the wanted and unwanted effects and sex differences of individual compounds.
Collapse
Affiliation(s)
- Filip Koniuszewski
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Florian D. Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Irena Dajić
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Seidel
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Matthäus Willeit
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| |
Collapse
|
5
|
Huang X, Cao H, Zhang C, Lan H, Gong X, Li R, Lin Y, Xu B, Chen H, Guan X. The difference in mean arterial pressure induced by remimazolam compared to etomidate in the presence of fentanyl at tracheal intubation: A randomized controlled trial. Front Pharmacol 2023; 14:1143784. [PMID: 37021047 PMCID: PMC10067562 DOI: 10.3389/fphar.2023.1143784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Combined use of hypnotic and opioids during anesthesia inductions decreases blood pressure. Post-induction hypotension (PIHO) is the most common side effect of anesthesia induction. We aimed to compare the difference in mean arterial pressure (MAP) induced by remimazolam with that induced by etomidate in the presence of fentanyl at tracheal intubation. Methods: We assessed 138 adult patients with American Society of Anesthesiologists physical status I-II who underwent elective urological surgery. Patients were randomly allocated to receive either remimazolam or etomidate as alterative hypnotic in the presence of fentanyl during anesthesia induction. Comparable BIS values were achieved in both groups. The primary outcome was the difference in the MAP at tracheal intubation. The secondary outcomes included the characteristics of anesthesia, surgery, and adverse effects. Results: The MAP was higher in the etomidate group than in the remimazolam group at tracheal intubation (108 [22] mmHg vs. 83 [16] mmHg; mean difference, -26; 95% confidence interval [CI], -33 to -19; p < 0.0001). Heart rate was significantly higher in the etomidate group than in the remimazolam group at tracheal intubation. The patients' condition warranted the administration of ephedrine more frequently in the remimazolam group (22%) than in the etomidate group (5%) (p = 0.0042) during anesthesia induction. The remimazolam group had a lower incidence of hypertension (0% vs. 9%, p = 0.0133), myoclonus (0% vs. 47%, p < 0.001), and tachycardia (16% vs. 35%, p = 0.0148), and a higher incidence of PIHO (42% vs. 5%, p = 0.001) than the etomidate group during anesthesia induction. Conclusion: Remimazolam was associated with lower MAP and lower heart rate compared to etomidate in the presence of fentanyl at tracheal intubation. Patients in the remimazolam group had a higher incidence of PIHO, and their condition warranted the administration of ephedrine more frequently than in the etomidate group during anesthesia induction.
Collapse
Affiliation(s)
- Xiaofang Huang
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Huiyu Cao
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Cuiwen Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hongmeng Lan
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaofang Gong
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ruijie Li
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Lin
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Bing Xu
- Department of Rehabilitation, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Huihe Chen
- Department of Rehabilitation, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xuehai Guan
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- *Correspondence: Xuehai Guan,
| |
Collapse
|
6
|
Ma L, Huang Y, Huang S, Xu F, Wang Y, Zhao S, Deng D, Ding Y, Zhang T, Zhao W, Chen X. Polymorphisms of pharmacogenetic candidate genes affect etomidate anesthesia susceptibility. Front Genet 2022; 13:999132. [PMID: 36246646 PMCID: PMC9554742 DOI: 10.3389/fgene.2022.999132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose: Etomidate is widely used in general anesthesia and sedation, and significant individual differences are observed during anesthesia induction. This study aimed to explore the molecular mechanisms of different etomidate susceptibility at the genetic level. Methods: 128 patients were enrolled in the study. The bispectral index (BIS), mean arterial pressure (MAP) and heart rate (HR) were recorded when the patients entered the operating room for 5 min, before the administration of etomidate, 30 s, 60 s, 90 s, 120 s and 150 s after the administration of etomidate, and the corresponding single nucleotide polymorphisms (SNPs) were analyzed. Results: Significant individual differences were observed in etomidate anesthesia. The results of two-way ANOVA showed that CYP2C9 rs1559, GABRB2 rs2561, GABRA2 rs279858, GABRA2 rs279863 were associated with the BIS value during etomidate anesthesia; UGT1A9 rs11692021 was associated with the Extended Observer’s Assessment of Alertness and Sedation (EOAA/S) score during etomidate anesthesia; GABRB2 rs2561 was associated with MAP. Multiple linear stepwise regression model results showed that CYP2C9 rs1559, GABRA2 rs279858 and GABRB2 rs2561 were associated with the BIS value and UGT1A9 rs11692021 was associated with the EOAA/S score; GABRB2 rs2561 was associated with MAP. Conclusion: GABRA2 rs279858, GABRB2 rs2561, CYP2C9 rs1559 and UGT1A9 rs11692021 are the SNPs with individual differences during etomidate anesthesia. This is the first to study the SNPs of etomidate, which can provide certain evidence for the future use of etomidate anesthesia and theoretical basis for precision anesthesia.
Collapse
Affiliation(s)
- Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, The First People's Hospital of Jiangxia District, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Zhao
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xiangdong Chen,
| |
Collapse
|
7
|
Valk BI, Struys MMRF. Etomidate and its Analogs: A Review of Pharmacokinetics and Pharmacodynamics. Clin Pharmacokinet 2021; 60:1253-1269. [PMID: 34060021 PMCID: PMC8505283 DOI: 10.1007/s40262-021-01038-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 01/09/2023]
Abstract
Etomidate is a hypnotic agent that is used for the induction of anesthesia. It produces its effect by acting as a positive allosteric modulator on the γ-aminobutyric acid type A receptor and thus enhancing the effect of the inhibitory neurotransmitter γ-aminobutyric acid. Etomidate stands out among other anesthetic agents by having a remarkably stable cardiorespiratory profile, producing no cardiovascular or respiratory depression. However, etomidate suppresses the adrenocortical axis by the inhibition of the enzyme 11β-hydroxylase. This makes the drug unsuitable for administration by a prolonged infusion. It also makes the drug unsuitable for administration to critically ill patients. Etomidate has relatively large volumes of distributions and is rapidly metabolized by hepatic esterases into an inactive carboxylic acid through hydrolyzation. Because of the decrease in popularity of etomidate, few modern extensive pharmacokinetic or pharmacodynamic studies exist. Over the last decade, several analogs of etomidate have been developed, with the aim of retaining its stable cardiorespiratory profile, whilst eliminating its suppressive effect on the adrenocortical axis. One of these molecules, ABP-700, was studied in extensive phase I clinical trials. These found that ABP-700 is characterized by small volumes of distribution and rapid clearance. ABP-700 is metabolized similarly to etomidate, by hydrolyzation into an inactive carboxylic acid. Furthermore, ABP-700 showed a rapid onset and offset of clinical effect. One side effect observed with both etomidate and ABP-700 is the occurrence of involuntary muscle movements. The origin of these movements is unclear and warrants further research.
Collapse
Affiliation(s)
- Beatrijs I Valk
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Michel M R F Struys
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
8
|
Sorrenti V, Cecchetto C, Maschietto M, Fortinguerra S, Buriani A, Vassanelli S. Understanding the Effects of Anesthesia on Cortical Electrophysiological Recordings: A Scoping Review. Int J Mol Sci 2021; 22:1286. [PMID: 33525470 PMCID: PMC7865872 DOI: 10.3390/ijms22031286] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022] Open
Abstract
General anesthesia in animal experiments is an ethical must and is required for all the procedures that are likely to cause more than slight or momentary pain. As anesthetics are known to deeply affect experimental findings, including electrophysiological recordings of brain activity, understanding their mechanism of action is of paramount importance. It is widely recognized that the depth and type of anesthesia introduce significant bias in electrophysiological measurements by affecting the shape of both spontaneous and evoked signals, e.g., modifying their latency and relative amplitude. Therefore, for a given experimental protocol, it is relevant to identify the appropriate anesthetic, to minimize the impact on neuronal circuits and related signals under investigation. This review focuses on the effect of different anesthetics on cortical electrical recordings, examining their molecular mechanisms of action, their influence on neuronal microcircuits and, consequently, their impact on cortical measurements.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | - Claudia Cecchetto
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan;
- Department of Biomedical Sciences, Section of Physiology, University of Padova, via F. Marzolo 3, 35131 Padova, Italy;
- Padua Neuroscience Center, University of Padova, via Orus 2/B, 35131 Padova, Italy
| | - Marta Maschietto
- Department of Biomedical Sciences, Section of Physiology, University of Padova, via F. Marzolo 3, 35131 Padova, Italy;
| | | | - Alessandro Buriani
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | - Stefano Vassanelli
- Department of Biomedical Sciences, Section of Physiology, University of Padova, via F. Marzolo 3, 35131 Padova, Italy;
- Padua Neuroscience Center, University of Padova, via Orus 2/B, 35131 Padova, Italy
| |
Collapse
|
9
|
Borowicz-Reutt KK, Czuczwar SJ, Rusek M. Interactions of antiepileptic drugs with drugs approved for the treatment of indications other than epilepsy. Expert Rev Clin Pharmacol 2020; 13:1329-1345. [PMID: 33305639 DOI: 10.1080/17512433.2020.1850258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Comorbidities of epilepsy may significantly interfere with its treatment as diseases in the general population are also encountered in epilepsy patients and some of them even more frequently (for instance, depression, anxiety, or heart disease). Obviously, some drugs approved for other than epilepsy indications can modify the anticonvulsant activity of antiepileptics. Areas covered: This review highlights the drug-drug interactions between antiepileptics and aminophylline, some antidepressant, antiarrhythmic (class I-IV), selected antihypertensive drugs and non-barbiturate injectable anesthetics (ketamine, propofol, etomidate, and alphaxalone). The data were reviewed mainly from experimental models of seizures. Whenever possible, clinical data were provided. PUBMED data base was the main search source.Expert opinion: Aminophylline generally reduced the protective activity of antiepileptics, which, to a certain degree, was consistent with scarce clinical data on methylxanthine derivatives and worse seizure control. The only antiarrhythmic with this profile of action was mexiletine when co-administered with VPA. Among antidepressants and non-barbiturate injectable anesthetics, trazodone, mianserin and etomidate or alphaxalone, respectively, negatively affected the anticonvulsant action of some antiepileptic drugs. Clinical data indicate that only amoxapine, bupropion, clomipramine and maprotiline should be used with caution. Possibly, drugs reducing the anticonvulsant potential of antiepileptics should be avoided in epilepsy patients.
