1
|
Garifulina A, Friesacher T, Stadler M, Zangerl-Plessl EM, Ernst M, Stary-Weinzinger A, Willam A, Hering S. β subunits of GABA A receptors form proton-gated chloride channels: Insights into the molecular basis. Commun Biol 2022; 5:784. [PMID: 35922471 PMCID: PMC9349252 DOI: 10.1038/s42003-022-03720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Gamma-aminobutyric acid type A receptors (GABAARs) are ligand gated channels mediating inhibition in the central nervous system. Here, we identify a so far undescribed function of β-subunit homomers as proton-gated anion channels. Mutation of a single H267A in β3 subunits completely abolishes channel activation by protons. In molecular dynamic simulations of the β3 crystal structure protonation of H267 increased the formation of hydrogen bonds between H267 and E270 of the adjacent subunit leading to a pore stabilising ring formation and accumulation of Cl- within the transmembrane pore. Conversion of these residues in proton insensitive ρ1 subunits transfers proton-dependent gating, thus highlighting the role of this interaction in proton sensitivity. Activation of chloride and bicarbonate currents at physiological pH changes (pH50 is in the range 6- 6.3) and kinetic studies suggest a physiological role in neuronal and non-neuronal tissues that express beta subunits, and thus as potential novel drug target.
Collapse
Affiliation(s)
- Aleksandra Garifulina
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, A-1090, Vienna, Austria.
| | - Theres Friesacher
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, A-1090, Vienna, Austria
| | - Marco Stadler
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, A-1090, Vienna, Austria
| | - Eva-Maria Zangerl-Plessl
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, A-1090, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Medical University of Vienna, A-1090, Vienna, Austria
| | - Anna Stary-Weinzinger
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, A-1090, Vienna, Austria
| | - Anita Willam
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, A-1090, Vienna, Austria
- ChanPharm GmbH, Am Kanal 27, Top 2/3/5, 1110, Vienna, Austria
| | - Steffen Hering
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, A-1090, Vienna, Austria.
- ChanPharm GmbH, Am Kanal 27, Top 2/3/5, 1110, Vienna, Austria.
| |
Collapse
|
2
|
Electrophysiology of ionotropic GABA receptors. Cell Mol Life Sci 2021; 78:5341-5370. [PMID: 34061215 PMCID: PMC8257536 DOI: 10.1007/s00018-021-03846-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 10/30/2022]
Abstract
GABAA receptors are ligand-gated chloride channels and ionotropic receptors of GABA, the main inhibitory neurotransmitter in vertebrates. In this review, we discuss the major and diverse roles GABAA receptors play in the regulation of neuronal communication and the functioning of the brain. GABAA receptors have complex electrophysiological properties that enable them to mediate different types of currents such as phasic and tonic inhibitory currents. Their activity is finely regulated by membrane voltage, phosphorylation and several ions. GABAA receptors are pentameric and are assembled from a diverse set of subunits. They are subdivided into numerous subtypes, which differ widely in expression patterns, distribution and electrical activity. Substantial variations in macroscopic neural behavior can emerge from minor differences in structure and molecular activity between subtypes. Therefore, the diversity of GABAA receptors widens the neuronal repertoire of responses to external signals and contributes to shaping the electrical activity of neurons and other cell types.
Collapse
|
3
|
Intricacies of GABA A Receptor Function: The Critical Role of the β3 Subunit in Norm and Pathology. Int J Mol Sci 2021; 22:ijms22031457. [PMID: 33535681 PMCID: PMC7867123 DOI: 10.3390/ijms22031457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/23/2022] Open
Abstract
Neuronal intracellular chloride ([Cl−]i) is a key determinant in γ-aminobutyric acid type A (GABA)ergic signaling. γ-Aminobutyric acid type A receptors (GABAARs) mediate both inhibitory and excitatory neurotransmission, as the passive fluxes of Cl− and HCO3− via pores can be reversed by changes in the transmembrane concentration gradient of Cl−. The cation–chloride co-transporters (CCCs) are the primary systems for maintaining [Cl−]i homeostasis. However, despite extensive electrophysiological data obtained in vitro that are supported by a wide range of molecular biological studies on the expression patterns and properties of CCCs, the presence of ontogenetic changes in [Cl−]i—along with the consequent shift in GABA reversal potential—remain a subject of debate. Recent studies showed that the β3 subunit possesses properties of the P-type ATPase that participates in the ATP-consuming movement of Cl− via the receptor. Moreover, row studies have demonstrated that the β3 subunit is a key player in GABAAR performance and in the appearance of serious neurological disorders. In this review, we discuss the properties and driving forces of CCCs and Cl−, HCO3−ATPase in the maintenance of [Cl−]i homeostasis after changes in upcoming GABAAR function. Moreover, we discuss the contribution of the β3 subunit in the manifestation of epilepsy, autism, and other syndromes.
Collapse
|
4
|
Menzikov SA, Zaichenko DM, Moskovtsev AA, Morozov SG, Kubatiev AA. Ectopic GABA A receptor β3 subunit determines Cl - / HCO 3 - -ATPase and chloride transport in HEK 293FT cells. FEBS J 2020; 288:699-712. [PMID: 32383536 DOI: 10.1111/febs.15359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/09/2020] [Accepted: 05/04/2020] [Indexed: 01/20/2023]
Abstract
Neuronal intracellular chloride concentration ([Cl- ]i ) is a crucial determinant of transmission mediated by the γ-aminobutyric acid type A receptor (GABAA R), which subserves synaptic and extrasynaptic inhibition as well as excitation. The Cl- ion is the main carrier of charge through the GABAA R; however, bicarbonate ions ( HCO 3 - ) flowing in the opposite direction can also contribute to the net current. The direction of Cl- and HCO 3 - fluxes is determined by the underlying electrochemical gradient, which is controlled by Cl- transporters and channels. Accumulating evidence suggests that active mechanisms of chloride transport across the GABAA R pore can underlie the regulation of [Cl- ]i . Measurement of Cl- / HCO 3 - -ATPase activity and Cl- transport in HEK 293FT cells expressing homomeric or heteromeric GABAA R ensembles (α2, β3, or γ2) with fluorescent dye for chloride demonstrated that receptor subtypes containing the β3 subunit show enzymatic activity and participate in GABA-mediated or ATP-dependent Cl- transport. GABA-mediated flow of Cl- ions into and out of the cells occurred for a short time period but then rapidly declined. However, Cl- ion flux was stabilized for a long time period in the presence of HCO 3 - ions. The reconstituted β3 subunit isoform, purified as a fusion protein, confirmed that β3 is critical for ATPase; however, only the triplet variant showed the full receptor function. The high sensitivity of the enzyme to γ-phosphate inhibitors led us to postulate that the β3 subunit is catalytic. Our discovery of a GABAA R type that requires ATP consumption for chloride movement provides new insight into the molecular mechanisms of inhibitory signaling.
Collapse
Affiliation(s)
| | | | - Aleksey A Moskovtsev
- Institute of General Pathology and Pathophysiology, Moscow, Russia.,Russian Medical Academy of Postdoctoral Education, Moscow, Russia
| | - Sergey G Morozov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Aslan A Kubatiev
- Institute of General Pathology and Pathophysiology, Moscow, Russia.,Russian Medical Academy of Postdoctoral Education, Moscow, Russia
| |
Collapse
|
5
|
Jatczak-Śliwa M, Kisiel M, Czyzewska MM, Brodzki M, Mozrzymas JW. GABA A Receptor β 2E155 Residue Located at the Agonist-Binding Site Is Involved in the Receptor Gating. Front Cell Neurosci 2020; 14:2. [PMID: 32116555 PMCID: PMC7026498 DOI: 10.3389/fncel.2020.00002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/06/2020] [Indexed: 12/02/2022] Open
Abstract
GABAA receptors (GABAARs) play a crucial role in mediating inhibition in the adult brain. In spite of progress in describing (mainly) the static structures of this receptor, the molecular mechanisms underlying its activation remain unclear. It is known that in the α1β2γ2L receptors, the mutation of the β2E155 residue, at the orthosteric binding site, strongly impairs the receptor activation, but the molecular and kinetic mechanisms of this effect remain elusive. Herein, we investigated the impact of the β2E155C mutation on binding and gating of the α1β2γ2L receptor. To this end, we combined the macroscopic and single-channel analysis, the use of different agonists [GABA and muscimol (MSC)] and flurazepam (FLU) as a modulator. As expected, the β2E155C mutation caused a vast right shift of the dose–response (for GABA and MSC) and, additionally, dramatic changes in the time course of current responses, indicative of alterations in gating. Mutated receptors showed reduced maximum open probability and enhanced receptor spontaneous activity. Model simulations for macroscopic currents revealed that the primary effect of the mutation was the downregulation of the preactivation (flipping) rate. Experiments with MSC and FLU further confirmed a reduction in the preactivation rate. Our single-channel analysis revealed the mutation impact mainly on the second component in the shut times distributions. Based on model simulations, this finding further confirms that this mutation affects mostly the preactivation transition, supporting thus the macroscopic data. Altogether, we provide new evidence that the β2E155 residue is involved in both binding and gating (primarily preactivation).
Collapse
Affiliation(s)
- Magdalena Jatczak-Śliwa
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland.,Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław, Poland
| | - Magdalena Kisiel
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland
| | | | - Marek Brodzki
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland.,Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław, Poland
| | | |
Collapse
|
6
|
Sakamoto S, Yamaura K, Numata T, Harada F, Amaike K, Inoue R, Kiyonaka S, Hamachi I. Construction of a Fluorescent Screening System of Allosteric Modulators for the GABA A Receptor Using a Turn-On Probe. ACS CENTRAL SCIENCE 2019; 5:1541-1553. [PMID: 31572781 PMCID: PMC6764212 DOI: 10.1021/acscentsci.9b00539] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Indexed: 05/23/2023]
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. The fast inhibitory actions of GABA are mainly mediated by GABAA receptors (GABAARs), which are widely recognized as clinically relevant drug targets. However, it remains difficult to create screening systems for drug candidates that act on GABAARs because of the existence of multiple ligand-binding sites and the delicate pentameric structures of GABAARs. We here developed the first turn-on fluorescent imaging probe for GABAARs, which can be used to quantitatively evaluate ligand-receptor interactions under live cell conditions. Using noncovalent labeling of GABAARs with this turn-on probe, a new imaging-based ligand assay system, which allows discovery of positive allosteric modulators (PAMs) for the GABAAR, was successfully constructed. Our system is applicable to high-throughput ligand screening, and we discovered new small molecules that function as PAMs for GABAARs. These results highlight the power of the use of a turn-on fluorescent probe to screen drugs for complicated membrane proteins that cannot be addressed by conventional methods.
