1
|
Guo Z, Yue N, Chen M, Li J, Lv R, Wang J, Liu T, Huang J, Gao S, Li Y, Yuan B, Wang J, Kang L, Ji B, Xin W. Purinergic Receptor Antagonists Inhibit Hemolysis Induced by Clostridium perfringens Alpha Toxin. Pathogens 2024; 13:454. [PMID: 38921752 PMCID: PMC11206506 DOI: 10.3390/pathogens13060454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/28/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Clostridium perfringens alpha toxin (CPA), which causes yellow lamb disease in sheep and gas gangrene and food poisoning in humans, is produced by all types of C. perfringens and is the major virulence determinant of C. perfringens type A. CPA induces hemolysis in many species, including humans, murines, sheep and rabbits, through its enzymatic activity, which dissolves the cell membrane. Recent studies have shown that some pore-forming toxins cause hemolysis, which is achieved by the activation of purinergic receptors (P2). However, the relationship between P2 receptors and non-pore-forming toxin hemolysis has not been investigated. In the present study, we examined the function of P2 receptors in CPA toxin hemolysis and found that CPA-induced hemolysis was dependent on P2 receptor activation, and this was also true for Staphylococcus aureus β-Hemolysin, another non-pore-forming toxin. Furthermore, we use selective P2 receptor antagonists to demonstrate that P2X1 and P2X7 play important roles in the hemolysis of human and murine erythrocytes. In addition, we found that redox metabolism was mainly involved in CPA-induced hemolysis using metabolomic analysis. We further demonstrate that CPA activates P2 receptors and then activates NADPH oxidase through the PI3K/Akt and MEK1/ERK1 pathways, followed by the production of active oxygen to induce hemolysis. These findings contribute to our understanding of the pathological effects of CPA, clarify the relationship between P2 activation and non-pore-forming toxin-induced hemolysis, and provide new insights into CPA-induced hemolysis.
Collapse
Affiliation(s)
- Zishuo Guo
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
- Emergency Department, 96605 Army Hospital of the People’s Liberation Army, Jilin 134000, China
| | - Nan Yue
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Ming Chen
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Jiaxin Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Ruomei Lv
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Tingting Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Jing Huang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Yanwei Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Bing Yuan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Bin Ji
- Department of Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214101, China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| |
Collapse
|
2
|
Minic Z, O’Leary DS, Reynolds CA. Purinergic receptor antagonism: A viable strategy for the management of autonomic dysreflexia? Auton Neurosci 2021; 230:102741. [PMID: 33220530 PMCID: PMC8855366 DOI: 10.1016/j.autneu.2020.102741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022]
Abstract
The purinergic receptor ligand, ATP, may participate in reflex induced vasoconstriction through sympathetic efferent and sensory afferent mechanisms. However, the role of the purinergic system in contributing to autonomic dysreflexia following spinal cord injury is unclear. The present study investigates the involvement of P2X receptors in contributing to pressor responses during autonomic dysreflexia. Twenty rats were subjected to spinal cord injury and 24 h later hemodynamic responses to colorectal distension were recorded. Animals were randomized to receive intravenous administration of the P2X receptor antagonist, NF023, or vehicle control. The data indicate that NF023 attenuates pressor responses to colorectal distension.
Collapse
Affiliation(s)
- Zeljka Minic
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA; Department of Physiology, Immunology and Pathophysiology, University of Rijeka Medical School, Rijeka, Croatia.
| | - Donal S. O’Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Christian A. Reynolds
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA,Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
3
|
Ralevic V. History of Geoff Burnstock's research on P2 receptors. Biochem Pharmacol 2020; 187:114358. [PMID: 33279495 DOI: 10.1016/j.bcp.2020.114358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022]
Abstract
Geoffrey Burnstock is a purinergic signalling legend who's discoveries and conceptualisation created and shaped the field. His scientific achievements were extraordinary and sustained. They included his demonstration that ATP can act as a neurotransmitter and hence extracellular signalling molecule, which he championed despite considerable initial opposition to his proposal that ATP acts outside of its role as an energy source inside cells. He led on purine receptor classification: initially of the P1 and P2 receptor families, then the P2X and P2Y receptor families, and then subtypes of P2X and P2Y receptors. This was achieved across several decades as he conceptualised and made sense of the emerging and growing evidence that there were multiple receptor subtypes for ATP and other nucleotides. He made discoveries about short term and long term/trophic purinergic signalling. He was a leader in the field for over 50 years. He inspired many and was a great colleague and mentor. I had the privilege of spending over 10 years (from 1985) with Geoff at the Department of Anatomy and Developmental Biology, University College London. This review is a personal perspective of some of Geoff's research on P2 receptors carried out during that time. It is a tribute to Geoff who I regarded with enormous respect and admiration.