Collapse
Affiliation(s)
- Kinga K Borowicz-Reutt
- Independent Unit of Experimental Neuropathophysiology, Department of Pathophysiology, Medical University of Lublin , Lublin, Poland
| | | | - Marta Rusek
- Department of Pathophysiology, Medical University of Lublin , Lublin, Poland.,Department of Dermatology, Venereology and Pediatric Dermatology, Laboratory for Immunology of Skin Diseases, Medical University of Lublin , Lublin, Poland
| |
Collapse
|
10
|
A vertebrate model to reveal neural substrates underlying the transitions between conscious and unconscious states. Sci Rep 2020; 10:15789. [PMID: 32978423 PMCID: PMC7519646 DOI: 10.1038/s41598-020-72669-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
The field of neuropharmacology has not yet achieved a full understanding of how the brain transitions between states of consciousness and drug-induced unconsciousness, or anesthesia. Many small molecules are used to alter human consciousness, but the repertoire of underlying molecular targets, and thereby the genes, are incompletely understood. Here we describe a robust larval zebrafish model of anesthetic action, from sedation to general anesthesia. We use loss of movement under three different conditions, spontaneous movement, electrical stimulation or a tap, as a surrogate for sedation and general anesthesia, respectively. Using these behavioral patterns, we find that larval zebrafish respond to inhalational and IV anesthetics at concentrations similar to mammals. Additionally, known sedative drugs cause loss of spontaneous larval movement but not to the tap response. This robust, highly tractable vertebrate model can be used in the detection of genes and neural substrates involved in the transition from consciousness to unconsciousness.
Collapse
|
11
|
Rossokhin A. The general anesthetic etomidate and fenamate mefenamic acid oppositely affect GABA AR and GlyR: a structural explanation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:591-607. [PMID: 32940715 DOI: 10.1007/s00249-020-01464-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022]
Abstract
GABA and glycine act as inhibitory neurotransmitters in the CNS. Inhibitory neurotransmission is mediated via activation of ionotropic GABAA and glycine receptors. We used a modeling approach to explain the opposite effects of the general anesthetic etomidate (ETM) and fenamate mefenamic acid (MFA) on GABA- and glycine-activated currents recorded in isolated cerebellar Purkinje cells and hippocampal pyramidal neurons, respectively. These drugs potentiated GABAARs but blocked GlyRs. We built a homology model of α1β GlyR based on the cryo-EM structure of open α1 GlyR, used the α1β3γ2 GABAAR structure from the PDB, and applied Monte-Carlo energy minimization to optimize models of receptors and ligand-receptor complexes. In silico docking suggests that ETM/MFA bind at the transmembrane β( +)/α( -) intersubunit interface in GABAAR. Our models predict that the bulky side chain of the highly conserved Arg19' residue at the plus interface side wedges the interface and maintains the conducting receptor state. We hypothesized that MFA/ETM binding at the β( +)/α( -) interface leads to prolongation of receptor life-time in the open state. Having analyzed different GABAAR and GlyR structures available in the PDB, we found that mutual arrangement of the Arg19' and Gln-26' side chains at the plus and minus interface sides, respectively, plays an important role when the receptor switches from the open to closed state. We show that this process is accompanied by narrowing of the intersubunit interfaces, leading to extrusion of the Arg19' side chain from the interface. Our models allow us to explain the lack of GlyR potentiation in our electrophysiological experiments.
Collapse
|
12
|
Kreuzer M, Butovas S, García PS, Schneider G, Schwarz C, Rudolph U, Antkowiak B, Drexler B. Propofol Affects Cortico-Hippocampal Interactions via β3 Subunit-Containing GABA A Receptors. Int J Mol Sci 2020; 21:ijms21165844. [PMID: 32823959 PMCID: PMC7461501 DOI: 10.3390/ijms21165844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND General anesthetics depress neuronal activity. The depression and uncoupling of cortico-hippocampal activity may contribute to anesthetic-induced amnesia. However, the molecular targets involved in this process are not fully characterized. GABAA receptors, especially the type with β3 subunits, represent a main molecular target of propofol. We therefore hypothesized that GABAA receptors with β3 subunits mediate the propofol-induced disturbance of cortico-hippocampal interactions. METHODS We used local field potential (LFP) recordings from chronically implanted cortical and hippocampal electrodes in wild-type and β3(N265M) knock-in mice. In the β3(N265M) mice, the action of propofol via β3subunit containing GABAA receptors is strongly attenuated. The analytical approach contained spectral power, phase locking, and mutual information analyses in the 2-16 Hz range to investigate propofol-induced effects on cortico-hippocampal interactions. RESULTS Propofol caused a significant increase in spectral power between 14 and 16 Hz in the cortex and hippocampus of wild-type mice. This increase was absent in the β3(N265M) mutant. Propofol strongly decreased phase locking of 6-12 Hz oscillations in wild-type mice. This decrease was attenuated in the β3(N265M) mutant. Finally, propofol reduced the mutual information between 6-16 Hz in wild-type mice, but only between 6 and 8 Hz in the β3(N265M) mutant. CONCLUSIONS GABAA receptors containing β3 subunits contribute to frequency-specific perturbation of cortico-hippocampal interactions. This likely explains some of the amnestic actions of propofol.
Collapse
Affiliation(s)
- Matthias Kreuzer
- Department of Anesthesiology and Intensive Care, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Ismaninger Str. 22, 81675 München, Germany; (M.K.); (G.S.)
| | - Sergejus Butovas
- Werner Reichardt Centre for Integrative Neuroscience, Eberhard-Karls-University, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; (S.B.); (C.S.)
| | - Paul S García
- Department of Anesthesiology, Neuroanesthesia Division, Columbia University Medical Center, New York Presbyterian Hospital, 622 West 168th Street, New York City, NY 10032, USA;
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Ismaninger Str. 22, 81675 München, Germany; (M.K.); (G.S.)
| | - Cornelius Schwarz
- Werner Reichardt Centre for Integrative Neuroscience, Eberhard-Karls-University, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; (S.B.); (C.S.)
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802-6178, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illiniois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bernd Antkowiak
- Department of Anaesthesiology, Experimental Anaesthesiology Section, Eberhard-Karls-University, Waldhörnlestrasse 22, 72072 Tübingen, Germany;
| | - Berthold Drexler
- Department of Anaesthesiology, Experimental Anaesthesiology Section, Eberhard-Karls-University, Waldhörnlestrasse 22, 72072 Tübingen, Germany;
- Correspondence:
| |
Collapse
|
13
|
Drexler B, Seeger T, Worek F, Thiermann H, Antkowiak B, Grasshoff C. Impact of soman and acetylcholine on the effects of propofol in cultured cortical networks. Toxicol Lett 2020; 322:98-103. [PMID: 31954869 DOI: 10.1016/j.toxlet.2020.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/20/2019] [Accepted: 01/15/2020] [Indexed: 11/29/2022]
Abstract
Patients intoxicated with organophosphorous compounds may need general anaesthesia to enable mechanical ventilation or for control of epileptiform seizures. It is well known that cholinergic overstimulation attenuates the efficacy of general anaesthetics to reduce spontaneous network activity in the cortex. However, it is not clear how propofol, the most frequently used intravenous anaesthetic today, is affected. Here, we investigated the effects of cholinergic overstimulation induced by soman and acetylcholine on the ability of propofol to depress spontaneous action potential activity in organotypic cortical slices measured by extracellular voltage recordings. Cholinergic overstimulation by co-application of soman and acetylcholine (10 μM each) did not reduce the relative inhibition of propofol (1.0 μM; mean normalized action potential firing rate 0.49 ± 0.06 of control condition, p < 0.001, Wilcoxon signed rank test) but clearly reduced its efficacy. Co-application of atropine (10 nM) did not improve the efficacy. Propofol preserved its relative inhibitory potential but did not produce a degree of neuronal depression which can be expected to assure hypnosis in humans. Since a combination with atropine did not improve its efficacy, an increase in dosage will probably be necessary when propofol is used in victims suffering from organophosphorous intoxication.
Collapse
Affiliation(s)
- Berthold Drexler
- Experimental Anesthesiology Section, Department of Anesthesiology and Intensive Care Medicine, Eberhard-Karls-University, Waldhoernlestrasse 22, 72072, Tuebingen, Germany.
| | - Thomas Seeger
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany.
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany.
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany.
| | - Bernd Antkowiak
- Experimental Anesthesiology Section, Department of Anesthesiology and Intensive Care Medicine, Eberhard-Karls-University, Waldhoernlestrasse 22, 72072, Tuebingen, Germany; Werner Reichardt Center for Integrative Neuroscience, Eberhard-Karls-University, Tuebingen, Germany.
| | - Christian Grasshoff
- Experimental Anesthesiology Section, Department of Anesthesiology and Intensive Care Medicine, Eberhard-Karls-University, Waldhoernlestrasse 22, 72072, Tuebingen, Germany.
| |
Collapse
|
14
|
Yang X, Luethy A, Zhang H, Luo Y, Xue Q, Yu B, Lu H. Mechanism and Development of Modern General Anesthetics. Curr Top Med Chem 2020; 19:2842-2854. [PMID: 31724504 DOI: 10.2174/1568026619666191114101425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Before October 1846, surgery and pain were synonymous but not thereafter. Conquering pain must be one of the very few strategies that has potentially affected every human being in the world of all milestones in medicine. METHODS This review article describes how various general anesthetics were discovered historically and how they work in the brain to induce sedative, hypnosis and immobility. Their advantages and disadvantages will also be discussed. RESULTS Anesthesia is a relatively young field but is rapidly evolving. Currently used general anesthetics are almost invariably effective, but nagging side effects, both short (e.g., cardiac depression) and long (e.g., neurotoxicity) term, have reawakened the call for new drugs. CONCLUSION Based on the deepening understanding of historical development and molecular targets and actions of modern anesthetics, novel general anesthetics are being investigated as potentially improved sedative-hypnotics or a key to understand the mechanism of anesthesia.