Collapse
Affiliation(s)
- Seiji Sakamoto
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kei Yamaura
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomohiro Numata
- Department
of Physiology, School of Medicine, Fukuoka
University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Fumio Harada
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuma Amaike
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryuji Inoue
- Department
of Physiology, School of Medicine, Fukuoka
University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shigeki Kiyonaka
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO
Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST), Kyoto 615-8530, Japan
| |
Collapse
|
7
|
Toxicologic and Inhibitory Receptor Actions of the Etomidate Analog ABP-700 and Its Metabolite CPM-Acid. Anesthesiology 2019; 131:287-304. [DOI: 10.1097/aln.0000000000002758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Background
The etomidate analog ABP-700 produces involuntary muscle movements that could be manifestations of seizures. To define the relationship (if any) between involuntary muscle movements and seizures, electroencephalographic studies were performed in Beagle dogs receiving supra-therapeutic (~10× clinical) ABP-700 doses. γ-aminobutyric acid type A (GABAA) and glycine receptor studies were undertaken to test receptor inhibition as the potential mechanism for ABP-700 seizures.
Methods
ABP-700 was administered to 14 dogs (6 mg/kg bolus followed by a 2-h infusion at 1 mg · kg-1 · min-1, 1.5 mg · kg-1 · min-1, or 2.3 mg · kg-1 · min-1). Involuntary muscle movements were documented, electroencephalograph was recorded, and plasma ABP-700 and CPM-acid concentrations were measured during and after ABP-700 administration. The concentration-dependent modulatory actions of ABP-700 and CPM-acid were defined in oocyte-expressed α1β3γ2L GABAA and α1β glycine receptors (n = 5 oocytes/concentration) using electrophysiologic techniques.
Results
ABP-700 produced both involuntary muscle movements (14 of 14 dogs) and seizures (5 of 14 dogs). However, these phenomena were temporally and electroencephalographically distinct. Mean peak plasma concentrations were (from lowest to highest dosed groups) 35 μM, 45 μM, and 102 μM (ABP-700) and 282 μM, 478 μM, and 1,110 μM (CPM-acid). ABP-700 and CPM-acid concentration–GABAA receptor response curves defined using 6 μM γ-aminobutyric acid exhibited potentiation at low and/or intermediate concentrations and inhibition at high ones. The half-maximal inhibitory concentrations of ABP-700 and CPM-acid defined using 1 mM γ-aminobutyric acid were 770 μM (95% CI, 590 to 1,010 μM) and 1,450 μM (95% CI, 1,340 to 1,560 μM), respectively. CPM-acid similarly inhibited glycine receptors activated by 1 mM glycine with a half-maximal inhibitory concentration of 1,290 μM (95% CI, 1,240 to 1,330 μM).
Conclusions
High dose ABP-700 infusions produce involuntary muscle movements and seizures in Beagle dogs via distinct mechanisms. CPM-acid inhibits both GABAA and glycine receptors at the high (~100× clinical) plasma concentrations achieved during the dog studies, providing a plausible mechanism for the seizures.
Collapse
|
8
|
Abstract
Neurosteroids (NS) are the main modulators of γ-aminobutyric acid type A receptors (GABAARs), which are the ligand-gated channels target of the major inhibitory neurotransmitter in vertebrates. As a consequence of their ability to modify inhibitory functions in the brain, NS have high physiological and clinical relevance. Accumulated evidence has strongly suggested that NS binding sites were located in the GABAAR transmembrane domain; however the specific localization of these sites has remained an enigma for decades. Fortunately, recent resolution of GABAARs crystal structures, together with computational strategies applied to investigate the NS binding, has paved the way to rationalizing the molecular basis of NS modulation. This work reviews from a historical perspective the road followed for establishing the GABAAR/NS binding mode, from their initial molecular modeling to the latest findings. Furthermore, a comparative analysis describing the NS binding is provided, plus a preliminary analysis of putative NS sites in other assemblies.
Collapse
Affiliation(s)
- Lautaro D Alvarez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Universitaria , Buenos Aires C1428EGA , Argentina.,UMYMFOR , CONICET-Universidad de Buenos Aires , Ciudad Universitaria , Buenos Aires C1428EGA , Argentina
| | - Adali Pecci
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Universitaria , Buenos Aires C1428EGA , Argentina.,IFIBYNE , CONICET-Universidad de Buenos Aires , Ciudad Universitaria , Buenos Aires C1428EGA , Argentina
| | - Dario A Estrin
- Departamento de Química Inorgánica Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Universitaria , Buenos Aires C1428EGA , Argentina.,INQUIMAE , CONICET-Universidad de Buenos Aires , Ciudad Universitaria , Buenos Aires C1428EGA , Argentina
| |
Collapse
|
9
|
Gottschald Chiodi C, Baptista-Hon DT, Hunter WN, Hales TG. Amino acid substitutions in the human homomeric β 3 GABA A receptor that enable activation by GABA. J Biol Chem 2018; 294:2375-2385. [PMID: 30545943 DOI: 10.1074/jbc.ra118.006229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/04/2018] [Indexed: 11/06/2022] Open
Abstract
GABAA receptors (GABAARs) are pentameric ligand-gated ion channels that mediate synaptic inhibition throughout the central nervous system. The α1β2γ2 receptor is the major subtype in the brain; GABA binds at the β2(+)α1(-) interface. The structure of the homomeric β3 GABAAR, which is not activated by GABA, has been solved. Recently, four additional heteromeric structures were reported, highlighting key residues required for agonist binding. Here, we used a protein engineering method, taking advantage of knowledge of the key binding residues, to create a β3(+)α1(-) heteromeric interface in the homomeric human β3 GABAAR that enables GABA-mediated activation. Substitutions were made in the complementary side of the orthosteric binding site in loop D (Y87F and Q89R), loop E (G152T), and loop G (N66D and A70T). The Q89R and G152T combination enabled low-potency activation by GABA and potentiation by propofol but impaired direct activation by higher propofol concentrations. At higher concentrations, GABA inhibited gating of β3 GABAAR variants containing Y87F, Q89R, and G152T. Reversion of Phe87 to tyrosine abolished GABA's inhibitory effect and partially recovered direct activation by propofol. This tyrosine is conserved in homomeric GABAARs and in the Erwinia chrysanthemi ligand-gated ion channel and may be essential for the absence of an inhibitory effect of GABA on homomeric channels. This work demonstrated that only two substitutions, Q89R and G152T, in β3 GABAAR are sufficient to reconstitute GABA-mediated activation and suggests that Tyr87 prevents inhibitory effects of GABA.
Collapse
Affiliation(s)
- Carla Gottschald Chiodi
- From Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom and
| | - Daniel T Baptista-Hon
- The Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - William N Hunter
- From Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom and
| | - Tim G Hales
- The Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| |
Collapse
|
10
|
Alvarez LD, Pecci A. Structure and dynamics of neurosteroid binding to the α 1β 2γ 2 GABA A receptor. J Steroid Biochem Mol Biol 2018; 182:72-80. [PMID: 29705269 DOI: 10.1016/j.jsbmb.2018.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 11/23/2022]
Abstract
Neurosteroids are the principal endogenous modulators of the γ-Aminobutyric acid receptors (GABAARs), pentameric membrane-bound proteins that can be assembled from at least 19 subunits. In the most abundant GABAAR arrangement (α1β2γ2), neurosteroids can potentiate the GABA action as well as produce a direct activation of the channel. The recent crystal structures of neurosteroids bound to α homopentameric GABAAR reveal binding to five equivalent sites. However, these results have been obtained using receptors that are not physiologically relevant, suggesting a need to investigate neurosteroid binding to heteropentameric receptors that exist in the central nervous system. In a previous work, we predicted the neurosteroid binding site by applying molecular modeling methods on the β3 homopentamer. Here we construct a homology model of the transmembrane domain of the heteropentameric α1β2γ2 receptor and then, by combining docking and molecular dynamics simulations, we analyzed neurosteroid binding. Results show that the five neurosteroid cavities are conserved in the α1β2γ2 receptor and all of them are able to bind neurosteroids. Two different binding modes were detected depending on the identity of the residue at position 241 in the transmembrane helix 1. These theoretical findings provide microscopic insights into neurosteroid binding at the heteropentameric GABAAR. The existence of two classes of sites may be associated with how neurosteroids modulate GABAAR. Our finding would represent the essential first step to reach a comprehensive understanding of how these endogenous molecules regulate the central nervous system.
Collapse
Affiliation(s)
- Lautaro D Alvarez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, UMYMFOR, Buenos Aires, Argentina.
| | - Adali Pecci
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, IFIBYNE, Buenos Aires, Argentina
| |
Collapse
|
11
|
Hannan S, Smart TG. Cell surface expression of homomeric GABA A receptors depends on single residues in subunit transmembrane domains. J Biol Chem 2018; 293:13427-13439. [PMID: 29986886 PMCID: PMC6120189 DOI: 10.1074/jbc.ra118.002792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/02/2018] [Indexed: 11/06/2022] Open
Abstract
Cell surface expression of type A GABA receptors (GABAARs) is a critical determinant of the efficacy of inhibitory neurotransmission. Pentameric GABAARs are assembled from a large pool of subunits according to precise co-assembly rules that limit the extent of receptor structural diversity. These rules ensure that particular subunits, such as ρ1 and β3, form functional cell surface ion channels when expressed alone in heterologous systems, whereas other brain-abundant subunits, such as α and γ, are retained within intracellular compartments. Why some of the most abundant GABAAR subunits fail to form homomeric ion channels is unknown. Normally, surface expression of α and γ subunits requires co-assembly with β subunits via interactions between their N-terminal sequences in the endoplasmic reticulum. Here, using molecular biology, imaging, and electrophysiology with GABAAR chimeras, we have identified two critical residues in the transmembrane domains of α and γ subunits, which, when substituted for their ρ1 counterparts, permit cell surface expression as homomers. Consistent with this, substitution of the ρ1 transmembrane residues for the α subunit equivalents reduced surface expression and altered channel gating, highlighting their importance for GABAAR trafficking and signaling. Although not ligand-gated, the formation of α and γ homomeric ion channels at the cell surface was revealed by incorporating a mutation that imparts the functional signature of spontaneous channel activity. Our study identifies two single transmembrane residues that enable homomeric GABAAR subunit cell surface trafficking and demonstrates that α and γ subunits can form functional ion channels.