Collapse
Affiliation(s)
- Vera Ralevic
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG7 2UH, United Kingdom.
| |
Collapse
|
4
|
P2X-selective purinergic antagonists are strong inhibitors of HIV-1 fusion during both cell-to-cell and cell-free infection. J Virol 2014; 88:11504-15. [PMID: 25031337 DOI: 10.1128/jvi.01158-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) infection is chronic and presently still incurable. Antiretroviral drugs effectively suppress replication; however, persistent activation of inflammatory pathways remains a key cause of morbidity. Recent studies proposed that purinergic signaling is required for HIV-1 infection. Purinergic receptors are distributed throughout a wide variety of tissue types and detect extracellular ATP as a danger signal released from dying cells. We have explored how these pathways are involved in the transmission of HIV-1 from cell to cell through virological synapses. Infection of CD4+ T lymphocytes with HIV-1 in the presence of an inhibitor of P2X receptors effectively inhibited HIV-1 infection through both cell-free and cell-to-cell contact in a dose-dependent manner. Inhibition of direct cell-to-cell infection did not affect the formation of virological synapses or the subsequent cell-to-cell transfer of HIV-1. During both cell-free and cell-to-cell CD4+ T lymphocyte infection, purinergic antagonists blocked infection at the level of viral membrane fusion. During cell-to-cell transmission, we observed CXCR4 colocalization with the newly internalized virus particles within target lymphocytes and found that the purinergic antagonists did not impair the recruitment of the coreceptor CXCR4 to the site of Gag internalization in the target cell. In a screen of a library of purinergic antagonists, we found that the most potent inhibitors of HIV-1 fusion were those that target P2X receptors, while P2Y-selective receptor antagonists or adenosine receptor antagonists were ineffective. Our results suggest that P2X receptors may provide a therapeutic target and that purinergic antagonists may have potent activity against viral infection of CD4+ T lymphocytes by both cell-free and cell-to-cell transmission. IMPORTANCE This study identifies purinergic antagonists to be potent inhibitors of HIV-1 cell-free and cell-to-cell-mediated infection and provides a stepwise determination of when these compounds inhibit HIV-1 infection. These data provide a rationale for the development of novel antiretroviral therapies that have a dual role in both direct antiviral activity and the reduction of HIV-associated inflammation. Purinergic antagonists are shown here to have equivalent efficacy in inhibiting HIV infection via cell-free and cell-to-cell infection, and it is shown that purinergic receptors could provide an attractive therapeutic anti-HIV target that might avoid resistance by targeting a host signaling pathway that potently regulates HIV infection. The high-throughput screen of HIV-1 fusion inhibitors further defines P2X-selective compounds among the purinergic compounds as being the most potent HIV entry inhibitors. Clinical studies on these drugs for other inflammatory indications suggest that they are safe, and thus, if developed for use as anti-HIV agents, they could reduce both HIV replication and HIV-related inflammation.
Collapse
|
5
|
Burnstock G, Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 2013; 66:102-92. [PMID: 24335194 DOI: 10.1124/pr.113.008029] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|
6
|
Abstract
The study of P2X receptors has long been handicapped by a poverty of small-molecule tools that serve as selective agonists and antagonists. There has been progress, particularly in the past 10 years, as cell-based high-throughput screening methods were applied, together with large chemical libraries. This has delivered some drug-like molecules in several chemical classes that selectively target P2X1, P2X3, or P2X7 receptors. Some of these are, or have been, in clinical trials for rheumatoid arthritis, pain, and cough. Current preclinical research programs are studying P2X receptor involvement in pain, inflammation, osteoporosis, multiple sclerosis, spinal cord injury, and bladder dysfunction. The determination of the atomic structure of P2X receptors in closed and open (ATP-bound) states by X-ray crystallography is now allowing new approaches by molecular modeling. This is supported by a large body of previous work using mutagenesis and functional expression, and is now being supplemented by molecular dynamic simulations and in silico ligand docking. These approaches should lead to P2X receptors soon taking their place alongside other ion channel proteins as therapeutically important drug targets.