Collapse
Affiliation(s)
- Xiaoxuan Yang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Anita Luethy
- Department of Anesthesia, Kantonsspital Aarau, Aarau, Switzerland
| | - Honghai Zhang
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qingsheng Xue
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Han Lu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
15
|
Rossokhin AV, Sharonova IN, Dvorzhak A, Bukanova JV, Skrebitsky VG. The mechanisms of potentiation and inhibition of GABA A receptors by non-steroidal anti-inflammatory drugs, mefenamic and niflumic acids. Neuropharmacology 2019; 160:107795. [PMID: 31560908 DOI: 10.1016/j.neuropharm.2019.107795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/02/2019] [Accepted: 09/23/2019] [Indexed: 11/27/2022]
Abstract
Fenamates mefanamic and niflumic acids (MFA and NFA) induced dual potentiating and inhibitory effects on GABA currents recorded in isolated cerebellar Purkinje cells using the whole-cell patch-clamp and fast-application techniques. Regardless of the concentration, both drugs induced a pronounced prolongation of the current response. We demonstrated that the same concentration of drugs can produce both potentiating and inhibitory effects, depending on the GABA concentration, which indicates that both processes take place simultaneously and the net effect depends on the concentrations of both the agonist and fenamate. We found that the NFA-induced block is strongly voltage-dependent. The Woodhull analysis of the block suggests that NFA has two binding sites in the pore - shallow and deep. We built a homology model of the open GABAAR based on the cryo-EM structure of the open α1 GlyR and applied Monte-Carlo energy minimization to optimize the ligand-receptor complexes. A systematic search for MFA/NFA binding sites in the GABAAR pore revealed the existence of two sites, the location of which coincides well with predictions of the Woodhull model. In silico docking suggests that two fenamate molecules are necessary to occlude the pore. We showed that MFA, acting as a PAM, competes with an intravenous anesthetic etomidate for a common binding site. We built structural models of MFA and NFA binding at the transmembrane β(+)/α(-) intersubunit interface. We suggested a hypothesis on the molecular mechanism underlying the prolongation of the receptor lifetime in open state after MFA/NFA binding and β subunit specificity of the fenamate potentiation.
Collapse
Affiliation(s)
| | | | - Anton Dvorzhak
- Charité-Universitätsmedizin, Neuroscience Research Center, Berlin, Germany
| | | | | |
Collapse
|
16
|
Sakamoto S, Yamaura K, Numata T, Harada F, Amaike K, Inoue R, Kiyonaka S, Hamachi I. Construction of a Fluorescent Screening System of Allosteric Modulators for the GABA A Receptor Using a Turn-On Probe. ACS CENTRAL SCIENCE 2019; 5:1541-1553. [PMID: 31572781 PMCID: PMC6764212 DOI: 10.1021/acscentsci.9b00539] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Indexed: 05/23/2023]
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. The fast inhibitory actions of GABA are mainly mediated by GABAA receptors (GABAARs), which are widely recognized as clinically relevant drug targets. However, it remains difficult to create screening systems for drug candidates that act on GABAARs because of the existence of multiple ligand-binding sites and the delicate pentameric structures of GABAARs. We here developed the first turn-on fluorescent imaging probe for GABAARs, which can be used to quantitatively evaluate ligand-receptor interactions under live cell conditions. Using noncovalent labeling of GABAARs with this turn-on probe, a new imaging-based ligand assay system, which allows discovery of positive allosteric modulators (PAMs) for the GABAAR, was successfully constructed. Our system is applicable to high-throughput ligand screening, and we discovered new small molecules that function as PAMs for GABAARs. These results highlight the power of the use of a turn-on fluorescent probe to screen drugs for complicated membrane proteins that cannot be addressed by conventional methods.
Collapse
Affiliation(s)
- Seiji Sakamoto
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kei Yamaura
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomohiro Numata
- Department
of Physiology, School of Medicine, Fukuoka
University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Fumio Harada
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuma Amaike
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryuji Inoue
- Department
of Physiology, School of Medicine, Fukuoka
University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shigeki Kiyonaka
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO
Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST), Kyoto 615-8530, Japan
| |
Collapse
|
17
|
Zebrafish behavioural profiling identifies GABA and serotonin receptor ligands related to sedation and paradoxical excitation. Nat Commun 2019; 10:4078. [PMID: 31501447 PMCID: PMC6733874 DOI: 10.1038/s41467-019-11936-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/13/2019] [Indexed: 02/08/2023] Open
Abstract
Anesthetics are generally associated with sedation, but some anesthetics can also increase brain and motor activity—a phenomenon known as paradoxical excitation. Previous studies have identified GABAA receptors as the primary targets of most anesthetic drugs, but how these compounds produce paradoxical excitation is poorly understood. To identify and understand such compounds, we applied a behavior-based drug profiling approach. Here, we show that a subset of central nervous system depressants cause paradoxical excitation in zebrafish. Using this behavior as a readout, we screened thousands of compounds and identified dozens of hits that caused paradoxical excitation. Many hit compounds modulated human GABAA receptors, while others appeared to modulate different neuronal targets, including the human serotonin-6 receptor. Ligands at these receptors generally decreased neuronal activity, but paradoxically increased activity in the caudal hindbrain. Together, these studies identify ligands, targets, and neurons affecting sedation and paradoxical excitation in vivo in zebrafish. Some anesthetics despite being generally associated with sedation, can also increase brain activity—a phenomenon called paradoxical excitation. The authors identified dozens of compounds that generally decrease neuronal activity, but increase activity in the caudal hindbrain of zebrafish.
Collapse
|
18
|
Toxicologic and Inhibitory Receptor Actions of the Etomidate Analog ABP-700 and Its Metabolite CPM-Acid. Anesthesiology 2019; 131:287-304. [DOI: 10.1097/aln.0000000000002758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Background
The etomidate analog ABP-700 produces involuntary muscle movements that could be manifestations of seizures. To define the relationship (if any) between involuntary muscle movements and seizures, electroencephalographic studies were performed in Beagle dogs receiving supra-therapeutic (~10× clinical) ABP-700 doses. γ-aminobutyric acid type A (GABAA) and glycine receptor studies were undertaken to test receptor inhibition as the potential mechanism for ABP-700 seizures.
Methods
ABP-700 was administered to 14 dogs (6 mg/kg bolus followed by a 2-h infusion at 1 mg · kg-1 · min-1, 1.5 mg · kg-1 · min-1, or 2.3 mg · kg-1 · min-1). Involuntary muscle movements were documented, electroencephalograph was recorded, and plasma ABP-700 and CPM-acid concentrations were measured during and after ABP-700 administration. The concentration-dependent modulatory actions of ABP-700 and CPM-acid were defined in oocyte-expressed α1β3γ2L GABAA and α1β glycine receptors (n = 5 oocytes/concentration) using electrophysiologic techniques.
Results
ABP-700 produced both involuntary muscle movements (14 of 14 dogs) and seizures (5 of 14 dogs). However, these phenomena were temporally and electroencephalographically distinct. Mean peak plasma concentrations were (from lowest to highest dosed groups) 35 μM, 45 μM, and 102 μM (ABP-700) and 282 μM, 478 μM, and 1,110 μM (CPM-acid). ABP-700 and CPM-acid concentration–GABAA receptor response curves defined using 6 μM γ-aminobutyric acid exhibited potentiation at low and/or intermediate concentrations and inhibition at high ones. The half-maximal inhibitory concentrations of ABP-700 and CPM-acid defined using 1 mM γ-aminobutyric acid were 770 μM (95% CI, 590 to 1,010 μM) and 1,450 μM (95% CI, 1,340 to 1,560 μM), respectively. CPM-acid similarly inhibited glycine receptors activated by 1 mM glycine with a half-maximal inhibitory concentration of 1,290 μM (95% CI, 1,240 to 1,330 μM).
Conclusions
High dose ABP-700 infusions produce involuntary muscle movements and seizures in Beagle dogs via distinct mechanisms. CPM-acid inhibits both GABAA and glycine receptors at the high (~100× clinical) plasma concentrations achieved during the dog studies, providing a plausible mechanism for the seizures.
Collapse
|
19
|
Furukawa T, Nikaido Y, Shimoyama S, Ogata Y, Kushikata T, Hirota K, Kanematsu T, Hirata M, Ueno S. Phospholipase C-related inactive protein type-1 deficiency affects anesthetic electroencephalogram activity induced by propofol and etomidate in mice. J Anesth 2019; 33:531-542. [PMID: 31332527 DOI: 10.1007/s00540-019-02663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/08/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE The general anesthetics propofol and etomidate mainly exert their anesthetic actions via GABA A receptor (GABAA-R). The GABAA-R activity is influenced by phospholipase C-related inactive protein type-1 (PRIP-1), which is related to trafficking and subcellular localization of GABAA-R. PRIP-1 deficiency attenuates the behavioral reactions to propofol but not etomidate. However, the effect of these anesthetics and of PRIP-1 deficiency on brain activity of CNS are still unclear. In this study, we examined the effects of propofol and etomidate on the electroencephalogram (EEG). METHODS The cortical EEG activity was recorded in wild-type (WT) and PRIP-1 knockout (PRIP-1 KO) mice. All recorded EEG data were offline analyzed, and the power spectral density and 95% spectral edge frequency of EEG signals were compared between genotypes before and after injections of anesthetics. RESULTS PRIP-1 deficiency induced increases in EEG absolute powers, but did not markedly change the relative spectral powers during waking and sleep states in the absence of anesthesia. Propofol administration induced increases in low-frequency relative EEG activity and decreases in SEF95 values in WT but not in PRIP-1 KO mice. Following etomidate injection, low-frequency EEG power was increased in both genotype groups. At high frequency, the relative power in PRIP-1 KO mice was smaller than that in WT mice. CONCLUSIONS The lack of PRIP-1 disrupted the EEG power distribution, but did not affect the depth of anesthesia after etomidate administration. Our analyses suggest that PRIP-1 is differentially involved in anesthetic EEG activity with the regulation of GABAA-R activity.