Collapse
Affiliation(s)
- Saad Hannan
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Trevor G Smart
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
12
|
Abstract
Anesthetic agents interact with a variety of ion channels and membrane-bound receptors, often at agent-specific binding sites of a single protein. These molecular-level interactions are ultimately responsible for producing the clinically anesthetized state. Between these two scales of effect, anesthetic agents can be studied in terms of how they impact the physiology of neuronal circuits, individual neurons, and cells expressing individual receptor types. The acutely dissected hippocampal slice is one of the most extensively studied and characterized preparations of intact neural tissue and serves as a highly useful experimental model system to test hypotheses of anesthetic mechanisms. Specific agent-receptor interactions and their effect on excitable membranes can further be defined with molecular precision in cell-based expression systems. We highlight several approaches in these respective systems that we have used and that also have been used by many investigators worldwide. We emphasize economy and quality control, to allow an experimenter to carry out these types of studies in a rigorous and efficient manner.
Collapse
|
13
|
Seljeset S, Bright DP, Thomas P, Smart TG. Probing GABA A receptors with inhibitory neurosteroids. Neuropharmacology 2018; 136:23-36. [PMID: 29447845 PMCID: PMC6018617 DOI: 10.1016/j.neuropharm.2018.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 12/22/2022]
Abstract
γ-aminobutyric acid type A receptors (GABAARs) are important components of the central nervous system and they are functionally tasked with controlling neuronal excitability. These receptors are subject to post-translational modification and also to modulation by endogenous regulators, such as the neurosteroids. These modulators can either potentiate or inhibit GABAAR function. Whilst the former class of neurosteroids are considered to bind to and act from the transmembrane domain of the receptor, the domains that are important for the inhibitory neurosteroids remain less clear. In this study, we systematically compare a panel of recombinant synaptic-type and extrasynaptic-type GABAARs expressed in heterologous cell systems for their sensitivity to inhibition by the classic inhibitory neurosteroid, pregnenolone sulphate. Generally, peak GABA current responses were inhibited less compared to steady-state currents, implicating the desensitised state in inhibition. Moreover, pregnenolone sulphate inhibition increased with GABA concentration, but showed minimal voltage dependence. There was no strong dependence of inhibition on receptor subunit composition, the exception being the ρ1 receptor, which is markedly less sensitive. By using competition experiments with pregnenolone sulphate and the GABA channel blocker picrotoxinin, discrete binding sites are proposed. Furthermore, by assessing inhibition using site-directed mutagenesis and receptor chimeras comprising α, β or γ subunits with ρ1 subunits, the receptor transmembrane domains are strongly implicated in mediating inhibition and most likely the binding location for pregnenolone sulphate in GABAARs. This article is part of the “Special Issue Dedicated to Norman G. Bowery”. A range of GABAA receptor subtypes are inhibited by pregenolone sulphate. Peak GABA curents are less sensitive to inhibition than steady-state currents. Desensitised state of GABAA receptors most sensitive to neurosteroid inhibition. Inhibition increases with GABA concentration, but not strongly voltage-dependent. Pregnenolone sulphate binding site located within subunit transmembrane domains.
Collapse
Affiliation(s)
- Sandra Seljeset
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - Damian P Bright
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - Philip Thomas
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - Trevor G Smart
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
14
|
Wang S, Liu Q, Li X, Zhao X, Qiu L, Lin J. Possible binding sites and interactions of propanidid and AZD3043 within the γ-aminobutyric acid type A receptor (GABAAR). J Biomol Struct Dyn 2017; 36:3926-3937. [DOI: 10.1080/07391102.2017.1403959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shanshan Wang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R China
- Key Laboratory of Nuclear Medicine, Ministry of Health & Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P.R. China
| | - Qingzhu Liu
- Key Laboratory of Nuclear Medicine, Ministry of Health & Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P.R. China
| | - Xi Li
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R China
- Key Laboratory of Nuclear Medicine, Ministry of Health & Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P.R. China
| | - Xueyu Zhao
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R China
- Key Laboratory of Nuclear Medicine, Ministry of Health & Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P.R. China
| | - Ling Qiu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R China
- Key Laboratory of Nuclear Medicine, Ministry of Health & Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P.R. China
| | - Jianguo Lin
- Key Laboratory of Nuclear Medicine, Ministry of Health & Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P.R. China
| |
Collapse
|
15
|
Falk-Petersen CB, Søgaard R, Madsen KL, Klein AB, Frølund B, Wellendorph P. Development of a Robust Mammalian Cell-based Assay for Studying Recombinant α 4 β 1/3 δ GABA A Receptor Subtypes. Basic Clin Pharmacol Toxicol 2017; 121:119-129. [PMID: 28299900 DOI: 10.1111/bcpt.12778] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/10/2017] [Indexed: 11/29/2022]
Abstract
δ-Containing GABAA receptors are located extrasynaptically and mediate tonic inhibition. Their involvement in brain physiology positions them as interesting drug targets. There is thus a continued interest in establishing reliable recombinant expression systems for δ-containing GABAA receptors. Inconveniently, the recombinant expression of especially α4 β1/3 δ receptors has been found to be notoriously difficult, resulting in mixed receptor populations and/or stoichiometries and differential pharmacology depending on the expression system used. With the aim of developing a facile and robust 96-well format cell-based assay for extrasynaptic α4 β1/3 δ receptors, we have engineered and validated a HEK293 Flp-In™ cell line stably expressing the human GABAA δ-subunit. Upon co-transfection of α4 and β1/3 subunits, at optimized ratios, we have established a well-defined system for expressing α4 β1/3 δ receptors and used the fluorescence-based FLIPR Membrane Potential (FMP) assay to evaluate their pharmacology. Using the known reference compounds GABA and THIP, ternary α4 β1/3 δ and binary α4 β1/3 receptors could be distinguished based on potency and kinetic profiles but not efficacy. As expected, DS2 was able to potentiate only δ-containing receptors, whereas Zn2+ had an inhibitory effect only at binary receptors. By contrast, the hitherto reported δ-selective compounds, AA29504 and 3-OH-2'MeO6MF, were non-selective. The expression system was further validated using patch clamp electrophysiology, in which the superagonism of THIP was confirmed. The established FMP assay set-up, based on transient expression of human α4 and β1/3 subunits into a δ-subunit stable HEK293 Flp-In™ cell line, portrays a simple 96-well format assay as a useful supplement to electrophysiological recordings on δ-containing GABAA receptors.
Collapse
Affiliation(s)
- Christina B Falk-Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Søgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth L Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Anders B Klein
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Discovery of allosteric modulators for GABAA receptors by ligand-directed chemistry. Nat Chem Biol 2016; 12:822-30. [DOI: 10.1038/nchembio.2150] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
|
17
|
Abstract
BACKGROUND Etomidate is a highly potent anesthetic agent that is believed to produce hypnosis by enhancing γ-aminobutyric acid type A (GABAA) receptor function. The authors characterized the GABAA receptor and hypnotic potencies of etomidate analogs. The authors then used computational techniques to build statistical and graphical models that relate the potencies of these etomidate analogs to their structures to identify the specific molecular determinants of potency. METHODS GABAA receptor potencies were defined with voltage clamp electrophysiology using α1β3γ2 receptors harboring a channel mutation (α1[L264T]) that enhances anesthetic sensitivity (n = 36 to 60 measurements per concentration-response curve). The hypnotic potencies of etomidate analogs were defined using a loss of righting reflexes assay in Sprague Dawley rats (n = 9 to 21 measurements per dose-response curve). Three-dimensional quantitative structure-activity relationships were determined in silico using comparative molecular field analysis. RESULTS The GABAA receptor and hypnotic potencies of etomidate and the etomidate analogs ranged by 91- and 53-fold, respectively. These potency measurements were significantly correlated (r = 0.72), but neither measurement correlated with drug hydrophobicity (r = 0.019 and 0.005, respectively). Statistically significant and predictive comparative molecular field analysis models were generated, and a pharmacophore model was built that revealed both the structural elements in etomidate analogs associated with high potency and the interactions that these elements make with the etomidate-binding site. CONCLUSIONS There are multiple specific structural elements in etomidate and etomidate analogs that mediate GABAA receptor modulation. Modifying any one element can alter receptor potency by an order of magnitude or more.