Collapse
Affiliation(s)
- R Alan North
- Faculty of Medical and Human Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | | |
Collapse
|
7
|
Moaddel R, Calleri E, Massolini G, Frazier CR, Wainer IW. The synthesis and initial characterization of an immobilized purinergic receptor (P2Y1) liquid chromatography stationary phase for online screening. Anal Biochem 2007; 364:216-8. [PMID: 17391632 PMCID: PMC1931501 DOI: 10.1016/j.ab.2007.02.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/18/2007] [Accepted: 02/15/2007] [Indexed: 11/15/2022]
Affiliation(s)
- Ruin Moaddel
- Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
8
|
Gever JR, Cockayne DA, Dillon MP, Burnstock G, Ford APDW. Pharmacology of P2X channels. Pflugers Arch 2006; 452:513-37. [PMID: 16649055 DOI: 10.1007/s00424-006-0070-9] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 03/08/2006] [Indexed: 02/07/2023]
Abstract
Significant progress in understanding the pharmacological characteristics and physiological importance of homomeric and heteromeric P2X channels has been achieved in recent years. P2X channels, gated by ATP and most likely trimerically assembled from seven known P2X subunits, are present in a broad distribution of tissues and are thought to play an important role in a variety of physiological functions, including peripheral and central neuronal transmission, smooth muscle contraction, and inflammation. The known homomeric and heteromeric P2X channels can be distinguished from each other on the basis of pharmacological differences when expressed recombinantly in cell lines, but whether this pharmacological classification holds true in native cells and in vivo is less well-established. Nevertheless, several potent and selective P2X antagonists have been discovered in recent years and shown to be efficacious in various animal models including those for visceral organ function, chronic inflammatory and neuropathic pain, and inflammation. The recent advancement of drug candidates targeting P2X channels into human trials, confirms the medicinal exploitability of this novel target family and provides hope that safe and effective medicines for the treatment of disorders involving P2X channels may be identified in the near future.
Collapse
Affiliation(s)
- Joel R Gever
- Department of Biochemical Pharmacology, Roche Palo Alto, 3431 Hillview Avenue, Palo Alto, CA 94304, USA.
| | | | | | | | | |
Collapse
|
9
|
von Kügelgen I. Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther 2005; 110:415-32. [PMID: 16257449 DOI: 10.1016/j.pharmthera.2005.08.014] [Citation(s) in RCA: 424] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 08/23/2005] [Indexed: 11/29/2022]
Abstract
Membrane-bound P2-receptors mediate the actions of extracellular nucleotides in cell-to-cell signalling. P2X-receptors are ligand-gated ion channels, whereas P2Y-receptors belong to the superfamily of G-protein-coupled receptors (GPCRs). So far, the P2Y family is composed out of 8 human subtypes that have been cloned and functionally defined; species orthologues have been found in many vertebrates. P2Y1-, P2Y2-, P2Y4-, P2Y6-, and P2Y11-receptors all couple to stimulation of phospholipase C. The P2Y11-receptor mediates in addition a stimulation of adenylate cyclase. In contrast, activation of the P2Y12-, P2Y13-, and P2Y14-receptors causes an inhibition of adenylate cyclase activity. The expression of P2Y1-receptors is widespread. The receptor is involved in blood platelet aggregation, vasodilatation and neuromodulation. It is activated by ADP and ADP analogues including 2-methylthio-ADP (2-MeSADP). 2'-Deoxy-N6-methyladenosine-3',5'-bisphosphate (MRS2179) and 2-chloro-N6-methyl-(N)-methanocarba-2'-deoxyadenosine 3',5'-bisphosphate (MRS2279) are potent and selective antagonists. P2Y2 transcripts are abundantly distributed. One important example for its functional role is the control of chloride ion fluxes in airway epithelia. The P2Y2-receptor is activated by UTP and ATP and blocked by suramin. The P2Y2-agonist diquafosol is used for the treatment of the dry eye disease. P2Y4-receptors are expressed in the placenta and in epithelia. The human P2Y4-receptor has a strong preference for UTP as agonist, whereas the rat P2Y4-receptor is activated about equally by UTP and ATP. The P2Y4-receptor is not blocked by suramin. The P2Y6-receptor has a widespread distribution including heart, blood vessels, and brain. The receptor prefers UDP as agonist and is selectively blocked by 1,2-di-(4-isothiocyanatophenyl)ethane (MRS2567). The P2Y11-receptor may play a role in the differentiation of immunocytes. The human P2Y11-receptor is activated by ATP as naturally occurring agonist and it is blocked by suramin and reactive blue 2 (RB2). The P2Y12-receptor plays a crucial role in platelet aggregation as well as in inhibition of neuronal cells. It is activated by ADP and very potently by 2-methylthio-ADP. Nucleotide antagonists including N6-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)-beta,gamma-dichloromethylene-ATP (=cangrelor; AR-C69931MX), the nucleoside analogue AZD6140, as well as active metabolites of the thienopyridine compounds clopidogrel and prasugrel block the receptor. These P2Y12-antagonists are used in pharmacotherapy to inhibit platelet aggregation. The P2Y13-receptor is expressed in immunocytes and neuronal cells and is again activated by ADP and 2-methylthio-ADP. The 2-chloro-5-nitro pyridoxal-phosphate analogue 6-(2'-chloro-5'-nitro-azophenyl)-pyridoxal-alpha5-phosphate (MRS2211) is a selective antagonist. mRNA encoding for the human P2Y14-receptor is found in many tissues. However, a physiological role of the receptor has not yet been established. UDP-glucose and related analogues act as agonists; antagonists are not known. Finally, UDP has been reported to act on receptors for cysteinyl leukotrienes as an additional agonist--indicating a dual agonist specificity of these receptors.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology, University of Bonn, Reuterstrasse 2b, D-53113 Bonn, Germany.