Collapse
Affiliation(s)
- Tomonori Furukawa
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaihu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Yoshikazu Nikaido
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaihu-cho, Hirosaki, Aomori, 036-8562, Japan.,Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shuji Shimoyama
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaihu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Yoshiki Ogata
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaihu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Tetsuya Kushikata
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takashi Kanematsu
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masato Hirata
- School of Dental Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Shinya Ueno
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaihu-cho, Hirosaki, Aomori, 036-8562, Japan. .,Research Center for Child Mental Development, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| |
Collapse
|
20
|
Weir CJ, Mitchell SJ, Lambert JJ. Role of GABAA receptor subtypes in the behavioural effects of intravenous general anaesthetics. Br J Anaesth 2019; 119:i167-i175. [PMID: 29161398 DOI: 10.1093/bja/aex369] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Since the introduction of general anaesthetics into clinical practice, researchers have been mystified as to how these chemically disparate drugs act to produce their dramatic effects on central nervous system function and behaviour. Scientific advances, particularly during the last 25 years, have now begun to reveal the molecular mechanisms underpinning their behavioural effects. For certain i.v. general anaesthetics, such as etomidate and propofol, a persuasive case can now be made that the GABAA receptor, a major inhibitory receptor in the mammalian central nervous system, is an important target. Advances in molecular pharmacology and in genetic manipulation of rodent genes reveal that different subtypes of the GABAA receptor are responsible for mediating particular aspects of the anaesthetic behavioural repertoire. Such studies provide a better understanding of the neuronal circuitry involved in the various anaesthetic-induced behaviours and, in the future, may result in the development of novel therapeutics with a reduced propensity for side-effects.
Collapse
Affiliation(s)
- C J Weir
- Institute of Academic Anaesthesia
| | - S J Mitchell
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - J J Lambert
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
21
|
Wu A, Wang Y, Min S, Liu H, Xie F. Etomidate-loaded micelles for short-acting general anesthesia: Preparation, characterizations, and in vivo studies. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
22
|
Delineation of the functional properties and the mechanism of action of AA29504, an allosteric agonist and positive allosteric modulator of GABA A receptors. Biochem Pharmacol 2018; 150:305-319. [DOI: 10.1016/j.bcp.2018.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/13/2018] [Indexed: 11/22/2022]
|
23
|
Forman SA. Combining Mutations and Electrophysiology to Map Anesthetic Sites on Ligand-Gated Ion Channels. Methods Enzymol 2018; 602:369-389. [PMID: 29588039 DOI: 10.1016/bs.mie.2018.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
General anesthetics are known to act in part by binding to and altering the function of pentameric ligand-gated ion channels such as nicotinic acetylcholine and γ-aminobutyric acid type A receptors. Combining heterologous expression of the subunits that assemble to form these ion channels, mutagenesis techniques and voltage-clamp electrophysiology have enabled a variety of "structure-function" approaches to questions of where anesthetic binds to these ion channels and how they enhance or inhibit channel function. Here, we review the evolution of concepts and experimental strategies during the last three decades, since molecular biological and electrophysiological tools became widely used. Topics covered include: (1) structural models as interpretive frameworks, (2) various electrophysiological approaches and their limitations, (3) Monod-Wyman-Changeux allosteric models as functional frameworks, (4) structural strategies including chimeras and point mutations, and (5) methods based on cysteine substitution and covalent modification. We discuss in particular depth the experimental design considerations for substituted cysteine modification-protection studies.
Collapse
Affiliation(s)
- Stuart A Forman
- Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
24
|
Feng HJ, Forman SA. Comparison of αβδ and αβγ GABA A receptors: Allosteric modulation and identification of subunit arrangement by site-selective general anesthetics. Pharmacol Res 2017; 133:289-300. [PMID: 29294355 DOI: 10.1016/j.phrs.2017.12.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/27/2022]
Abstract
GABAA receptors play a dominant role in mediating inhibition in the mature mammalian brain, and defects of GABAergic neurotransmission contribute to the pathogenesis of a variety of neurological and psychiatric disorders. Two types of GABAergic inhibition have been described: αβγ receptors mediate phasic inhibition in response to transient high-concentrations of synaptic GABA release, and αβδ receptors produce tonic inhibitory currents activated by low-concentration extrasynaptic GABA. Both αβδ and αβγ receptors are important targets for general anesthetics, which induce apparently different changes both in GABA-dependent receptor activation and in desensitization in currents mediated by αβγ vs. αβδ receptors. Many of these differences are explained by correcting for the high agonist efficacy of GABA at most αβγ receptors vs. much lower efficacy at αβδ receptors. The stoichiometry and subunit arrangement of recombinant αβγ receptors are well established as β-α-γ-β-α, while those of αβδ receptors remain controversial. Importantly, some potent general anesthetics selectively bind in transmembrane inter-subunit pockets of αβγ receptors: etomidate acts at β+/α- interfaces, and the barbiturate R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB) acts at α+/β- and γ+/β- interfaces. Thus, these drugs are useful as structural probes in αβδ receptors formed from free subunits or concatenated subunit assemblies designed to constrain subunit arrangement. Although a definite conclusion cannot be drawn, studies using etomidate and R-mTFD-MPAB support the idea that recombinant α1β3δ receptors may share stoichiometry and subunit arrangement with α1β3γ2 receptors.
Collapse
Affiliation(s)
- Hua-Jun Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, and Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA.
| | - Stuart A Forman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, and Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
25
|
Competitive Antagonism of Anesthetic Action at the γ-Aminobutyric Acid Type A Receptor by a Novel Etomidate Analog with Low Intrinsic Efficacy. Anesthesiology 2017; 127:824-837. [PMID: 28857763 DOI: 10.1097/aln.0000000000001840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The authors characterized the γ-aminobutyric acid type A receptor pharmacology of the novel etomidate analog naphthalene-etomidate, a potential lead compound for the development of anesthetic-selective competitive antagonists. METHODS The positive modulatory potencies and efficacies of etomidate and naphthalene-etomidate were defined in oocyte-expressed α1β3γ2L γ-aminobutyric acid type A receptors using voltage clamp electrophysiology. Using the same technique, the ability of naphthalene-etomidate to reduce currents evoked by γ-aminobutyric acid alone or γ-aminobutyric acid potentiated by etomidate, propofol, pentobarbital, and diazepam was quantified. The binding affinity of naphthalene-etomidate to the transmembrane anesthetic binding sites of the γ-aminobutyric acid type A receptor was determined from its ability to inhibit receptor photoaffinity labeling by the site-selective photolabels [H]azi-etomidate and R-[H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid. RESULTS In contrast to etomidate, naphthalene-etomidate only weakly potentiated γ-aminobutyric acid-evoked currents and induced little direct activation even at a near-saturating aqueous concentration. It inhibited labeling of γ-aminobutyric acid type A receptors by [H]azi-etomidate and R-[H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid with similar half-maximal inhibitory concentrations of 48 μM (95% CI, 28 to 81 μM) and 33 μM (95% CI, 20 to 54 μM). It also reduced the positive modulatory actions of anesthetics (propofol > etomidate ~ pentobarbital) but not those of γ-aminobutyric acid or diazepam. At 300 μM, naphthalene-etomidate increased the half-maximal potentiating propofol concentration from 6.0 μM (95% CI, 4.4 to 8.0 μM) to 36 μM (95% CI, 17 to 78 μM) without affecting the maximal response obtained at high propofol concentrations. CONCLUSIONS Naphthalene-etomidate is a very low-efficacy etomidate analog that exhibits the pharmacology of an anesthetic competitive antagonist at the γ-aminobutyric acid type A receptor.
Collapse
|
26
|
Abstract
GABA (γ-aminobutyric acid) receptors, of which there are two types, are involved in inhibitory synapses within the central nervous system. The GABAA receptor (GABAAR) has a central role in modern anesthesia and sedation practice, which is evident from the high proportion of agents that target the GABAAR. Many GABAAR agonists are used in anesthesia practice and sedation, including propofol, etomidate, methohexital, thiopental, isoflurane, sevoflurane, and desflurane. There are advantages and disadvantages to each GABAAR agonist currently in clinical use. With increasing knowledge regarding the pharmacology of GABAAR agonists, however, newer sedative agents have been developed which employ 'soft pharmacology', a term used to describe the pharmacology of agents whereby their chemical configuration allows rapid metabolism into inactive metabolites after the desired therapeutic effect(s) has occurred. These newer 'soft' GABAAR agonists may well approach ideal sedative agents, as they can offer well-controlled, titratable activity and ultrashort action. This review provides an overview of the role that GABAAR agonists currently play in sedation and anesthesia, in addition to discussing the future role of novel GABAAR agonists in anesthesia and sedation.
Collapse
|
27
|
NEUROCIENCIA Y ANESTESIA. REVISTA MÉDICA CLÍNICA LAS CONDES 2017. [DOI: 10.1016/j.rmclc.2017.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Molecular tools for GABA A receptors: High affinity ligands for β1-containing subtypes. Sci Rep 2017; 7:5674. [PMID: 28720884 PMCID: PMC5516028 DOI: 10.1038/s41598-017-05757-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 06/05/2017] [Indexed: 12/15/2022] Open
Abstract
γ-Aminobutyric acid type A (GABAA) receptors are pentameric GABA-gated chloride channels that are, in mammalians, drawn from a repertoire of 19 different genes, namely α1-6, β1-3, γ1-3, δ, ε, θ, π and ρ1-3. The existence of this wide variety of subunits as well as their diverse assembly into different subunit compositions result in miscellaneous receptor subtypes. In combination with the large number of known and putative allosteric binding sites, this leads to a highly complex pharmacology. Recently, a novel binding site at extracellular α+/β- interfaces was described as the site of modulatory action of several pyrazoloquinolinones. In this study we report a highly potent ligand from this class of compounds with pronounced β1-selectivity that mainly lacks α-subunit selectivity. It constitutes the most potent β1-selective positive allosteric modulatory ligand with known binding site. In addition, a proof of concept pyrazoloquinolinone ligand lacking the additional high affinity interaction with the benzodiazepine binding site is presented. Ultimately, such ligands can be used as invaluable molecular tools for the detection of β1-containing receptor subtypes and the investigation of their abundance and distribution.
Collapse
|
29
|
Forman SA, Miller KW. Mapping General Anesthetic Sites in Heteromeric γ-Aminobutyric Acid Type A Receptors Reveals a Potential For Targeting Receptor Subtypes. Anesth Analg 2017; 123:1263-1273. [PMID: 27167687 DOI: 10.1213/ane.0000000000001368] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
IV general anesthetics, including propofol, etomidate, alphaxalone, and barbiturates, produce important actions by enhancing γ-aminobutyric acid type A (GABAA) receptor activation. In this article, we review scientific studies that have located and mapped IV anesthetic sites using photoaffinity labeling and substituted cysteine modification protection. These anesthetics bind in transmembrane pockets between subunits of typical synaptic GABAA receptors, and drugs that display stereoselectivity also show remarkably selective interactions with distinct interfacial sites. These results suggest strategies for developing new drugs that selectively modulate distinct GABAA receptor subtypes.