Collapse
|
18
|
Kumar M, Dillon GH. Assessment of direct gating and allosteric modulatory effects of meprobamate in recombinant GABA(A) receptors. Eur J Pharmacol 2016; 775:149-58. [PMID: 26872987 DOI: 10.1016/j.ejphar.2016.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 02/07/2023]
Abstract
Meprobamate is a schedule IV anxiolytic and the primary metabolite of the muscle relaxant carisoprodol. Meprobamate modulates GABAA (γ-aminobutyric acid Type A) receptors, and has barbiturate-like activity. To gain insight into its actions, we have conducted a series of studies using recombinant GABAA receptors. In αxβzγ2 GABAA receptors (where x=1-6 and z=1-3), the ability to enhance GABA-mediated current was evident for all α subunit isoforms, with the largest effect observed in α5-expressing receptors. Direct gating was present with all α subunits, although attenuated in α3-expressing receptors. Allosteric and direct effects were comparable in α1β1γ2 and α1β2γ2 receptors, whereas allosteric effects were enhanced in α1β2 compared to α1β2γ2 receptors. In "extrasynaptic" (α1β3δ and α4β3δ) receptors, meprobamate enhanced EC20 and saturating GABA currents, and directly activated these receptors. The barbiturate antagonist bemegride attenuated direct effects of meprobamate. Whereas pentobarbital directly gated homomeric β3 receptors, meprobamate did not, and instead blocked the spontaneously open current present in these receptors. In wild type homomeric ρ1 receptors, pentobarbital and meprobamate were ineffective in direct gating; a mutation known to confer sensitivity to pentobarbital did not confer sensitivity to meprobamate. Our results provide insight into the actions of meprobamate and parent therapeutic agents such as carisoprodol. Whereas in general actions of meprobamate were comparable to those of carisoprodol, differential effects of meprobamate at some receptor subtypes suggest potential advantages of meprobamate may be exploited. A re-assessment of previously synthesized meprobamate-related carbamate molecules for myorelaxant and other therapeutic indications is warranted.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Physiology and Pharmacology and Center for Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Glenn H Dillon
- Department of Physiology and Pharmacology and Center for Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA; Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
19
|
Abstract
Neurosteroids are the principal endogenous modulators of GABA(A) receptors (GABA(A)Rs), which are pentameric membrane-bound proteins that regulate the passage of chloride ions from the extracellular to the intracellular compartment. As consequence of their ability to modify inhibitory functions in the brain, neurosteroids have high physiological and clinical importance and may act as anesthetic, anticonvulsant and anxiolytic drugs. Despite their relevance, essential issues regarding neurosteroid action on GABA(A)Rs are still unsettled. In particular, residues taking part of the steroid recognition are not definitely identified. Taking as starting point the first reported crystal structure of a human GABAA receptor (a β3 homopentamer), we have explored through a combination of computational methods (a cavity-detection algorithm, docking and molecular dynamics simulations) the binding mode of two structurally different representative neurosteroids, pregnanolone and allopregnanolone. We have identified a neurosteroid binding site between the TM3 of one subunit and TM1 and TM4 of the adjacent subunit that is consistent with the set of experimental data reported for the action of neurosteroids on β3 homopentamers. These sites are able to properly accommodate both overall torsioned and flat steroidal structures and they specifically recognize the 3-OH group, explaining the requirement of a 3α-configuration for the activity. We believe that this work provides for first time convincing information about the molecular interaction between neurosteroids and a GABA(A)R. This information largely increases our understanding of this fundamental ligand-receptor system.
Collapse
Affiliation(s)
- Lautaro D Alvarez
- Departamento de Química Orgánica and UMYMFOR (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EGA Ciudad de Buenos Aires, Argentina.
| | - Darío A Estrin
- Dpto. Química Inorgánica Analítica y Química Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EGA Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
20
|
Sieghart W. Allosteric modulation of GABAA receptors via multiple drug-binding sites. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 72:53-96. [PMID: 25600367 DOI: 10.1016/bs.apha.2014.10.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GABAA receptors are ligand-gated ion channels composed of five subunits that can be opened by GABA and be modulated by multiple pharmacologically and clinically important drugs. Over the time, hundreds of compounds from different structural classes have been demonstrated to modulate, directly activate, or inhibit GABAA receptors, and most of these compounds interact with more than one binding site at these receptors. Crystal structures of proteins and receptors homologous to GABAA receptors as well as homology modeling studies have provided insights into the possible location of ligand interaction sites. Some of these sites have been identified by mutagenesis, photolabeling, and docking studies. For most of these ligands, however, binding sites are not known. Due to the high flexibility of GABAA receptors and the existence of multiple drug-binding sites, the unequivocal identification of interaction sites for individual drugs is extremely difficult. The existence of multiple GABAA receptor subtypes with distinct subunit composition, the contribution of distinct subunit sequences to binding sites of different receptor subtypes, as well as the observation that even subunits not directly contributing to a binding site are able to influence affinity and efficacy of drugs, contribute to a unique pharmacology of each GABAA receptor subtype. Thus, each receptor subtype has to be investigated to identify a possible subtype selectivity of a compound. Although multiple binding sites make GABAA receptor pharmacology even more complicated, the exploitation of ligand interaction with novel-binding sites also offers additional possibilities for a subtype-selective modulation of GABAA receptors.
Collapse
Affiliation(s)
- Werner Sieghart
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
21
|
Analogues of etomidate: modifications around etomidate's chiral carbon and the impact on in vitro and in vivo pharmacology. Anesthesiology 2014; 121:290-301. [PMID: 24777068 DOI: 10.1097/aln.0000000000000268] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND R-etomidate possesses unique desirable properties but potently suppresses adrenocortical function. Consequently, efforts are being made to define structure-activity relationships with the goal of designing analogues with reduced adrenocortical toxicity. The authors explored the pharmacological impact of modifying etomidate's chiral center using R-etomidate, S-etomidate, and two achiral etomidate analogues (cyclopropyl etomidate and dihydrogen etomidate). METHODS The γ-aminobutyric acid type A receptor modulatory potencies of drugs were assessed in oocyte-expressed α1(L264T)β3γ2L and α1(L264T)β1γ2L γ-aminobutyric acid type A receptors (for each drug, n = 6 oocytes per subtype). In rats, hypnotic potencies and durations of action were measured using a righting reflex assay (n = 26 to 30 doses per drug), and adrenocortical potencies were quantified by using an adrenocorticotropic hormone stimulation test (n = 20 experiments per drug). RESULTS All four drugs activated both γ-aminobutyric acid type A receptor subtypes in vitro and produced hypnosis and suppressed adrenocortical function in rats. However, drug potencies in each model ranged by 1 to 2 orders of magnitude. R-etomidate had the highest γ-aminobutyric acid type A receptor modulatory, hypnotic, and adrenocortical inhibitory potencies. Respectively, R-etomidate, S-etomidate, and cyclopropyl etomidate were 27.4-, 18.9-, and 23.5-fold more potent activators of receptors containing β3 subunits than β1 subunits; however, dihydrogen etomidate's subunit selectivity was only 2.48-fold and similar to that of propofol (2.08-fold). S-etomidate was 1/23rd as potent an adrenocortical inhibitor as R-etomidate. CONCLUSION The linkage between the structure of etomidate's chiral center and its pharmacology suggests that altering etomidate's chiral center may be used as part of a strategy to design analogues with more desirable adrenocortical activities and/or subunit selectivities.
Collapse
|
22
|
Comenencia-Ortiz E, Moss SJ, Davies PA. Phosphorylation of GABAA receptors influences receptor trafficking and neurosteroid actions. Psychopharmacology (Berl) 2014; 231:3453-65. [PMID: 24847959 PMCID: PMC4135009 DOI: 10.1007/s00213-014-3617-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/02/2014] [Indexed: 01/06/2023]
Abstract
RATIONALE Gamma-aminobutyric acid type A receptors (GABAARs) are the principal mediators of inhibitory transmission in the mammalian central nervous system. GABAARs can be localized at post-synaptic inhibitory specializations or at extrasynaptic sites. While synaptic GABAARs are activated transiently following the release of GABA from presynaptic vesicles, extrasynaptic GABAARs are typically activated continuously by ambient GABA concentrations and thus mediate tonic inhibition. The tonic inhibitory currents mediated by extrasynaptic GABAARs control neuronal excitability and the strength of synaptic transmission. However, the mechanisms by which neurons control the functional properties of extrasynaptic GABAARs had not yet been explored. OBJECTIVES We review GABAARs, how they are assembled and trafficked, and the role phosphorylation has on receptor insertion and membrane stabilization. Finally, we review the modulation of GABAARs by neurosteroids and how GABAAR phosphorylation can influence the actions of neurosteroids. CONCLUSIONS Trafficking and stability of functional channels to the membrane surface are critical for inhibitory efficacy. Phosphorylation of residues within GABAAR subunits plays an essential role in the assembly, trafficking, and cell surface stability of GABAARs. Neurosteroids are produced in the brain and are highly efficacious allosteric modulators of GABAAR-mediated current. This allosteric modulation by neurosteroids is influenced by the phosphorylated state of the GABAAR which is subunit dependent, adding temporal and regional variability to the neurosteroid response. Possible links between neurosteroid actions, phosphorylation, and GABAAR trafficking remain to be explored, but potential novel therapeutic targets may exist for numerous neurological and psychological disorders which are linked to fluctuations in neurosteroid levels and GABAA subunit expression.
Collapse
|
23
|
Patel B, Mortensen M, Smart TG. Stoichiometry of δ subunit containing GABA(A) receptors. Br J Pharmacol 2014; 171:985-94. [PMID: 24206220 PMCID: PMC3925037 DOI: 10.1111/bph.12514] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/02/2013] [Accepted: 10/24/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Although the stoichiometry of the major synaptic αβγ subunit-containing GABAA receptors has consensus support for 2α:2β:1γ, a clear view of the stoichiometry of extrasynaptic receptors containing δ subunits has remained elusive. Here we examine the subunit stoichiometry of recombinant α4β3δ receptors using a reporter mutation and a functional electrophysiological approach. EXPERIMENTAL APPROACH Using site-directed mutagenesis, we inserted a highly characterized 9' serine to leucine mutation into the second transmembrane (M2) region of α4, β3 and δ subunits that increases receptor sensitivity to GABA. Whole-cell, GABA-activated currents were recorded from HEK-293 cells co-expressing different combinations of wild-type (WT) and/or mutant α4(L297S), β3(L284S) and δ(L288S) subunits. KEY RESULTS Recombinant receptors containing one or more mutant subunits showed increased GABA sensitivity relative to WT receptors by approximately fourfold, independent of the subunit class (α, β or δ) carrying the mutation. GABA dose-response curves of cells co-expressing WT subunits with their respective L9'S mutants exhibited multiple components, with the number of discernible components enabling a subunit stoichiometry of 2α, 2β and 1δ to be deduced for α4β3δ receptors. Varying the cDNA transfection ratio by 10-fold had no significant effect on the number of incorporated δ subunits. CONCLUSIONS AND IMPLICATIONS Subunit stoichiometry is an important determinant of GABAA receptor function and pharmacology, and δ subunit-containing receptors are important mediators of tonic inhibition in several brain regions. Here we demonstrate a preferred subunit stoichiometry for α4β3δ receptors of 2α, 2β and 1δ.