| |
Collapse
|
10
|
Denkinger M, Shive CL, Pantenburg B, Forsthuber TG. Suramin has adjuvant properties and promotes expansion of antigen-specific Th1 and Th2 cells in vivo. Int Immunopharmacol 2004; 4:15-24. [PMID: 14975356 DOI: 10.1016/j.intimp.2003.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Revised: 09/08/2003] [Accepted: 09/19/2003] [Indexed: 11/25/2022]
Abstract
Aluminum hydroxide and incomplete Freund's adjuvant (IFA) are the only adjuvants approved for human use. Both are T helper 2 (Th2) adjuvants, however, T helper 1 (Th1) immunity is induced if microbial products such as mycobacteria, CpG's, or bacterial toxins are included in the adjuvant preparation. The usefulness of bacterial toxins, such as Pertussis toxin (PT) or Cholera toxin (CT), as adjuvants for human vaccination is limited by toxic side effects and high immunogenicity. Hence, we asked whether or not the adjuvant activity of bacterial toxins on Th1 and Th2 immunity could be mimicked by chemical compounds of small molecular weight and less immunogenicity. In the present study, we show that Suramin, a small molecular weight naphthylurea, which mainly acts on G-proteins and on P2X/P2Y receptors, promotes expansion of hen eggwhite lysozyme (HEL)-specific Th1 and Th2 cells upon immunization of BALB/c mice with HEL in aluminum hydroxide (alum). The results indicated that the adjuvant effects of Suramin on T cell responses were mediated by enhancing the expression of MHC class II and costimulatory molecules on antigen presenting cells (APCs), and by increasing their pro-inflammatory cytokine production. Together, the results suggest that small molecular weight compounds such as Suramin could be used as alternative vaccine adjuvants.
Collapse
Affiliation(s)
- Michael Denkinger
- Institute of Pathology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
11
|
Kassack MU, Braun K, Ganso M, Ullmann H, Nickel P, Böing B, Müller G, Lambrecht G. Structure-activity relationships of analogues of NF449 confirm NF449 as the most potent and selective known P2X1 receptor antagonist. Eur J Med Chem 2004; 39:345-57. [PMID: 15072843 DOI: 10.1016/j.ejmech.2004.01.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Revised: 01/19/2004] [Accepted: 01/19/2004] [Indexed: 11/22/2022]
Abstract
NF449 [4,4',4",4"'-(carbonylbis(imino-5,1,3-benzenetriyl-bis(carbonylimino)))tetrakisbenzene-1,3-disulfonic acid-octasodiumsalt)] was recently described to inhibit recombinant rP2X(1) receptors (Naunyn Schmiedeberg's Arch. Pharmacol. 364 (2001) 285). The purpose of this study was to examine structure-activity-relationships at P2 receptors of a series of NF449 analogues. Thus, compounds containing various arylaminemono-, di-, or trisulfonic acids and a replacement of the central urea bridge were synthesized. NF449 displayed a pIC(50) at P2X(1) receptors (rat vas deferens) of 6.31 +/- 0.04 being at least 19-fold more potent at P2X(1) than at P2X(3), P2Y(1), P2Y(2), or P2Y(11). Any deletion or change of position of sulfonic acid groups or replacing the central urea bond by the bisamide of terephthalic acid reduced the potency at P2X(1) by at least 90%. All compounds were very weak antagonists at P2Y(2) or P2Y(11) receptors (pIC(50) < 4.5). In conclusion, NF449 remains the most potent and selective P2X(1) antagonist known. Potential lead compounds among the suramin class for P2X(3) (16d) and P2Y(1) (16a) receptors were identified.