Collapse
Affiliation(s)
- Stuart A Forman
- From the Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | | |
Collapse
|
30
|
Falk-Petersen CB, Søgaard R, Madsen KL, Klein AB, Frølund B, Wellendorph P. Development of a Robust Mammalian Cell-based Assay for Studying Recombinant α 4 β 1/3 δ GABA A Receptor Subtypes. Basic Clin Pharmacol Toxicol 2017; 121:119-129. [PMID: 28299900 DOI: 10.1111/bcpt.12778] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/10/2017] [Indexed: 11/29/2022]
Abstract
δ-Containing GABAA receptors are located extrasynaptically and mediate tonic inhibition. Their involvement in brain physiology positions them as interesting drug targets. There is thus a continued interest in establishing reliable recombinant expression systems for δ-containing GABAA receptors. Inconveniently, the recombinant expression of especially α4 β1/3 δ receptors has been found to be notoriously difficult, resulting in mixed receptor populations and/or stoichiometries and differential pharmacology depending on the expression system used. With the aim of developing a facile and robust 96-well format cell-based assay for extrasynaptic α4 β1/3 δ receptors, we have engineered and validated a HEK293 Flp-In™ cell line stably expressing the human GABAA δ-subunit. Upon co-transfection of α4 and β1/3 subunits, at optimized ratios, we have established a well-defined system for expressing α4 β1/3 δ receptors and used the fluorescence-based FLIPR Membrane Potential (FMP) assay to evaluate their pharmacology. Using the known reference compounds GABA and THIP, ternary α4 β1/3 δ and binary α4 β1/3 receptors could be distinguished based on potency and kinetic profiles but not efficacy. As expected, DS2 was able to potentiate only δ-containing receptors, whereas Zn2+ had an inhibitory effect only at binary receptors. By contrast, the hitherto reported δ-selective compounds, AA29504 and 3-OH-2'MeO6MF, were non-selective. The expression system was further validated using patch clamp electrophysiology, in which the superagonism of THIP was confirmed. The established FMP assay set-up, based on transient expression of human α4 and β1/3 subunits into a δ-subunit stable HEK293 Flp-In™ cell line, portrays a simple 96-well format assay as a useful supplement to electrophysiological recordings on δ-containing GABAA receptors.
Collapse
Affiliation(s)
- Christina B Falk-Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Søgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth L Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Anders B Klein
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Effects of bilobalide, ginkgolide B and picrotoxinin on GABA A receptor modulation by structurally diverse positive modulators. Eur J Pharmacol 2017; 806:83-90. [PMID: 28416372 DOI: 10.1016/j.ejphar.2017.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
Abstract
Anxiolytics and anticonvulsants generally positively modulate the action of GABA, whereas many convulsants (including the chloride channel blocker picrotoxinin) negatively modulate the action of GABA on GABAA receptors. Like picrotoxinin, bilobalide and ginkgolide B, active constituents of Ginkgo biloba, have been shown to negatively modulate the action of GABA at α1β2γ2L GABAA receptors. However, unlike picrotoxinin, bilobalide and ginkgolide B are not known to cause convulsions. We have assessed the action of bilobalide, ginkgolide B and picrotoxinin on a range of GABAA modulators (etomidate, loreclezole, propofol, thiopentone sodium, diazepam, and allopregnanolone), using two-electrode voltage clamp electrophysiology at recombinant α1β2γ2L GABAA receptors expressed in Xenopus oocytes. The results indicate that bilobalide and ginkgolide B differ from picrotoxinin in their ability to inhibit the actions of a range of these structurally diverse GABAA positive modulators consistent with these modulators acting on a multiplicity of active sites associated with GABAA receptors. In the presence GABA, ginkgolide B was more potent than bilobalide in inhibiting the GABA-potentiating effect of propofol, equipotent against loreclezole and allopregnanolone, and less potent against etomidate, diazepam, and thiopentone sodium. This indicates that in comparison to picrotoxinin, bilobalide and ginkgolide B differ in their effects on the different modulators.
Collapse
|
32
|
Developmental control of spike-timing-dependent plasticity by tonic GABAergic signaling in striatum. Neuropharmacology 2017; 121:261-277. [PMID: 28408325 DOI: 10.1016/j.neuropharm.2017.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/20/2017] [Accepted: 04/07/2017] [Indexed: 11/20/2022]
Abstract
Activity-dependent long-term potentiation (LTP) and depression (LTD) of synaptic strength underlie multiple forms of learning and memory. Spike-timing-dependent plasticity (STDP) has been described as a Hebbian synaptic learning rule that could account for experience-dependent changes in neural networks, but little is known about whether and how STDP evolves during development. We previously showed that GABAergic signaling governs STDP polarity and thus operates as a Hebbian/anti-Hebbian switch in the striatum. Although GABAergic networks are subject to important developmental maturation, it remains unclear whether STDP is developmentally shaped by GABAergic signaling. Here, we investigated whether STDP rules are developmentally regulated at corticostriatal synapses in the dorsolateral striatum. We found that striatal STDP displays unidirectional plasticity (Hebbian tLTD) in young rats (P7-10) whereas STDP is bidirectional and anti-Hebbian in juvenile (P20-25) and adult (P60-90) rats. We also provide evidence that the appearance of tonic (extrasynaptic) GABAergic signaling from the juvenile stage is a crucial factor in shaping STDP rules during development, establishing bidirectional anti-Hebbian STDP in the adult striatum. Thus, developmental maturation of GABAergic signaling tightly drives the polarity of striatal plasticity.
Collapse
|
33
|
Zhang JQ, Xu WY, Xu CQ. Neonatal Propofol and Etomidate Exposure Enhance Inhibitory Synaptic Transmission in Hippocampal Cornus Ammonis 1 Pyramidal Neurons. Chin Med J (Engl) 2017; 129:2714-2724. [PMID: 27824005 PMCID: PMC5126164 DOI: 10.4103/0366-6999.193459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background: Propofol and etomidate are the most important intravenous general anesthetics in the current clinical use and that mediate gamma-aminobutyric acid's (GABAergic) synaptic transmission. However, their long-term effects on GABAergic synaptic transmission induced by neonatal propofol or etomidate exposure remain unclear. We investigated the long-term GABAergic neurotransmission alterations, following neonatal propofol and etomidate administration. Methods: Sprague-Dawley rat pups at postnatal days 4–6 were underwent 6-h-long propofol-induced or 5-h-long etomidate-induced anesthesia. We performed whole-cell patch-clamp recording from pyramidal cells in the cornus ammonis 1 area of acute hippocampal slices of postnatal 80–90 days. Spontaneous and miniature inhibitory GABAergic currents (spontaneous inhibitory postsynaptic currents [sIPSCs] and miniature inhibitory postsynaptic currents [mIPSCs]) and their kinetic characters were measured. The glutamatergic tonic effect on inhibitory transmission and the effect of bumetanide on neonatal propofol exposure were also examined. Results: Neonatal propofol exposure significantly increased the frequency of mIPSCs (from 1.87 ± 0.35 Hz to 3.43 ± 0.51 Hz, P < 0.05) and did not affect the amplitude of mIPSCs and sIPSCs. Both propofol and etomidate slowed the decay time of mIPSCs kinetics (168.39 ± 27.91 ms and 267.02 ± 100.08 ms vs. 68.18 ± 12.43 ms; P < 0.05). Bumetanide significantly blocked the frequency increase and reversed the kinetic alteration of mIPSCs induced by neonatal propofol exposure (3.01 ± 0.45 Hz and 94.30 ± 32.56 ms). Conclusions: Neonatal propofol and etomidate exposure has long-term effects on inhibitory GABAergic transmission. Propofol might act at pre- and post-synaptic GABA receptor A (GABAA) receptors within GABAergic synapses and impairs the glutamatergic tonic input to GABAergic synapses; etomidate might act at the postsynaptic site.
Collapse
Affiliation(s)
- Jia-Qiang Zhang
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL 32611, USA; Department of Anesthesiology, The People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China,
| | - Wan-Ying Xu
- Department of Neurobiology, Wake Forest University, Winston-Salem, NC 27106, USA
| | - Chang-Qing Xu
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL 32611, USA
| |
Collapse
|
34
|
Chua HC, Chebib M. GABA A Receptors and the Diversity in their Structure and Pharmacology. ADVANCES IN PHARMACOLOGY 2017; 79:1-34. [DOI: 10.1016/bs.apha.2017.03.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Amlong CA, Perkins MG, Houle TT, Miller KW, Pearce RA. Contrasting Effects of the γ-Aminobutyric Acid Type A Receptor β3 Subunit N265M Mutation on Loss of Righting Reflexes Induced by Etomidate and the Novel Anesthetic Barbiturate R-mTFD-MPAB. Anesth Analg 2016; 123:1241-1246. [PMID: 27331778 PMCID: PMC5072997 DOI: 10.1213/ane.0000000000001358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Previous studies have shown that etomidate modulates γ-aminobutyric acid type A receptors by binding at the β-α subunit interface within the transmembrane domain of receptors that incorporate β2 or β3 subunits. Introducing an asparagine-to-methionine (N265M) mutation at position 265 of the β3 subunit, which sits within the etomidate-binding site, attenuates the hypnotic effect of etomidate in vivo. It was reported recently that the photoactivatable barbiturate R-mTFD-MPAB also acts on γ-aminobutyric acid type A receptors primarily by binding to a homologous site at the γ-β interface. Given this difference in drug-binding sites established by the in vitro experiments, we hypothesized that the β3-N265M-mutant mice would not be resistant to the anesthetic effects of R-mTFD-MPAB in vivo, whereas the same mutant mice would be resistant to the anesthetic effects of R-etomidate. METHODS We measured the effects of IV injection of etomidate and R-mTFD-MPAB on loss and recovery of righting reflex in wild-type mice and in mice carrying the β3-N265M mutation. RESULTS Etomidate-induced hypnosis, as measured by the duration of loss of righting reflex, was attenuated in the N265M knock-in mice, confirming prior results. By contrast, recovery of balance and coordinated movement, as measured by the ability to maintain all 4 paws on the ground, was unaffected by the mutation. Neither hypnosis nor impairment of coordinated movement produced by the barbiturate R-mTFD-MPAB was affected by the mutation. CONCLUSIONS The findings confirmed our hypothesis that mutating the etomidate-binding site would not alter the response to the barbiturate R-mTFD-MPAB. Furthermore, we confirmed previous studies indicating that etomidate-induced hypnosis is mediated in part by β3-containing receptors. We also extended previous findings by showing that etomidate-impaired balance and coordinated movement are not mediated by β3-containing receptors, thus implicating β2-containing receptors in this end point.