Collapse
Affiliation(s)
- B Patel
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
| | - M Mortensen
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
| | - T G Smart
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
| |
Collapse
|
24
|
|
25
|
Greenfield LJ. Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure 2013; 22:589-600. [PMID: 23683707 PMCID: PMC3766376 DOI: 10.1016/j.seizure.2013.04.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 02/09/2023] Open
Abstract
The GABAA receptor (GABAAR) is a major target of antiseizure drugs (ASDs). A variety of agents that act at GABAARs s are used to terminate or prevent seizures. Many act at distinct receptor sites determined by the subunit composition of the holoreceptor. For the benzodiazepines, barbiturates, and loreclezole, actions at the GABAAR are the primary or only known mechanism of antiseizure action. For topiramate, felbamate, retigabine, losigamone and stiripentol, GABAAR modulation is one of several possible antiseizure mechanisms. Allopregnanolone, a progesterone metabolite that enhances GABAAR function, led to the development of ganaxolone. Other agents modulate GABAergic "tone" by regulating the synthesis, transport or breakdown of GABA. GABAAR efficacy is also affected by the transmembrane chloride gradient, which changes during development and in chronic epilepsy. This may provide an additional target for "GABAergic" ASDs. GABAAR subunit changes occur both acutely during status epilepticus and in chronic epilepsy, which alter both intrinsic GABAAR function and the response to GABAAR-acting ASDs. Manipulation of subunit expression patterns or novel ASDs targeting the altered receptors may provide a novel approach for seizure prevention.
Collapse
Affiliation(s)
- L John Greenfield
- Dept. of Neurology, University of Arkansas for Medical Sciences, 4301W. Markham St., Slot 500, Little Rock, AR 72205, United States.
| |
Collapse
|
26
|
Yip GMS, Chen ZW, Edge CJ, Smith EH, Dickinson R, Hohenester E, Townsend RR, Fuchs K, Sieghart W, Evers AS, Franks NP. A propofol binding site on mammalian GABAA receptors identified by photolabeling. Nat Chem Biol 2013; 9:715-20. [PMID: 24056400 PMCID: PMC3951778 DOI: 10.1038/nchembio.1340] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 08/08/2013] [Indexed: 11/09/2022]
Abstract
Propofol is the most important intravenous general anesthetic in current clinical use. It acts by potentiating GABAA (γ-aminobutyric acid type A) receptors, but where it binds to this receptor is not known and has been a matter of some debate. We synthesized a new propofol analog photolabeling reagent whose biological activity is very similar to that of propofol. We confirmed that this reagent labeled known propofol binding sites in human serum albumin that have been identified using X-ray crystallography. Using a combination of protiated and deuterated versions of the reagent to label mammalian receptors in intact membranes, we identified a new binding site for propofol in GABAA receptors consisting of both β3 homopentamers and α1β3 heteropentamers. The binding site is located within the β subunit at the interface between the transmembrane domains and the extracellular domain and lies close to known determinants of anesthetic sensitivity in the transmembrane segments TM1 and TM2.
Collapse
Affiliation(s)
- Grace M S Yip
- 1] Department of Life Sciences, Imperial College, London, UK. [2]
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen ZW, Manion B, Townsend RR, Reichert DE, Covey DF, Steinbach JH, Sieghart W, Fuchs K, Evers AS. Neurosteroid analog photolabeling of a site in the third transmembrane domain of the β3 subunit of the GABA(A) receptor. Mol Pharmacol 2012; 82:408-19. [PMID: 22648971 DOI: 10.1124/mol.112.078410] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Accumulated evidence suggests that neurosteroids modulate GABA(A) receptors through binding interactions with transmembrane domains. To identify these neurosteroid binding sites directly, a neurosteroid-analog photolabeling reagent, (3α,5β)-6-azi-pregnanolone (6-AziP), was used to photolabel membranes from Sf9 cells expressing high-density, recombinant, His(8)-β3 homomeric GABA(A) receptors. 6-AziP inhibited (35)S-labeled t-butylbicyclophosphorothionate binding to the His(8)-β3 homomeric GABA(A) receptors in a concentration-dependent manner (IC(50) = 9 ± 1 μM), with a pattern consistent with a single class of neurosteroid binding sites. [(3)H]6-AziP photolabeled proteins of 30, 55, 110, and 150 kDa, in a concentration-dependent manner. The 55-, 110-, and 150-kDa proteins were identified as His(8)-β3 subunits through immunoblotting and through enrichment on a nickel affinity column. Photolabeling of the β3 subunits was stereoselective, with [(3)H]6-AziP producing substantially greater labeling than an equal concentration of its diastereomer [(3)H](3β,5β)-6-AziP. High-resolution mass spectrometric analysis of affinity-purified, 6-AziP-labeled His(8)-β3 subunits identified a single photolabeled peptide, ALLEYAF-6-AziP, in the third transmembrane domain. The identity of this peptide and the site of incorporation on Phe301 were confirmed through high-resolution tandem mass spectrometry. No other sites of photoincorporation were observed despite 90% sequence coverage of the whole β3 subunit protein, including 84% of the transmembrane domains. This study identifies a novel neurosteroid binding site and demonstrates the feasibility of identifying neurosteroid photolabeling sites by using mass spectrometry.
Collapse
Affiliation(s)
- Zi-Wei Chen
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Histamine-gated ion channels in mammals? Biochem Pharmacol 2012; 83:1127-35. [DOI: 10.1016/j.bcp.2011.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/07/2011] [Accepted: 12/09/2011] [Indexed: 01/29/2023]
|
29
|
Othman NA, Gallacher M, Deeb TZ, Baptista-Hon DT, Perry DC, Hales TG. Influences on blockade by t-butylbicyclo-phosphoro-thionate of GABA(A) receptor spontaneous gating, agonist activation and desensitization. J Physiol 2011; 590:163-78. [PMID: 22083597 DOI: 10.1113/jphysiol.2011.213249] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Picrotoxin and t-butylbicyclophosphorothionate (TBPS) are GABA(A) receptor (GABA(A)R) open channel blockers. However, picrotoxin displaceable [(35)S]TBPS binding to α1β2γ2 GABA(A)Rs occurs in the absence of GABA, suggesting that access to the binding site is independent of activation. Alternatively, spontaneous gating may provide access to the channel. In the absence of episodic GABA application, picrotoxin and TBPS blocked (by 91 ± 3% and 85 ± 5%, respectively) GABA-evoked currents mediated by α1β2γ2 receptors. We used two approaches to inhibit spontaneous GABA(A)R gating, bicuculline, which inhibits spontaneous current in the absence of exogenous agonist and the α1(K278M) mutant subunit. Whole-cell patch-clamp recordings demonstrated that α1(K278M)β2γ2 receptors have negligible spontaneous gating. Application of bicuculline to α1β2γ2 receptors in the absence of exogenous GABA caused a 35% reduction of current blockade by TBPS and reduced [(35)S]TBPS binding by 25%. Consistent with this, in the absence of exogenous GABA, α1(K278M)β2γ2 receptors exhibited reduced blockade by TBPS current compared to wild-type receptors. These data suggest that a decrease in spontaneous gating reduces accessibility of TBPS to its binding site. GABA application during picrotoxin or TBPS administration enhanced α1β2γ2 receptor blockade (to 98% in both cases). The GABA-dependent component of TBPS blockade accounts for the stimulation of [(35)S]TBPS binding to α1β2γ2 receptors seen with GABA (1 μm) application. Moreover, application of GABA at concentrations that cause significant steady-state desensitization reduced [(35)S]TBPS binding. The α1(K278M) subunit slowed desensitization kinetics and increased the rate of deactivation of GABA-evoked currents. Furthermore, there was a marked increase in the GABA EC(50) for desensitization of α1(K278M)β2γ2 receptors associated with a large increase in the GABA-dependent stimulation of [(35)S]TBPS binding. These data establish a relationship between GABA(A)R function and the three phases of [(35)S]TBPS binding seen in the absence and the presence of GABA.
Collapse
Affiliation(s)
- Nidaa A Othman
- The Institute of Academic Anaesthesia, Division of Neuroscience, University of Dundee, Dundee DD1 9SY, UK
| | | | | | | | | | | |
Collapse
|
30
|
Carino C, Fibuch EE, Mao LM, Wang JQ. Dynamic loss of surface-expressed AMPA receptors in mouse cortical and striatal neurons during anesthesia. J Neurosci Res 2011; 90:315-23. [PMID: 21932367 DOI: 10.1002/jnr.22749] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/11/2011] [Accepted: 06/27/2011] [Indexed: 11/08/2022]
Abstract
Ionotropic glutamate receptors, especially the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subtype, undergo dynamic trafficking between the surface membrane and intracellular organelles. This trafficking activity determines the efficacy and strength of excitatory synapses and is subject to modulation by changing synaptic inputs. Given the possibility that glutamate receptors in the central nervous system might be a sensitive target of anesthetic agents, this study investigated the possible impact of anesthesia on trafficking and subcellular expression of AMPA receptors in adult mouse brain neurons in vivo. We found that anesthesia induced by a systemic injection of pentobarbital did not alter total protein levels of three AMPA receptor subunits (GluR1-3) in cortical neurons. However, an anesthetic dose of pentobarbital reduced GluR1 and GluR3 proteins in the surface pool and elevated these proteins in the intracellular pool of cortical neurons. The similar redistribution of GluR1/3 was observed in mouse striatal neurons. Pentobarbital did not significantly alter GluR2 expression in the two pools. Chloral hydrate at an anesthetic dose also reduced surface GluR1/3 expression and increased intracellular levels of these proteins. The effect of pentobarbital on subcellular distribution of AMPA receptors was reversible. Altered subcellular distribution of GluR1/3 returned to normal levels after the anesthesia subsided. These data indicate that anesthesia induced by pentobarbital and chloral hydrate can alter AMPA receptor trafficking in both cortical and striatal neurons. This alteration is characterized by the concurrent loss and addition of GluR1/3 subunits in the respective surface and intracellular pools.