Collapse
Affiliation(s)
- Matthias U Kassack
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 584] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
13
|
Abstract
P2X receptors are membrane ion channels that open in response to the binding of extracellular ATP. Seven genes in vertebrates encode P2X receptor subunits, which are 40-50% identical in amino acid sequence. Each subunit has two transmembrane domains, separated by an extracellular domain (approximately 280 amino acids). Channels form as multimers of several subunits. Homomeric P2X1, P2X2, P2X3, P2X4, P2X5, and P2X7 channels and heteromeric P2X2/3 and P2X1/5 channels have been most fully characterized following heterologous expression. Some agonists (e.g., alphabeta-methylene ATP) and antagonists [e.g., 2',3'-O-(2,4,6-trinitrophenyl)-ATP] are strongly selective for receptors containing P2X1 and P2X3 subunits. All P2X receptors are permeable to small monovalent cations; some have significant calcium or anion permeability. In many cells, activation of homomeric P2X7 receptors induces a permeability increase to larger organic cations including some fluorescent dyes and also signals to the cytoskeleton; these changes probably involve additional interacting proteins. P2X receptors are abundantly distributed, and functional responses are seen in neurons, glia, epithelia, endothelia, bone, muscle, and hemopoietic tissues. The molecular composition of native receptors is becoming understood, and some cells express more than one type of P2X receptor. On smooth muscles, P2X receptors respond to ATP released from sympathetic motor nerves (e.g., in ejaculation). On sensory nerves, they are involved in the initiation of afferent signals in several viscera (e.g., bladder, intestine) and play a key role in sensing tissue-damaging and inflammatory stimuli. Paracrine roles for ATP signaling through P2X receptors are likely in neurohypophysis, ducted glands, airway epithelia, kidney, bone, and hemopoietic tissues. In the last case, P2X7 receptor activation stimulates cytokine release by engaging intracellular signaling pathways.
Collapse
Affiliation(s)
- R Alan North
- Institute of Molecular Physiology, University of Sheffield, Western Bank, Sheffield, United Kingdom.
| |
Collapse
|
14
|
van der Giet M, Westhoff T, Cinkilic O, Jankowski J, Schlüter H, Zidek W, Tepel M. The critical role of adenosine and guanosine in the affinity of dinucleoside polyphosphates to P(2X)-receptors in the isolated perfused rat kidney. Br J Pharmacol 2001; 132:467-74. [PMID: 11159696 PMCID: PMC1572568 DOI: 10.1038/sj.bjp.0703817] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The activation of P(2x)-receptors in the rat renal vasculature by dinucleoside polyphosphates with variable phosphate group chain length (Xp(n)X; X=Adenin (A) /Guanin (G), n=4 - 6) was studied by measuring their effects on perfusion pressure of the isolated perfused rat kidney at constant flow in an open circuit. 2. Like Ap(4)A, Ap(5)A and Ap(6)A the dinucleoside polyphosphates Ap(4)G, Ap(5)G and Ap(6)G exerted a vasoconstriction which could be blocked by suramin and pyridoxal-phosphate-6-azophenyl-2; 4-disulphonic acid (PPADS). 3. Gp(4)G, Gp(5)G and Gp(6)G showed only very weak vasoconstriction at high doses. 4. Ap(6)A and alpha, beta-meATP could not be blocked by the selective P(2x1)-receptor antagonisten NF023 (30 microM), whereas Ap(4)A, Ap(4)G, Ap(5)A, Ap(5)G and Ap(6)G were partially blocked by NF023. 5. Inhibition of endothelial NO-synthase by N(omega)-nitro-L-arginine methyl ester (L-NAME) did not affect vasoconstrictions induced by dinucleosidepolyphosphates. 6. P(2x)-receptor can only be activated if at least one adenosine moiety is present in the molecule. 7. Ap(n)G show a weaker vasoconstrictive action than corresponding Ap(n)A, concluding that two adenosine moieties enhance the P(2x)-receptor binding and activation. 8. Xp(n)X containing five phosphate groups show the most pronounced vasoconstrictive effect whereas four phosphate groups show the less effect, therefore the number of phosphate groups critically changes receptor affinity. 9. Additional experiments using permanent perfusion with alpha, beta-methylene ATP (alpha,beta-meATP) and the selective P(2x1)-receptor antagonist NF023 showed that the newly discovered human dinucleoside polyphosphates activated the vascular P(2x1)-receptor and an recently identified new P(2x)-receptor subtype. 10. The differential effects of dinucleoside polyphosphates allow a fine tuning of local perfusion via composition of Xp(n)Xs.