Collapse
Affiliation(s)
- Corey A Amlong
- From the *Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; and †Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
36
|
Woll KA, Murlidaran S, Pinch BJ, Hénin J, Wang X, Salari R, Covarrubias M, Dailey WP, Brannigan G, Garcia BA, Eckenhoff RG. A Novel Bifunctional Alkylphenol Anesthetic Allows Characterization of γ-Aminobutyric Acid, Type A (GABAA), Receptor Subunit Binding Selectivity in Synaptosomes. J Biol Chem 2016; 291:20473-86. [PMID: 27462076 PMCID: PMC5034043 DOI: 10.1074/jbc.m116.736975] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/25/2016] [Indexed: 12/19/2022] Open
Abstract
Propofol, an intravenous anesthetic, is a positive modulator of the GABAA receptor, but the mechanistic details, including the relevant binding sites and alternative targets, remain disputed. Here we undertook an in-depth study of alkylphenol-based anesthetic binding to synaptic membranes. We designed, synthesized, and characterized a chemically active alkylphenol anesthetic (2-((prop-2-yn-1-yloxy)methyl)-5-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenol, AziPm-click (1)), for affinity-based protein profiling (ABPP) of propofol-binding proteins in their native state within mouse synaptosomes. The ABPP strategy captured ∼4% of the synaptosomal proteome, including the unbiased capture of five α or β GABAA receptor subunits. Lack of γ2 subunit capture was not due to low abundance. Consistent with this, independent molecular dynamics simulations with alchemical free energy perturbation calculations predicted selective propofol binding to interfacial sites, with higher affinities for α/β than γ-containing interfaces. The simulations indicated hydrogen bonding is a key component leading to propofol-selective binding within GABAA receptor subunit interfaces, with stable hydrogen bonds observed between propofol and α/β cavity residues but not γ cavity residues. We confirmed this by introducing a hydrogen bond-null propofol analogue as a protecting ligand for targeted-ABPP and observed a lack of GABAA receptor subunit protection. This investigation demonstrates striking interfacial GABAA receptor subunit selectivity in the native milieu, suggesting that asymmetric occupancy of heteropentameric ion channels by alkylphenol-based anesthetics is sufficient to induce modulation of activity.
Collapse
Affiliation(s)
- Kellie A Woll
- From the Departments of Anesthesiology and Critical Care and Pharmacology and
| | | | - Benika J Pinch
- the Department of Chemistry, University of Pennsylvania School of Arts and Sciences, Philadelphia, Pennsylvania 19104
| | - Jérôme Hénin
- the Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, CNRS UMR 8251 and Université Paris Diderot, 5013 Paris, France, and
| | - Xiaoshi Wang
- the Epigenetics Program, Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Reza Salari
- the Center for Computational and Integrative Biology and Department of Physics, Rutgers University, Camden, New Jersey 08102
| | - Manuel Covarrubias
- the Department of Neuroscience and Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - William P Dailey
- the Department of Chemistry, University of Pennsylvania School of Arts and Sciences, Philadelphia, Pennsylvania 19104
| | - Grace Brannigan
- the Center for Computational and Integrative Biology and Department of Physics, Rutgers University, Camden, New Jersey 08102
| | - Benjamin A Garcia
- the Epigenetics Program, Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
37
|
Fu B, Wang Y, Yang H, Yu T. Effects of Etomidate on GABAergic and Glutamatergic Transmission in Rat Thalamocortical Slices. Neurochem Res 2016; 41:3181-3191. [PMID: 27561291 DOI: 10.1007/s11064-016-2042-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 12/14/2022]
Abstract
Although accumulative evidence indicates that the thalamocortical system is an important target for general anesthetics, the underlying mechanisms of anesthetic action on thalamocortical neurotransmission are not fully understood. The aim of the study is to explore the action of etomidate on glutamatergic and GABAergic transmission in rat thalamocortical slices by using whole cell patch-clamp recording. We found that etomidate mainly prolonged the decay time of spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs), without changing the frequency. Furthermore, etomidate not only prolonged the decay time of miniature inhibitory postsynaptic currents (mIPSCs) but also increased the amplitude. On the other hand, etomidate significantly decreased the frequency of spontaneous glutamatergic excitatory postsynaptic currents (sEPSCs), without altering the amplitude or decay time in the absence of bicuculline. When GABAA receptors were blocked using bicuculline, the effects of etomidate on sEPSCs were mostly eliminated. These results suggest that etomidate enhances GABAergic transmission mainly through postsynaptic mechanism in thalamocortical neuronal network. Etomidate attenuates glutamatergic transmission predominantly through presynaptic action and requires presynaptic GABAA receptors involvement.
Collapse
Affiliation(s)
- Bao Fu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Yuan Wang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Hao Yang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Dalian road 149, Zunyi, 563000, Guizhou, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Dalian road 149, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
38
|
Abstract
BACKGROUND Etomidate is a highly potent anesthetic agent that is believed to produce hypnosis by enhancing γ-aminobutyric acid type A (GABAA) receptor function. The authors characterized the GABAA receptor and hypnotic potencies of etomidate analogs. The authors then used computational techniques to build statistical and graphical models that relate the potencies of these etomidate analogs to their structures to identify the specific molecular determinants of potency. METHODS GABAA receptor potencies were defined with voltage clamp electrophysiology using α1β3γ2 receptors harboring a channel mutation (α1[L264T]) that enhances anesthetic sensitivity (n = 36 to 60 measurements per concentration-response curve). The hypnotic potencies of etomidate analogs were defined using a loss of righting reflexes assay in Sprague Dawley rats (n = 9 to 21 measurements per dose-response curve). Three-dimensional quantitative structure-activity relationships were determined in silico using comparative molecular field analysis. RESULTS The GABAA receptor and hypnotic potencies of etomidate and the etomidate analogs ranged by 91- and 53-fold, respectively. These potency measurements were significantly correlated (r = 0.72), but neither measurement correlated with drug hydrophobicity (r = 0.019 and 0.005, respectively). Statistically significant and predictive comparative molecular field analysis models were generated, and a pharmacophore model was built that revealed both the structural elements in etomidate analogs associated with high potency and the interactions that these elements make with the etomidate-binding site. CONCLUSIONS There are multiple specific structural elements in etomidate and etomidate analogs that mediate GABAA receptor modulation. Modifying any one element can alter receptor potency by an order of magnitude or more.
Collapse
|
39
|
Maldifassi MC, Baur R, Pierce D, Nourmahnad A, Forman SA, Sigel E. Novel positive allosteric modulators of GABAA receptors with anesthetic activity. Sci Rep 2016; 6:25943. [PMID: 27198062 PMCID: PMC4873749 DOI: 10.1038/srep25943] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/25/2016] [Indexed: 01/08/2023] Open
Abstract
GABAA receptors are the main inhibitory neurotransmitter receptors in the brain and are targets for numerous clinically important drugs such as benzodiazepines, anxiolytics and anesthetics. We previously identified novel ligands of the classical benzodiazepine binding pocket in α1β2γ2 GABAA receptors using an experiment-guided virtual screening (EGVS) method. This screen also identified novel ligands for intramembrane low affinity diazepam site(s). In the current study we have further characterized compounds 31 and 132 identified with EGVS as well as 4-O-methylhonokiol. We investigated the site of action of these compounds in α1β2γ2 GABAA receptors expressed in Xenopus laevis oocytes using voltage-clamp electrophysiology combined with a benzodiazepine site antagonist and transmembrane domain mutations. All three compounds act mainly through the two β+/α− subunit transmembrane interfaces of the GABAA receptors. We then used concatenated receptors to dissect the involvement of individual β+/α− interfaces. We further demonstrated that these compounds have anesthetic activity in a small aquatic animal model, Xenopus laevis tadpoles. The newly identified compounds may serve as scaffolds for the development of novel anesthetics.
Collapse
Affiliation(s)
- Maria C Maldifassi
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Roland Baur
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - David Pierce
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, 02114 Massachusetts
| | - Anahita Nourmahnad
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, 02114 Massachusetts
| | - Stuart A Forman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, 02114 Massachusetts
| | - Erwin Sigel
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
40
|
|
41
|
Woll KA, Weiser BP, Liang Q, Meng T, McKinstry-Wu A, Pinch B, Dailey WP, Gao WD, Covarrubias M, Eckenhoff RG. Role for the propofol hydroxyl in anesthetic protein target molecular recognition. ACS Chem Neurosci 2015; 6:927-35. [PMID: 25799399 DOI: 10.1021/acschemneuro.5b00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Propofol is a widely used intravenous general anesthetic. We synthesized 2-fluoro-1,3-diisopropylbenzene, a compound that we call "fropofol", to directly assess the significance of the propofol 1-hydroxyl for pharmacologically relevant molecular recognition in vitro and for anesthetic efficacy in vivo. Compared to propofol, fropofol had a similar molecular volume and only a small increase in hydrophobicity. Isothermal titration calorimetry and competition assays revealed that fropofol had higher affinity for a protein site governed largely by van der Waals interactions. Within another protein model containing hydrogen bond interactions, propofol demonstrated higher affinity. In vivo, fropofol demonstrated no anesthetic efficacy, but at high concentrations produced excitatory activity in tadpoles and mice; fropofol also antagonized propofol-induced hypnosis. In a propofol protein target that contributes to hypnosis, α1β2γ2L GABAA receptors, fropofol demonstrated no significant effect alone or on propofol positive allosteric modulation of the ion channel, suggesting an additional requirement for the 1-hydroxyl within synaptic GABAA receptor site(s). However, fropofol caused similar adverse cardiovascular effects as propofol by a dose-dependent depression of myocardial contractility. Our results directly implicate the propofol 1-hydroxyl as contributing to molecular recognition within protein targets leading to hypnosis, but not necessarily within protein targets leading to side effects of the drug.