Collapse
Affiliation(s)
- Charlene Carino
- Department of Anesthesiology, University of Missouri-Kansas City School of Medicine, and Saint Luke's Hospital, Kansas City, Missouri 64108, USA
| | | | | | | |
Collapse
|
31
|
Simeone TA, Wilcox KS, White HS. Topiramate modulation of β1- and β3-homomeric GABAA receptors. Pharmacol Res 2011; 64:44-52. [DOI: 10.1016/j.phrs.2011.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 03/10/2011] [Accepted: 03/14/2011] [Indexed: 11/15/2022]
|
32
|
Dostalova Z, Liu A, Zhou X, Farmer SL, Krenzel ES, Arevalo E, Desai R, Feinberg-Zadek PL, Davies PA, Yamodo IH, Forman SA, Miller KW. High-level expression and purification of Cys-loop ligand-gated ion channels in a tetracycline-inducible stable mammalian cell line: GABAA and serotonin receptors. Protein Sci 2011; 19:1728-38. [PMID: 20662008 DOI: 10.1002/pro.456] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The human neuronal Cys-loop ligand-gated ion channel superfamily of ion channels are important determinants of human behavior and the target of many drugs. It is essential for their structural characterization to achieve high-level expression in a functional state. The aim of this work was to establish stable mammalian cell lines that enable high-level heterologous production of pure receptors in a state that supports agonist-induced allosteric conformational changes. In a tetracycline-inducible stable human embryonic kidney cells (HEK293S) cell line, GABA(A) receptors containing α1 and β3 subunits could be expressed with specific activities of 29-34 pmol/mg corresponding to 140-170 pmol/plate, the highest expression level reported so far. Comparable figures for serotonin (5-HT(3A)) receptors were 49-63 pmol/mg and 245-315 pmol/plate. The expression of 10 nmol of either receptor in suspension in a bioreactor required 0.3-3.0 L. Both receptor constructs had a FLAG epitope inserted at the N-terminus and could be purified in one step after solubilization using ANTI-FLAG affinity chromatography with yields of 30-40%. Purified receptors were functional. Binding of the agonist [(3)H]muscimol to the purified GABA(A)R was enhanced allosterically by the general anesthetic etomidate, and purified 5-hydroxytryptamine-3A receptor supported serotonin-stimulated cation flux when reconstituted into lipid vesicles.
Collapse
Affiliation(s)
- Zuzana Dostalova
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kohlmeier KA, Kristiansen U. GABAergic actions on cholinergic laterodorsal tegmental neurons: implications for control of behavioral state. Neuroscience 2010; 171:812-29. [PMID: 20884335 DOI: 10.1016/j.neuroscience.2010.09.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/17/2010] [Accepted: 09/17/2010] [Indexed: 11/30/2022]
Abstract
Cholinergic neurons of the pontine laterodorsal tegmentum (LDT) play a critical role in regulation of behavioral state. Therefore, elucidation of mechanisms that control their activity is vital for understanding of how switching between wakefulness, sleep and anesthetic states is effectuated. In vivo studies suggest that GABAergic mechanisms within the pons play a critical role in behavioral state switching. However, the postsynaptic, electrophysiological actions of GABA on LDT neurons, as well as the identity of GABA receptors present in the LDT mediating these actions is virtually unexplored. Therefore, we studied the actions of GABA agonists and antagonists on cholinergic LDT cells by performing patch clamp recordings in mouse brain slices. Under conditions where detection of Cl(-) -mediated events was optimized, GABA induced gabazine (GZ)-sensitive inward currents in the majority of LDT neurons. Post-synaptic location of GABA(A) receptors was demonstrated by persistence of muscimol-induced inward currents in TTX and low Ca(2+) solutions. THIP, a selective GABA(A) receptor agonist with a preference for δ-subunit containing GABA(A) receptors, induced inward currents, suggesting the existence of extrasynaptic GABA(A) receptors. LDT cells also possess GABA(B) receptors as baclofen-activated a TTX- and low Ca(2+)-resistant outward current that was attenuated by the GABA(B) antagonists CGP 55845 and saclofen. The tertiapin sensitivity of baclofen-induced outward currents suggests that a G(IRK) mediated this effect. Further, outward currents were never additive with those induced by application of carbachol, suggesting that they were mediated by activation of GABA(B) receptors linked to the same G(IRK) activated in these cells by muscarinic receptor stimulation. Activation of GABA(B) receptors inhibited Ca(2+) increases induced by a depolarizing voltage step shown previously to activate VOCCs in cholinergic LDT neurons. Baclofen-mediated reductions in depolarization-induced Ca(2+) were unaltered by prior emptying of intracellular Ca(2+) stores, but were abolished by low extracellular Ca(2+) and pre-application of nifedipine, indicating that activation of GABA(B) receptors inhibits influx of Ca(2+) involving L-type Ca(2+) channels. Presence of GABA(C) receptors is suggested by the induction of inward current by (E)-4- amino-2-butenoic acid (TACA) and its inhibition by 1,2,5,6-tetrahydropyridine-4-ylmethylphosphinic (TPMPA), a relatively selective agonist and antagonist, respectively, of GABA(C) receptors. All of these GABA-mediated actions were found to occur in histochemically-identified cholinergic neurons. Taken together, these data indicate for the first time that cholinergic neurons of the LDT exhibit functional GABA(A, B and C) receptors, including extrasynaptically located GABA(A) receptors, which may be tonically activated by synaptic overflow of GABA. Accordingly, the activity of cholinergic LDT neurons is likely to be significantly affected by GABAergic tone within the nucleus, and so, demonstrated effects of GABA on behavioral state may be mediated, in part, via direct actions on cholinergic neurons in the LDT.
Collapse
Affiliation(s)
- K A Kohlmeier
- Department of Pharmacology and Pharmacotherapy, The Pharmaceutical Faculty, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | | |
Collapse
|
34
|
Evers AS, Chen ZW, Manion BD, Han M, Jiang X, Darbandi-Tonkabon R, Kable T, Bracamontes J, Zorumski CF, Mennerick S, Steinbach JH, Covey DF. A synthetic 18-norsteroid distinguishes between two neuroactive steroid binding sites on GABAA receptors. J Pharmacol Exp Ther 2010; 333:404-13. [PMID: 20124410 DOI: 10.1124/jpet.109.164079] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the absence of GABA, neuroactive steroids that enhance GABA-mediated currents modulate binding of [35S]t-butylbicyclophosphorothionate in a biphasic manner, with enhancement of binding at low concentrations (site NS1) and inhibition at higher concentrations (site NS2). In the current study, compound (3alpha,5beta,17beta)-3-hydroxy-18-norandrostane-17-carbonitrile (3alpha5beta-18-norACN), an 18-norsteroid, is shown to be a full agonist at site NS1 and a weak partial agonist at site NS2 in both rat brain membranes and heterologously expressed GABAA receptors. 3alpha5beta-18-norACN also inhibits the action of a full neurosteroid agonist, (3alpha,5alpha,17beta)-3-hydroxy-17-carbonitrile (3alpha5alphaACN), at site NS2. Structure-activity studies demonstrate that absence of the C18 methyl group and the 5beta-reduced configuration both contribute to the weak agonist effect at the NS2 site. Electrophysiological studies using heterologously expressed GABAA receptors show that 3alpha5beta-18-norACN potently and efficaciously potentiates the GABA currents elicited by low concentrations of GABA but that it has low efficacy as a direct activator of GABAA receptors. 3alpha5beta-18-norACN also inhibits direct activation of GABAA receptors by 3alpha5alphaACN. 3alpha5beta-18-norACN also produces loss of righting reflex in tadpoles and mice, indicating that action at NS1 is sufficient to mediate the sedative effects of neurosteroids. These data provide insight into the pharmacophore required for neurosteroid efficacy at the NS2 site and may prove useful in the development of selective agonists and antagonists for neurosteroid sites on the GABAA receptor.
Collapse
Affiliation(s)
- Alex S Evers
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Miller PS, Smart TG. Binding, activation and modulation of Cys-loop receptors. Trends Pharmacol Sci 2010; 31:161-74. [PMID: 20096941 DOI: 10.1016/j.tips.2009.12.005] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 12/17/2009] [Accepted: 12/18/2009] [Indexed: 11/19/2022]
Abstract
It is over forty years since the major neurotransmitters and their protein receptors were identified, and over twenty years since determination of the first amino-acid sequences of the Cys-loop receptors that recognize acetylcholine, serotonin, GABA and glycine. The last decade has seen the first structures of these proteins (and related bacterial and molluscan homologues) determined to atomic resolution. Hopefully over the next decade, more detailed molecular structures of entire Cys-loop receptors in drug-bound and drug-free conformations will become available. These, together with functional studies, will provide a clear picture of how these receptors participate in neurotransmission and how structural variations between receptor subtypes impart their unique characteristics. This insight should facilitate the design of novel and improved therapeutics to treat neurological disorders. This review considers our current understanding about the processes of agonist binding, receptor activation and channel opening, as well as allosteric modulation of the Cys-loop receptor family.
Collapse
Affiliation(s)
- Paul S Miller
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
36
|
Wu DF, Othman NA, Sharp D, Mahendra A, Deeb TZ, Hales TG. A conserved cysteine residue in the third transmembrane domain is essential for homomeric 5-HT3 receptor function. J Physiol 2009; 588:603-16. [PMID: 19933756 DOI: 10.1113/jphysiol.2009.181719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The cysteine (Cys) residue at position 312 in the third transmembrane domain (M3) is conserved among 5-hydroxytryptamine type 3 (5-HT(3)) receptor subunits and many other subunits of the nicotinic acetylcholine (nACh) related Cys-loop receptor family, including most of the gamma-aminobutyric acid type A (GABA(A)) and glycine receptor subunits. To elucidate a possible role for the Cys-312 in human 5-HT(3)A receptors, we replaced it with alanine and expressed the 5-HT(3)A(C312A) mutant in HEK293 cells. The mutation resulted in an absence of 5-HT-induced whole-cell current without reducing homopentamer formation, surface expression or 5-HT binding. The 5-HT(3)A(C312A) mutant, when co-expressed with the wild-type 5-HT(3)A subunit, did not affect functional expression of receptors, suggesting that the mutant is not dominant negative. Interestingly, co-expression of 5-HT(3)A(C312A) with 5-HT(3)B led to surface expression of heteropentamers that mediated small 5-HT responses. This suggests that the Cys-312 is essential for homomeric but not heteromeric receptor gating. To further investigate the relationship between residue 312 and gating we replaced it with amino acids located at the equivalent position within other Cys-loop subunits that are either capable or incapable of forming functional homopentamers. Replacement of 5-HT(3)A Cys-312 by Gly or Leu (equivalent residues in the nACh receptor delta and gamma subunits) abolished and severely attenuated function, respectively, whereas replacement by Thr or Ser (equivalent residues in nACh receptor alpha7 and GABA(A) subunits) supported robust function. Thus, 5-HT(3)A residue 312 and equivalent polar residues in the M3 of other Cys-loop subunits are essential determinants of homopentameric gating.