Collapse
Affiliation(s)
- M van der Giet
- Freie Universität Berlin, Universitätsklinikum Benjamin Franklin, Medizinische Klinik IV, Hindenburgdamm 30, 12200 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Rettinger J, Schmalzing G, Damer S, Müller G, Nickel P, Lambrecht G. The suramin analogue NF279 is a novel and potent antagonist selective for the P2X(1) receptor. Neuropharmacology 2000; 39:2044-53. [PMID: 10963748 DOI: 10.1016/s0028-3908(00)00022-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The suramin analogue 8,8'-(carbonylbis(imino-4, 1-phenylenecarbonylimino-4,1-phenylenecarbonylimino)) bis(1,3,5-naphthalenetrisul fonic acid) (NF279) was analysed with respect to its potency and P2X receptor subtype selectivity. Two-electrode voltage-clamp measurements were performed with Xenopus laevis oocytes expressing homomultimeric rat P2X(1), P2X(2), P2X(3) and human P2X(4) receptors. For the fast desensitising P2X(1) and P2X(3) receptors, IC(50) values strongly depended on whether oocytes were pre-incubated with NF279 prior to ATP superfusion or exposed to NF279 simultaneously with ATP. With a 10 s pre-incubation period of NF279, IC(50) values of 19 nM and 1.62 microM were obtained for rat P2X(1) and P2X(3), respectively. Without pre-incubation, IC(50) values amounted to 2 microM and 85.5 microM for P2X(1) and P2X(3), respectively. For the non-desensitising rat P2X(2) receptor NF279 appeared to act as a competitive antagonist with an IC(50) value of 0.76 microM and a K(B) value of 0.36 microM, as derived from Schild analysis. P2X(4) receptors were the least sensitive subtypes for NF279 (IC(50)>300 microM). The antagonism was fully reversible at all P2X subtypes analysed. Our results indicate that NF279 is a potent P2X(1) receptor-selective and reversible antagonist.
Collapse
Affiliation(s)
- J Rettinger
- Department of Pharmacology, Biocentre Niederursel, University of Frankfurt, Marie-Curie-Strasse 9, D-60439 Frankfurt/M, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Lambrecht G, Ganso M, Bäumert HG, Spatz-Kümbel G, Hildebrandt C, Braun K, Mutschler E. The novel heteromeric bivalent ligand SB9 potently antagonizes P2Y(1) receptor-mediated responses. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 2000; 81:171-7. [PMID: 10869717 DOI: 10.1016/s0165-1838(00)00135-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Effects of 6-[(4,6,8-trisulfo-1-naphthyl)iminocarbonyl-1, 3-(4-methylphenylene)iminocarbonyl-1, 3-phenylene-azo]-pyridoxal-5'-phosphate (SB9), a heterodimeric bivalent ligand consisting of pyridoxal-5'-phosphate and the suramin monomer, were studied on contractions of the rat vas deferens elicited by alpha beta-methylene ATP (alpha beta meATP; mediated by P2X(1)-like receptors), contractions of the guinea-pig ileal longitudinal smooth muscle elicited by adenosine 5'-O-(2-thiodiphosphate) (ADP beta S mediated by P2Y(1)-like receptors), and the degradation of ATP by ecto-nucleotidases in folliculated Xenopus laevis oocytes. SB9 (0.1-10 microM) antagonized contractile responses produced by alpha beta meATP or ADP beta S in a concentration-dependent manner. Schild analysis yielded linear regression lines of unit slope, indicating competitive antagonism. From the rightward shifts of the agonist concentration-response curves pA(2) values of 6.05+/-0.13 (vas deferens) and 6.98+/-0.07 (ileum) were derived. In both preparations, SB9 behaved as a slow onset, slow offset antagonist. Incubation of three oocytes in the presence of ATP produced an increase in inorganic phosphate (P(i)) over a 30-min period, which amounted to 35.1+/-1.9 microM P(i) from 100 microM ATP. SB9 (10-1000 microM) reduced this degradation (pIC(50)=4.33+/-0.10). The results illustrate that SB9 is a high-affinity P2Y(1) receptor antagonist with a remarkable selectivity for P2Y(1) vs. P2X(1) receptors (about 10-fold) and ecto-nucleotidases (447-fold). These properties make it unique among the pyridoxal-5'-phosphate and suramin derivatives reported to date.