Collapse
Affiliation(s)
| | | | - Qiansheng Liang
- Department
of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN 417, Philadelphia, Pennsylvania 19107, United States
| | - Tao Meng
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012 P. R. China
- Department of Anesthesiology
and Critical Care Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, Maryland 21287, United States
| | | | - Benika Pinch
- Department of Chemistry, University of Pennsylvania School of Arts and Sciences, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - William P. Dailey
- Department of Chemistry, University of Pennsylvania School of Arts and Sciences, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Wei Dong Gao
- Department of Anesthesiology
and Critical Care Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, Maryland 21287, United States
| | - Manuel Covarrubias
- Department
of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN 417, Philadelphia, Pennsylvania 19107, United States
| | | |
Collapse
|
42
|
Hammer H, Bader BM, Ehnert C, Bundgaard C, Bunch L, Hoestgaard-Jensen K, Schroeder OHU, Bastlund JF, Gramowski-Voß A, Jensen AA. A Multifaceted GABAA Receptor Modulator: Functional Properties and Mechanism of Action of the Sedative-Hypnotic and Recreational Drug Methaqualone (Quaalude). Mol Pharmacol 2015; 88:401-20. [PMID: 26056160 DOI: 10.1124/mol.115.099291] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/08/2015] [Indexed: 01/09/2023] Open
Abstract
In the present study, we have elucidated the functional characteristics and mechanism of action of methaqualone (2-methyl-3-o-tolyl-4(3H)-quinazolinone, Quaalude), an infamous sedative-hypnotic and recreational drug from the 1960s-1970s. Methaqualone was demonstrated to be a positive allosteric modulator at human α1,2,3,5β2,3γ2S GABAA receptors (GABAARs) expressed in Xenopus oocytes, whereas it displayed highly diverse functionalities at the α4,6β1,2,3δ GABAAR subtypes, ranging from inactivity (α4β1δ), through negative (α6β1δ) or positive allosteric modulation (α4β2δ, α6β2,3δ), to superagonism (α4β3δ). Methaqualone did not interact with the benzodiazepine, barbiturate, or neurosteroid binding sites in the GABAAR. Instead, the compound is proposed to act through the transmembrane β((+))/α((-)) subunit interface of the receptor, possibly targeting a site overlapping with that of the general anesthetic etomidate. The negligible activities displayed by methaqualone at numerous neurotransmitter receptors and transporters in an elaborate screening for additional putative central nervous system (CNS) targets suggest that it is a selective GABAAR modulator. The mode of action of methaqualone was further investigated in multichannel recordings from primary frontal cortex networks, where the overall activity changes induced by the compound at 1-100 μM concentrations were quite similar to those mediated by other CNS depressants. Finally, the free methaqualone concentrations in the mouse brain arising from doses producing significant in vivo effects in assays for locomotion and anticonvulsant activity correlated fairly well with its potencies as a modulator at the recombinant GABAARs. Hence, we propose that the multifaceted functional properties exhibited by methaqualone at GABAARs give rise to its effects as a therapeutic and recreational drug.
Collapse
Affiliation(s)
- Harriet Hammer
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Benjamin M Bader
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Corina Ehnert
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Christoffer Bundgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Kirsten Hoestgaard-Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Olaf H-U Schroeder
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Jesper F Bastlund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Alexandra Gramowski-Voß
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| |
Collapse
|
43
|
Hammer H, Ebert B, Jensen HS, Jensen AA. Functional characterization of the 1,5-benzodiazepine clobazam and its major active metabolite N-desmethylclobazam at human GABA(A) receptors expressed in Xenopus laevis oocytes. PLoS One 2015; 10:e0120239. [PMID: 25798598 PMCID: PMC4370687 DOI: 10.1371/journal.pone.0120239] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 02/04/2015] [Indexed: 12/13/2022] Open
Abstract
The 1,5-benzodiazepine clobazam is indicated for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome in patients 2 years of age or older in the United States, and for treatment of anxiety and various forms of epilepsy elsewhere. Clobazam has been reported to exhibit different in vivo adverse effects and addiction liability profile than the classic 1,4-benzodiazepines. In this study, it was investigated whether the in vitro pharmacological properties of clobazam and its major active metabolite N-desmethylclobazam could explain some of these clinical differences. The functional properties of the two 1,5-benzodiazepines were characterized at the human γ-aminobutyric acid type A receptor (GABAAR) subtypes α1β2γ2S, α2β2γ2S, α3β2γ2S, α5β2γ2S and α6β2δ expressed in Xenopus laevis oocytes by use of two-electrode voltage-clamp electrophysiology and compared to those exhibited by the 1,4-benzodiazepine clonazepam. All three compounds potentiated GABA EC20-evoked responses through the α1,2,3,5β2γ2S GABAARs in a reversible and concentration-dependent manner, with each displaying similar EC50 values at the four subtypes. Furthermore, the degrees of potentiation of the GABA EC20 currents through the four receptors mediated by saturating modulator concentrations did not differ substantially for any of the three benzodiazepines. The three compounds were substantially less potent (200-3900 fold) as positive allosteric modulators at the α6β2δ GABAAR than at the α1,2,3,5β2γ2S receptors. Interestingly, however, clobazam and especially N-desmethylclobazam were highly efficacious potentiators of α6β2δ receptor signaling. Although this activity component is unlikely to contribute to the in vivo effects of clobazam/N-desmethylclobazam, the 1,5-benzodiazepine could constitute an interesting lead for novel modulators targeting this low-affinity binding site in GABAARs. In conclusion, the non-selective modulation exerted by clobazam, N-desmethylclobazam and clonazepam at the α1β2γ2S, α2β2γ2S, α3β2γ2S and α5β2γ2S GABAARs indicate that the observed clinical differences between clobazam and 1,4-benzodiazepines are likely to arise from factors other than their respective pharmacological properties at the GABAARs as investigated here.
Collapse
Affiliation(s)
- Harriet Hammer
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Anders A. Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
44
|
Probing α4βδ GABAA receptor heterogeneity: differential regional effects of a functionally selective α4β1δ/α4β3δ receptor agonist on tonic and phasic inhibition in rat brain. J Neurosci 2015; 34:16256-72. [PMID: 25471566 DOI: 10.1523/jneurosci.1495-14.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the present study, the orthosteric GABAA receptor (GABAAR) ligand 4,5,6,7-tetrahydroisothiazolo[5,4-c]pyridin-3-ol (Thio-THIP) was found to possess a highly interesting functional profile at recombinant human GABAARs and native rat GABAARs. Whereas Thio-THIP displayed weak antagonist activity at α1,2,5β2,3γ2S and ρ1 GABAARs and partial agonism at α6β2,3δ GABAARs expressed in Xenopus oocytes, the pronounced agonism exhibited by the compound at α4β1δ and α4β3δ GABAARs was contrasted by its negligible activity at the α4β2δ subtype. To elucidate to which extent this in vitro profile translated into functionality at native GABAARs, we assessed the effects of 100 μm Thio-THIP at synaptic and extrasynaptic receptors in principal cells of four different brain regions by slice electrophysiology. In concordance with its α6β2,3δ agonism, Thio-THIP evoked robust currents through extrasynaptic GABAARs in cerebellar granule cells. In contrast, the compound did not elicit significant currents in dentate gyrus granule cells or in striatal medium spiny neurons (MSNs), indicating predominant expression of extrasynaptic α4β2δ receptors in these cells. Interestingly, Thio-THIP evoked differential degrees of currents in ventrobasal thalamus neurons, a diversity that could arise from differential expression of extrasynaptic α4βδ subtypes in the cells. Finally, whereas 100 μm Thio-THIP did not affect the synaptic currents in ventrobasal thalamus neurons or striatal MSNs, it reduced the current amplitudes recorded from dentate gyrus granule cells, most likely by targeting perisynaptic α4βδ receptors expressed at distal dendrites of these cells. Being the first published ligand capable of discriminating between β2- and β3-containing receptor subtypes, Thio-THIP could be a valuable tool in explorations of native α4βδ GABAARs.
Collapse
|
45
|
Thalamic δ-subunit containing GABAA receptors promote electrocortical signatures of deep non-REM sleep but do not mediate the effects of etomidate at the thalamus in vivo. J Neurosci 2015; 34:12253-66. [PMID: 25209268 DOI: 10.1523/jneurosci.0618-14.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Extrasynaptic δ-subunits containing GABAA receptors (δGABAARs) are sensitive targets for several commonly used hypnotic agents and mediate tonic neuronal inhibition. δGABAARs are highly expressed within the thalamus and their activation promotes a switch from tonic to burst firing in vitro. Here we test two hypotheses in vivo. (1) Activation of thalamic δGABAARs will elicit electrocortical signatures consistent with widespread thalamocortical burst firing such as increased delta oscillations (1-4 Hz) and reciprocal changes in spindle-like oscillations (7-14 Hz). (2) These signatures will be recapitulated by the general anesthetic etomidate, if the electrocortical effects of etomidate at the thalamus are mediated by δGABAARs. Microperfusion of the δGABAAR-preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP; 10 and 50 μM) into the ventrobasal complex produced significant effects on electrocortical activity in wild-type mice, but not in mice lacking δGABAARs (Gabrd(-/-)), i.e., the effects with THIP were dependent on δGABAARs. THIP (1) increased 1-4 Hz power in wakefulness and nonrapid-eye movement (NREM) sleep; (2) reduced spindle-like oscillations in NREM sleep; and (3) increased the speed of stable transitions into NREM sleep, indicating effects on state-space dynamics. In contrast, microperfusion of etomidate (10 and 30 μM) into the ventrobasal complex produced effects on electrocortical activity that were independent of δGABAARs, i.e., effects occurred in wild-type and Gabrd(-/-) mice. Etomidate (1) decreased 1-4 Hz power, increased 8-12 Hz, and/or 12-30 Hz power in all sleep-wake states; (2) increased spindle-like oscillations; and (3) increased REM sleep expression. These results indicate that thalamic δGABAARs promote electrocortical signatures of deep NREM sleep, but do not mediate the effects of etomidate at the thalamus in vivo.