Collapse
Affiliation(s)
- Dai-Fei Wu
- Department of Pharmacology & Physiology, George Washington University, Washington, DC 20037, USA
| | | | | | | | | | | |
Collapse
|
37
|
Halonen LM, Sinkkonen ST, Chandra D, Homanics GE, Korpi ER. Brain regional distribution of GABA(A) receptors exhibiting atypical GABA agonism: roles of receptor subunits. Neurochem Int 2009; 55:389-96. [PMID: 19397945 DOI: 10.1016/j.neuint.2009.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 04/17/2009] [Indexed: 11/19/2022]
Abstract
The major inhibitory neurotransmitter in the brain, gamma-aminobutyric acid (GABA), has only partial efficacy at certain subtypes of GABA(A) receptors. To characterize these minor receptor populations in rat and mouse brains, we used autoradiographic imaging of t-butylbicyclophosphoro[(35)S]thionate ([(35)S]TBPS) binding to GABA(A) receptors in brain sections and compared the displacing capacities of 10mM GABA and 1mM 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), a competitive GABA-site agonist. Brains from GABA(A) receptor alpha1, alpha4, delta, and alpha4+delta subunit knockout (KO) mouse lines were used to understand the contribution of these particular receptor subunits to "GABA-insensitive" (GIS) [(35)S]TBPS binding. THIP displaced more [(35)S]TBPS binding than GABA in several brain regions, indicating that THIP also inhibited GIS-binding. In these regions, GABA prevented the effect of THIP on GIS-binding. GIS-binding was increased in the cerebellar granule cell layer of delta KO and alpha4+delta KO mice, being only slightly diminished in that of alpha1 KO mice. In the thalamus and some other forebrain regions of wild-type mice, a significant amount of GIS-binding was detected. This GIS-binding was higher in alpha4 KO mice. However, it was fully abolished in alpha1 KO mice, indicating that the alpha1 subunit was obligatory for the GIS-binding in the forebrain. Our results suggest that native GABA(A) receptors in brain sections showing reduced displacing capacity of [(35)S]TBPS binding by GABA (partial agonism) minimally require the assembly of alpha1 and beta subunits in the forebrain and of alpha6 and beta subunits in the cerebellar granule cell layer. These receptors may function as extrasynaptic GABA(A) receptors.
Collapse
Affiliation(s)
- Lauri M Halonen
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
38
|
Pape JR, Bertrand SS, Lafon P, Odessa MF, Chaigniau M, Stiles JK, Garret M. Expression of GABA(A) receptor alpha3-, theta-, and epsilon-subunit mRNAs during rat CNS development and immunolocalization of the epsilon subunit in developing postnatal spinal cord. Neuroscience 2009; 160:85-96. [PMID: 19249336 DOI: 10.1016/j.neuroscience.2009.02.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/03/2009] [Accepted: 02/19/2009] [Indexed: 12/13/2022]
Abstract
Ionotropic GABA(A) receptors are heteromeric structures composed of a combination of five from at least 16 different subunits. Subunit genes are expressed in distinct cell types at specific times during development. The most abundant native GABA(A) receptors consist of alpha1-, beta2-, and gamma2-subunits that are co-expressed in numerous brain areas. alpha3-, theta-, And epsilon-subunits are clustered on the X chromosome and show striking overlapping expression patterns throughout the adult rat brain. To establish whether these subunits are temporally and spatially co-expressed, we used in situ hybridization to analyze their expression throughout rat development from embryonic stage E14 to postnatal stage P12. Each transcript exhibited a unique or a shared regional and temporal developmental expression profile. The thalamic expression pattern evolved from a restricted expression of epsilon and theta transcripts before birth, to a theta and alpha3 expression at birth, and finally to a grouped epsilon, theta and alpha3 expression postpartum. However, strong similarities occurred, such as a grouped expression of the three subunits within the hypothalamus, tegmentum and pontine nuclei throughout the developmental process. At early stages of development (E17), epsilon and theta appeared to have a greater spatial distribution before the dominance of the alpha3 subunit transcript around birth. We also revealed expression of alpha3, theta, and epsilon in the developing spinal cord and identified neurons that express epsilon in the postnatal dorsal horn, intermediolateral column and motoneurons. Our findings suggest that various combinations of alpha3-, theta- and epsilon-subunits may be assembled at a regional and developmental level in the brain.
Collapse
Affiliation(s)
- J-R Pape
- Université de Bordeaux, CNRS, UMR 5228, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Muroi Y, Theusch CM, Czajkowski C, Jackson MB. Distinct structural changes in the GABAA receptor elicited by pentobarbital and GABA. Biophys J 2009; 96:499-509. [PMID: 19167300 DOI: 10.1016/j.bpj.2008.09.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022] Open
Abstract
The barbiturate pentobarbital binds to gamma-aminobutyric acid type A (GABA(A)) receptors, and this interaction plays an important role in the anesthetic action of this drug. Depending on its concentration, pentobarbital can potentiate (approximately 10-100 microM), activate (approximately 100-800 microM), or block (approximately 1-10 mM) the channel, but the mechanisms underlying these three distinct actions are poorly understood. To investigate the drug-induced structural rearrangements in the GABA(A) receptor, we labeled cysteine mutant receptors expressed in Xenopus oocytes with the sulfhydryl-reactive, environmentally sensitive fluorescent probe tetramethylrhodamine-6-maleimide (TMRM). We then used combined voltage clamp and fluorometry to monitor pentobarbital-induced channel activity and local protein movements simultaneously in real time. High concentrations of pentobarbital induced a decrease in TMRM fluorescence (F(TMRM)) of labels tethered to two residues in the extracellular domain (alpha(1)L127C and beta(2)L125C) that have been shown previously to produce an increase in F(TMRM) in response to GABA. Label at beta(2)K274C in the extracellular end of the M2 transmembrane helix reported a small but significant F(TMRM) increase during application of low modulating pentobarbital concentrations, and it showed a much greater F(TMRM) increase at higher concentrations. In contrast, GABA decreased F(TMRM) at this site. These results indicate that GABA and pentobarbital induce different structural rearrangements in the receptor, and thus activate the receptor by different mechanisms. Labels at alpha(1)L127C and beta(2)K274C change their fluorescence by substantial amounts during channel blockade by pentobarbital. In contrast, picrotoxin blockade produces no change in F(TMRM) at these sites, and the pattern of F(TMRM) signals elicited by the antagonist SR95531 differs from that produced by other antagonists. Thus, with either channel block by antagonists or activation by agonists, the structural changes in the GABA(A) receptor protein differ during transitions that are functionally equivalent.
Collapse
Affiliation(s)
- Yukiko Muroi
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
40
|
Wang X. Propofol and isoflurane enhancement of tonic gamma-aminobutyric acid type a current in cardiac vagal neurons in the nucleus ambiguus. Anesth Analg 2009; 108:142-8. [PMID: 19095842 DOI: 10.1213/ane.0b013e31818d8b79] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND General anesthesia with propofol and isoflurane induces alterations of the cardiovascular system, including hypotension and changes in heart rate. The preganglionic cardiac vagal neurons (CVNs) are one of the major central components controlling heart rate and autonomic regulation. In this study, we examined whether propofol and isoflurane act on phasic or tonic gamma-aminobutyric acid type A (GABA(A)) receptor-mediated inhibition in CVNs. METHODS CVNs were identified in vitro by retrograde fluorescent labeling. Phasic and tonic GABA currents in CVNs were examined using the whole cell patch-clamp technique. RESULTS Propofol (10 microM) increased the membrane holding currents by 63 +/- 13% and prolonged the decay time of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) from 42.3 +/- 2.8 ms in control to 61.8 +/- 4.5 ms. Isoflurane, at concentrations of 100, 300, and 500 microM, decreased GABAergic mIPSCs frequency by 26.0 +/- 16%, 64.6 +/- 10.4%, and 70.5 +/- 9.8%, prolonged the decay time of GABAergic mIPSCs from 47.9 +/- 7.3 to 64.5 +/- 8.1 ms, 70.3 +/- 10.4 ms, and 66.8 +/- 8.1 ms, and increased the membrane holding currents by 32.8 +/- 12.8%, 42.7 +/- 10%, and 39.9 +/- 3%, respectively. The GABAergic antagonist gabazine (25 microM) blocked GABAergic mIPSCs, but failed to alter the enhanced holding potential induced by propofol and isoflurane. In contrast, the channel blocker of GABA(A) receptors, picrotoxin (100 microM), reversed the propofol and isoflurane-evoked increase in membrane holding current. CONCLUSION The results demonstrate that the general anesthetics propofol and isoflurane enhance both phasic and tonic GABA(A) receptor-mediated inhibition of CVNs.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
41
|
The promiscuous role of the epsilon subunit in GABAA receptor biogenesis. Mol Cell Neurosci 2008; 37:610-21. [DOI: 10.1016/j.mcn.2007.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/21/2007] [Accepted: 12/06/2007] [Indexed: 11/18/2022] Open
|
42
|
Hisano K, Ozoe F, Huang J, Kong X, Ozoe Y. The channel-lining 6' amino acid in the second membrane-spanning region of ionotropic GABA receptors has more profound effects on 4'-ethynyl-4-n-propylbicycloorthobenzoate binding than the 2' amino acid. INVERTEBRATE NEUROSCIENCE 2007; 7:39-46. [PMID: 17205299 DOI: 10.1007/s10158-006-0035-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
The noncompetitive antagonist of ionotropic gamma-aminobutyric acid (GABA) receptors 4'-ethynyl-4-n-propylbicycloorthobenzoate (EBOB) is a useful tool to probe the antagonist-binding site. In the present study, four mutants of the human GABA(A) receptor beta3 subunit were stably expressed in S2 cells and examined for their abilities to bind [(3)H]EBOB to identify the binding site of EBOB. The homo-oligomeric beta3 GABA receptor was used as a housefly GABA receptor model, as the beta3 subunit has a high sequence similarity with the housefly Rdl subunit in the second membrane-spanning (M2) region. The A274S mutation at the -1' position in the M2 region had no effect on [(3)H]EBOB binding. The A277S mutation at the 2' position led to a decrease in the affinity of EBOB for the GABA receptor. The T281V mutant at the 6' position and the A277S/T281V double mutant completely abolished the binding ability. A beta3 GABA receptor homology model predicts these interactions between the receptor and EBOB. These results suggest that EBOB interacts with threonine 281 and alanine 277, and that threonine 281 plays a more critical role in interacting with EBOB than alanine 277.