Collapse
Affiliation(s)
- G Lambrecht
- Department of Pharmacology, Biocentre Niederursel, University of Frankfurt, Marie-Curie-Str. 9, D-60439, Frankfurt/M., Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Sneddon P, Westfall TD, Todorov LD, Todorova SM, Westfall DP, Nickel P, Kennedy C. The effect of P2 receptor antagonists and ATPase inhibition on sympathetic purinergic neurotransmission in the guinea-pig isolated vas deferens. Br J Pharmacol 2000; 129:1089-94. [PMID: 10725256 PMCID: PMC1571944 DOI: 10.1038/sj.bjp.0703163] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/1999] [Revised: 11/16/1999] [Accepted: 12/14/1999] [Indexed: 11/08/2022] Open
Abstract
1. Intracellular microelectrodes were used to record the transmembrane potential and excitatory junction potentials (e.j.p.s) produced by sympathetic nerve stimulation (1 Hz) in smooth muscle cells of the guinea-pig isolated vas deferens. 2. The symmetrical 3'-urea of 8-(benzamido)naphthalene-1,3,5-trisulphonic acid (NF023) produced a concentration-dependent inhibition of e.j.p. magnitude (IC(50)=4. 8x10(-6) M), but had no effect on the resting membrane potential of the smooth muscle cells. 3. Pyridoxal-5-phosphate (P-5-P) also depressed e.j.p. magnitude in a concentration-dependent manner, but was less potent than NF023 (IC(50)=2.2x10(-5) M). At 10(-4) M and above P-5-P significantly depolarized the smooth muscle cells. 4. The nucleoside triphosphatase inhibitor 6-N,N-diethyl-D-beta, gamma-dibromomethyleneATP (ARL 67156) (5x10(-5) M) significantly increased e.j.p. amplitude. ARL 67156 (10(-4) M) further increased e. j.p. amplitude such that they often reached threshold for initiation of action potentials, causing muscle contraction and expulsion of the recording electrode. 5. After reduction of e.j.p.s by NF023 or P-5-P (both 10(-5) M), subsequent co-addition of ARL 67156 (10(-4) M) significantly increased their magnitude. 6. The overflow of endogenous ATP evoked by field stimulation of sympathetic nerves (8 Hz, 1 min) was measured by HPLC and flurometric detection. ARL 67156 (10(-4) M) enhanced ATP overflow by almost 700% compared to control. 7. We conclude that for electrophysiological studies NF023 is preferable to other P2X receptor antagonists such as pyridoxalphosphate -6-azophenyl-2',4'-disulphonic acid (PPADS), suramin or P-5-P. Furthermore, breakdown of endogenous ATP by nucleoside triphosphatases is an important modulator of purinergic neurotransmission in the guinea-pig vas deferens.
Collapse
Affiliation(s)
- P Sneddon
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, 27 Taylor Street, Glasgow G4 ONR, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Lambrecht G, Damer S, Niebel B, Czeche S, Nickel P, Rettinger J, Schmalzing G, Mutschler E. Novel ligands for P2 receptor subtypes in innervated tissues. PROGRESS IN BRAIN RESEARCH 1999; 120:107-17. [PMID: 10550991 DOI: 10.1016/s0079-6123(08)63549-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Among suramin analogues, the properties of P2 receptor subtype blockade and ecto-nucleotidase inhibition appear to be controlled by different structural parameters (Fig. 1 and 2, Table 1; Van Rhee et al., 1994; Beukers et al., 1995; Bültmann et al., 1996; Damer et al., 1998a, 1998b; and this study): the molecular size of the compounds, the position of the sulfonic acid residues in the naphthalene rings, the substitution pattern of the benzoyl moieties and the 3'- or 4'-aminobenzoyl-linkages of the phenyl rings "1" and "2". As a result, compounds with different receptor selectivity profiles were obtained. A maximum in potency at and selectivity for P2X1 receptors is reached in NF279, which is a specific P2 receptor antagonist and the compound with the highest P2X1 vs. P2Y receptor and ecto-nucleotidase selectivity presently available.