Collapse
|
46
|
Babateen O, Jin Z, Bhandage A, Korol SV, Westermark B, Forsberg Nilsson K, Uhrbom L, Smits A, Birnir B. Etomidate, propofol and diazepam potentiate GABA-evoked GABAA currents in a cell line derived from human glioblastoma. Eur J Pharmacol 2014; 748:101-7. [PMID: 25510230 DOI: 10.1016/j.ejphar.2014.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022]
Abstract
GABAA receptors are pentameric chloride ion channels that are opened by GABA. We have screened a cell line derived from human glioblastoma, U3047MG, for expression of GABAA receptor subunit isoforms and formation of functional ion channels. We identified GABAA receptors subunit α2, α3, α5, β1, β2, β3, δ, γ3, π, and θ mRNAs in the U3047MG cell line. Whole-cell GABA-activated currents were recorded and the half-maximal concentration (EC₅₀) for the GABA-activated current was 36 μM. The currents were activated by THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) and enhanced by the benzodiazepine diazepam (1 μM) and the general anesthetics etomidate and propofol (50 μM). In line with the expressed GABAA receptors containing at least the α3β3θ subunits, the receptors were highly sensitive to etomidate (EC₅₀=55 nM). Immunocytochemistry identified expression of the α3 and β3 subunit proteins. Our results show that the GABAA receptors in the glial cell line are functional and are modulated by classical GABAA receptor drugs. We propose that the U3047MG cell line may be used as a model system to study GABAA receptors function and pharmacology in glial cells.
Collapse
Affiliation(s)
- Omar Babateen
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Zhe Jin
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - AmolK Bhandage
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Sergiy V Korol
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Bengt Westermark
- Department of Immunology, Genetic and Pathology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg Nilsson
- Department of Immunology, Genetic and Pathology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lene Uhrbom
- Department of Immunology, Genetic and Pathology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anja Smits
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Bryndis Birnir
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
47
|
Antkowiak B. Closing the gap between the molecular and systemic actions of anesthetic agents. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 72:229-62. [PMID: 25600373 DOI: 10.1016/bs.apha.2014.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Genetic approaches have been successfully used to relate the diverse molecular actions of anesthetic agents to their amnestic, sedative, hypnotic, and immobilizing properties. The hypnotic effect of etomidate, quantified as the duration of the loss of righting reflex in mice, is equally mediated by GABAA receptors containing β2- and β3-protein subunits. However, only β3-containing receptors are involved in producing electroencephalogram (EEG)-patterns typical of general anesthesia. The sedative action of diazepam is produced by α1-subunit-containing receptors, but these receptors do not contribute to the drug's characteristic EEG-"fingerprint." Thus, GABAA receptors with α1- and β2-subunits take a central role in causing benzodiazepine-induced sedation and etomidate-induced hypnosis, but the corresponding EEG-signature is difficult to resolve. Contrastingly, actions of etomidate and benzodiazepines mediated via α2- and β3-subunits modify rhythmic brain activity in vitro and in vivo at least in part by enhancing neuronal synchrony. The immobilizing action of GABAergic anesthetics predominantly involves β3-subunit-containing GABAA receptors in the spinal cord. Interestingly, this action is self-limiting as GABA-release is attenuated via the same receptors. Anesthetic-induced amnesia is in part mediated by GABAA receptors harboring α5-subunits that are highly enriched in the hippocampus and, in addition, by α1-containing receptors in the forebrain. Because there is accumulating evidence that in patients the expression pattern of GABAA receptor subtypes varies with age, is altered by the long-term use of drugs, and is affected by pathological conditions like inflammation and sepsis, further research is recommended to adapt the use of anesthetic agents to the specific requirements of individual patients.
Collapse
Affiliation(s)
- Bernd Antkowiak
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology Section, Eberhard-Karls-University, Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, Eberhard-Karls-University, Tübingen, Germany.
| |
Collapse
|
48
|
Mutations at beta N265 in γ-aminobutyric acid type A receptors alter both binding affinity and efficacy of potent anesthetics. PLoS One 2014; 9:e111470. [PMID: 25347186 PMCID: PMC4210246 DOI: 10.1371/journal.pone.0111470] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/02/2014] [Indexed: 11/19/2022] Open
Abstract
Etomidate and propofol are potent general anesthetics that act via GABAA receptor allosteric co-agonist sites located at transmembrane β+/α- inter-subunit interfaces. Early experiments in heteromeric receptors identified βN265 (M2-15') on β2 and β3 subunits as an important determinant of sensitivity to these drugs. Mechanistic analyses suggest that substitution with serine, the β1 residue at this position, primarily reduces etomidate efficacy, while mutation to methionine eliminates etomidate sensitivity and might prevent drug binding. However, the βN265 residue has not been photolabeled with analogs of either etomidate or propofol. Furthermore, substituted cysteine modification studies find no propofol protection at this locus, while etomidate protection has not been tested. Thus, evidence of contact between βN265 and potent anesthetics is lacking and it remains uncertain how mutations alter drug sensitivity. In the current study, we first applied heterologous α1β2N265Cγ2L receptor expression in Xenopus oocytes, thiol-specific aqueous probe modification, and voltage-clamp electrophysiology to test whether etomidate inhibits probe reactions at the β-265 sidechain. Using up to 300 µM etomidate, we found both an absence of etomidate effects on α1β2N265Cγ2L receptor activity and no inhibition of thiol modification. To gain further insight into anesthetic insensitive βN265M mutants, we applied indirect structure-function strategies, exploiting second mutations in α1β2/3γ2L GABAA receptors. Using α1M236C as a modifiable and anesthetic-protectable site occupancy reporter in β+/α- interfaces, we found that βN265M reduced apparent anesthetic affinity for receptors in both resting and GABA-activated states. βN265M also impaired the transduction of gating effects associated with α1M236W, a mutation that mimics β+/α- anesthetic site occupancy. Our results show that βN265M mutations dramatically reduce the efficacy/transduction of anesthetics bound in β+/α- sites, and also significantly reduce anesthetic affinity for resting state receptors. These findings are consistent with a role for βN265 in anesthetic binding within the β+/α- transmembrane sites.
Collapse
|
49
|
Analogues of etomidate: modifications around etomidate's chiral carbon and the impact on in vitro and in vivo pharmacology. Anesthesiology 2014; 121:290-301. [PMID: 24777068 DOI: 10.1097/aln.0000000000000268] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND R-etomidate possesses unique desirable properties but potently suppresses adrenocortical function. Consequently, efforts are being made to define structure-activity relationships with the goal of designing analogues with reduced adrenocortical toxicity. The authors explored the pharmacological impact of modifying etomidate's chiral center using R-etomidate, S-etomidate, and two achiral etomidate analogues (cyclopropyl etomidate and dihydrogen etomidate). METHODS The γ-aminobutyric acid type A receptor modulatory potencies of drugs were assessed in oocyte-expressed α1(L264T)β3γ2L and α1(L264T)β1γ2L γ-aminobutyric acid type A receptors (for each drug, n = 6 oocytes per subtype). In rats, hypnotic potencies and durations of action were measured using a righting reflex assay (n = 26 to 30 doses per drug), and adrenocortical potencies were quantified by using an adrenocorticotropic hormone stimulation test (n = 20 experiments per drug). RESULTS All four drugs activated both γ-aminobutyric acid type A receptor subtypes in vitro and produced hypnosis and suppressed adrenocortical function in rats. However, drug potencies in each model ranged by 1 to 2 orders of magnitude. R-etomidate had the highest γ-aminobutyric acid type A receptor modulatory, hypnotic, and adrenocortical inhibitory potencies. Respectively, R-etomidate, S-etomidate, and cyclopropyl etomidate were 27.4-, 18.9-, and 23.5-fold more potent activators of receptors containing β3 subunits than β1 subunits; however, dihydrogen etomidate's subunit selectivity was only 2.48-fold and similar to that of propofol (2.08-fold). S-etomidate was 1/23rd as potent an adrenocortical inhibitor as R-etomidate. CONCLUSION The linkage between the structure of etomidate's chiral center and its pharmacology suggests that altering etomidate's chiral center may be used as part of a strategy to design analogues with more desirable adrenocortical activities and/or subunit selectivities.
Collapse
|
50
|
James OT, Livesey MR, Qiu J, Dando O, Bilican B, Haghi G, Rajan R, Burr K, Hardingham GE, Chandran S, Kind PC, Wyllie DJA. Ionotropic GABA and glycine receptor subunit composition in human pluripotent stem cell-derived excitatory cortical neurones. J Physiol 2014; 592:4353-63. [PMID: 25172951 PMCID: PMC4215781 DOI: 10.1113/jphysiol.2014.278994] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We have assessed, using whole-cell patch-clamp recording and RNA-sequencing (RNA-seq), the properties and composition of GABAA receptors (GABAARs) and strychnine-sensitive glycine receptors (GlyRs) expressed by excitatory cortical neurons derived from human embryonic stem cells (hECNs). The agonists GABA and muscimol gave EC50 values of 278 μm and 182 μm, respectively, and the presence of a GABAAR population displaying low agonist potencies is supported by strong RNA-seq signals for α2 and α3 subunits. GABAAR-mediated currents, evoked by EC50 concentrations of GABA, were blocked by bicuculline and picrotoxin with IC50 values of 2.7 and 5.1 μm, respectively. hECN GABAARs are predominantly γ subunit-containing as assessed by the sensitivity of GABA-evoked currents to diazepam and insensitivity to Zn2+, together with the weak direct agonist action of gaboxadol; RNA-seq indicated a predominant expression of the γ2 subunit. Potentiation of GABA-evoked currents by propofol and etomidate and the lack of inhibition of currents by salicylidine salycylhydrazide (SCS) indicate expression of the β2 or β3 subunit, with RNA-seq analysis indicating strong expression of β3 in hECN GABAARs. Taken together our data support the notion that hECN GABAARs have an α2/3β3γ2 subunit composition – a composition that also predominates in immature rodent cortex. GlyRs expressed by hECNs were activated by glycine with an EC50 of 167 μm. Glycine-evoked (500 μm) currents were blocked by strychnine (IC50 = 630 nm) and picrotoxin (IC50 = 197 μm), where the latter is suggestive of a population of heteromeric receptors. RNA-seq indicates GlyRs are likely to be composed of α2 and β subunits.
Collapse
Affiliation(s)
- Owain T James
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, Bangalore, 560065, India Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Matthew R Livesey
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Jing Qiu
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Owen Dando
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, Bangalore, 560065, India
| | - Bilada Bilican
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Ghazal Haghi
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Rinku Rajan
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Karen Burr
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Giles E Hardingham
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Siddharthan Chandran
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, Bangalore, 560065, India Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Peter C Kind
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, Bangalore, 560065, India Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - David J A Wyllie
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD, UK
| |
Collapse
|