Collapse
Affiliation(s)
- G Lambrecht
- Department of Pharmacology, Biocentre Niederursel, University of Frankfurt, Main, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Gao J, Zhao J, Rayner SE, Van Helden DF. Evidence that the ATP-induced increase in vasomotion of guinea-pig mesenteric lymphatics involves an endothelium-dependent release of thromboxane A2. Br J Pharmacol 1999; 127:1597-602. [PMID: 10455315 PMCID: PMC1566155 DOI: 10.1038/sj.bjp.0702710] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
1. Experiments were made to investigate mechanisms by which adenosine 5'-trisphosphate (ATP) enhanced vasomotion in mesenteric lymphatic vessels isolated from young guinea-pigs. 2. ATP (10-8 - 10-3 M) caused a concentration-dependent increase of perfusion-induced vasomotion with the endothelium mediating a fundamental role at low ATP concentrations (10-8 - 10-6 M). 3. The response to 10-6 M ATP showed tachyphylaxis when applied at intervals of 10 min but not at intervals of 20 or 30 min. 4. Suramin (10-4 M) or reactive blue 2 (3x10-5 M) but not PPADS (3x10-5 M) abolished the excitatory response to 10-6 M ATP confirming an involvement of P2 purinoceptors. 5. The excitatory response to 10-6 M ATP was abolished by treatment with either pertussis toxin (100 ng ml-1), antiflammin-1 (10-9 M), indomethacin (3x10-6 M) or SQ29548 (3x10-7 M), inhibitors of specific G proteins, phospholipase A2, cyclo-oxygenase and thromboxane A2 receptors respectively. 6. ATP simultaneously induced a suramin-sensitive inhibitory response, which was normally masked by the excitatory response. ATP-induced inhibition was mediated by endothelium-derived nitric oxide (EDNO) as the response was abolished by NG-nitro-L-arginine (L-NOARG; 10-4 M), an inhibitor of nitric oxide synthase. 7. We conclude that ATP modulates lymphatic vasomotion by endothelium-dependent and endothelium-independent mechanisms. One of these is a dominant excitation caused through endothelial P2 purinoceptors which because of an involvement of a pertussis toxin sensitive G-protein may be of the P2Y receptor subtype. Their stimulation increases synthesis of phospholipase A2 and production of thromboxane A2, an arachidonic acid metabolite which acts as an endothelium-derived excitatory factor.
Collapse
Affiliation(s)
- J Gao
- The Neuroscience Group, Discipline of Human Physiology, Faculty of Medicine & Health Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | | | | | | |
Collapse
|
20
|
Kotlikoff MI, Herrera G, Nelson MT. Calcium permeant ion channels in smooth muscle. Rev Physiol Biochem Pharmacol 1999; 134:147-99. [PMID: 10087909 DOI: 10.1007/3-540-64753-8_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- M I Kotlikoff
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
21
|
Soto F, Lambrecht G, Nickel P, Stühmer W, Busch AE. Antagonistic properties of the suramin analogue NF023 at heterologously expressed P2X receptors. Neuropharmacology 1999; 38:141-9. [PMID: 10193905 DOI: 10.1016/s0028-3908(98)00158-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The suramin analogue 8,8'-(carbonylbis(imino-3,1-phenylene carbonylimino)bis(1,3,5-naphthalenetrisulfonic acid) (NF023) antagonizes in a competitive fashion P2X receptor-mediated responses in certain vascular and visceral smooth muscles. In the present study, the effect of NF023 on voltage-clamped Xenopus oocytes heterologously expressing homomultimeric P2X1-P2X4 as well as heteromultimeric P2X2/P2X3 receptors has been characterized. P2X1 receptors were most sensitive to inhibition by NF023 with IC50 values of 0.24 and 0.21 microM for the rat and human homologue, respectively. P2X3 receptors have an intermediate sensitivity with IC50 values of 8.5 and 28.9 microM for rat and human subtypes, respectively and P2X2 was the least sensitive subtype (IC50 > 50 microM). P2X4 receptors were insensitive to NF023 at concentrations up to 100 microM. Coexpression of rat P2X3 with rat P2X2 resulted in receptors whose sensitivity to NF023 was identical to that obtained for homomultimeric rat P2X3 receptors (alphabeta meATP as agonist; IC50 = 1.4 and 1.6 microM, respectively). NF023 inhibited P2X1 receptors in a voltage-insensitive manner. In addition, NF023 (5 and 30 microM) caused a shift of the concentration-response curve to the right without affecting the maximal response to ATP (K(B) = 1.1 +/- 0.2 microM). Our results indicate that NF023 is a subtype-selective and surmountable antagonist at P2X1 receptors heterologously expressed in Xenopus oocytes.
Collapse
Affiliation(s)
- F Soto
- Max-Planck Institute for Experimental Medicine, Göttingen, Germany.
| | | | | | | | | |
Collapse
|