Collapse
Affiliation(s)
- Kazutoshi Hisano
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, 690-8504, Japan
| | | | | | | | | |
Collapse
|
43
|
Simeone TA, Wilcox KS, White HS. Subunit selectivity of topiramate modulation of heteromeric GABAA receptors. Neuropharmacology 2006; 50:845-57. [PMID: 16490221 DOI: 10.1016/j.neuropharm.2005.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 11/01/2005] [Accepted: 12/10/2005] [Indexed: 11/24/2022]
Abstract
Topiramate (TPM) is an anticonvulsant of novel chemical structure whose mechanism of action remains elusive. Reports of TPM modulation of ligand- and voltage-gated ion channel functions are variable and often inconsistent. In fact, TPM has been found to produce enhancement, inhibition, and no effect on GABA-currents of cultured neurons and GABA(A) receptors expressed in Xenopus laevis oocytes. To identify possible causes for the variable effects of TPM on GABA(A) receptors, multiple combinations of recombinant GABA(A) receptor subunits were expressed in Xenopus oocytes. TPM modulation of GABA-currents was sensitive to GABA concentrations and the beta subunit isoform co-expressed in heteromeric GABA(A) receptors. TPM potentiated and directly activated heteromeric receptors containing either beta(2) or beta(3) subunit. TPM's direct activation was most effective on receptors comprised of alpha(4)beta(3)gamma(2S) subunits and activated approximately 74% of the peak GABA-current. TPM modulation of beta(1)-containing heteromeric receptors depended on the co-expressed alpha subunit isoform (i.e., either TPM enhancement or inhibition). Depolarized potentials decreased TPM enhancement and increased TPM inhibition depending on the beta subunit present. These results suggest that the effects of TPM on GABA(A) receptor function will depend on the expression of specific subunits that can be regionally and temporally distributed, and altered by neurological disorders.
Collapse
Affiliation(s)
- Timothy A Simeone
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
44
|
Hales TG, Deeb TZ, Tang H, Bollan KA, King DP, Johnson SJ, Connolly CN. An asymmetric contribution to gamma-aminobutyric type A receptor function of a conserved lysine within TM2-3 of alpha1, beta2, and gamma2 subunits. J Biol Chem 2006; 281:17034-17043. [PMID: 16627470 DOI: 10.1074/jbc.m603599200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations that impair the expression and/or function of gamma-aminobutyric acid type A (GABAA) receptors can lead to epilepsy. The familial epilepsy gamma2(K289M) mutation affects a basic residue conserved in the TM2-3 linker of most GABAA subunits. We investigated the effect on expression and function of the Lys --> Met mutation in mouse alpha1(K278M), beta2(K274M), and gamma2(K289M) subunits. Compared with cells expressing wild-type and alpha1beta2gamma2(K289M) receptors, cells expressing alpha1(K278M)beta2gamma2 and alpha1beta2(K274M)gamma2 receptors exhibited reduced agonist-evoked current density and reduced GABA potency, with no change in single channel conductance. The low current density of alpha1beta2(K274M)gamma2 receptors coincided with reduced surface expression. By contrast the surface expression of alpha1(K278M)beta2gamma2 receptors was similar to wild-type and alpha1beta2gamma2(K289M) receptors suggesting that the alpha1(K278M) impairs function. In keeping with this interpretation GABA-activated channels mediated by alpha1(K278M)beta2gamma2 receptors had brief open times. To a lesser extent gamma2(K289M) also reduced mean open time, whereas beta2(K274M) had no effect. We used propofol as an alternative GABAA receptor agonist to test whether the functional deficits of mutant subunits were specific to GABA activation. Propofol was less potent as an activator of alpha1(K278M)beta2gamma2 receptors. By contrast, neither beta2(K274M) nor gamma2(K289M) affected the potency of propofol. The beta2(K274M) construct was unique in that it reduced the efficacy of propofol activation relative to GABA. These data suggest that the alpha1 subunit Lys-278 residue plays a pivotal role in channel gating that is not dependent on occupancy of the GABA binding site. Moreover, the conserved TM2-3 loop lysine has an asymmetric function in different GABAA subunits.
Collapse
Affiliation(s)
- Tim G Hales
- Department of Pharmacology & Physiology, The George Washington University, Washington, D. C. 20037; Department of Anesthesiology & Critical Care Medicine, The George Washington University, Washington, D. C. 20037.
| | - Tarek Z Deeb
- Department of Pharmacology & Physiology, The George Washington University, Washington, D. C. 20037
| | - Haiyan Tang
- Department of Pharmacology & Neuroscience, Ninewells Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Karen A Bollan
- Department of Pharmacology & Neuroscience, Ninewells Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Dale P King
- Department of Pharmacology & Neuroscience, Ninewells Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Sara J Johnson
- Department of Pharmacology & Neuroscience, Ninewells Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Christopher N Connolly
- Department of Pharmacology & Neuroscience, Ninewells Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| |
Collapse
|
45
|
Li SF, Hu JH, Yan YC, Chen YG, Koide SS, Li YP. Identification and characterization of a novel splice variant of β3 subunit of GABAA receptor in rat testis and spermatozoa. Int J Biochem Cell Biol 2005; 37:350-60. [PMID: 15474980 DOI: 10.1016/j.biocel.2004.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 06/22/2004] [Accepted: 07/09/2004] [Indexed: 10/26/2022]
Abstract
Gamma-aminobutyric acid type A (GABA(A)) receptors are the major sites of inhibitory action of fast synaptic neurotransmission in the brain. Their receptors are also widely distributed in peripheral and endocrine tissues. A full-length cDNA encoding a novel splice variant of beta3 subunit of GABA(A) receptor, designated as beta3t, was identified in rat testis. This isoform contains a segment, having identical amino acid sequence as the beta3 subunit of neuronal GABA(A) receptors except for a section composed of 25 different amino acid sequence in the N-terminus. Northern blot shows that this isoform is found in rat testis. The beta3t isoform mRNA was detected in germ cells in the late step of spermatogenesis by in situ hybridization assay. Results of immunohistochemical and immunocytochemical assays indicate that the beta3t isoform is expressed in rat testis and spermatozoa. To determine a possible function of the N-terminal 25 amino acid segment, a recombinant plasmid of beta3t-EGFPC was constructed by fusing green fluorescent protein to the C-terminus of the beta3t isoform. The chimera product failed to be translocated unto the cell surface when expressed in HEK 293 cells; whereas, the beta3 subunit of rat brain is incorporated into the plasma membrane. In conclusion, the present results show that one variant of beta3 subunit of GABA(A) receptor, designated as beta3t, is found in germ cells of rat testis and sperm. The inability of the beta3t variant to target into the plasma membrane maybe a consequence of the unique 25 amino acid segment in the N-terminus.
Collapse
Affiliation(s)
- Shi-feng Li
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China
| | | | | | | | | | | |
Collapse
|
46
|
Ying SW, Goldstein PA. Propofol suppresses synaptic responsiveness of somatosensory relay neurons to excitatory input by potentiating GABA(A) receptor chloride channels. Mol Pain 2005; 1:2. [PMID: 15813991 PMCID: PMC1074352 DOI: 10.1186/1744-8069-1-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 01/14/2005] [Indexed: 11/23/2022] Open
Abstract
Propofol is a widely used intravenous general anesthetic. Propofol-induced unconsciousness in humans is associated with inhibition of thalamic activity evoked by somatosensory stimuli. However, the cellular mechanisms underlying the effects of propofol in thalamic circuits are largely unknown. We investigated the influence of propofol on synaptic responsiveness of thalamocortical relay neurons in the ventrobasal complex (VB) to excitatory input in mouse brain slices, using both current- and voltage-clamp recording techniques. Excitatory responses including EPSP temporal summation and action potential firing were evoked in VB neurons by electrical stimulation of corticothalamic fibers or pharmacological activation of glutamate receptors. Propofol (0.6 - 3 microM) suppressed temporal summation and spike firing in a concentration-dependent manner. The thalamocortical suppression was accompanied by a marked decrease in both EPSP amplitude and input resistance, indicating that a shunting mechanism was involved. The propofol-mediated thalamocortical suppression could be blocked by a GABAA receptor antagonist or chloride channel blocker, suggesting that postsynaptic GABAA receptors in VB neurons were involved in the shunting inhibition. GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) were evoked in VB neurons by electrical stimulation of the reticular thalamic nucleus. Propofol markedly increased amplitude, decay time, and charge transfer of GABAA IPSCs. The results demonstrated that shunting inhibition of thalamic somatosensory relay neurons by propofol at clinically relevant concentrations is primarily mediated through the potentiation of the GABAA receptor chloride channel-mediated conductance, and such inhibition may contribute to the impaired thalamic responses to sensory stimuli seen during propofol-induced anesthesia.
Collapse
Affiliation(s)
- Shui-Wang Ying
- C.V. Starr Laboratory for Molecular Neuropharmacology, Department of Anesthesiology, Weill Medical College of Cornell University, 1300 York Avenue, Room A-1050, New York, NY 10021, USA
| | - Peter A Goldstein
- C.V. Starr Laboratory for Molecular Neuropharmacology, Department of Anesthesiology, Weill Medical College of Cornell University, 1300 York Avenue, Room A-1050, New York, NY 10021, USA
| |
Collapse
|
47
|
Fabbro A, Nistri A. Chronic NGF treatment of rat nociceptive DRG neurons in culture facilitates desensitization and deactivation of GABAA receptor-mediated currents. Br J Pharmacol 2004; 142:425-34. [PMID: 15148248 PMCID: PMC1574974 DOI: 10.1038/sj.bjp.0705813] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 03/25/2004] [Accepted: 03/26/2004] [Indexed: 11/08/2022] Open
Abstract
1 The present study tested the hypothesis that nerve growth factor (NGF) could affect presynaptic inhibition mediated by GABAA (GABA-sensitive ionotropic receptors) receptors on the afferents of nociceptive dorsal root ganglia (DRG) neurons, thus reducing the filtering of central nociceptive signals. 2 To investigate this issue, small-diameter, nociceptive DRG neurons were cultured for 48-72 h either in the normal medium or in the presence of NGF (50 ng ml(-1)). After 15 min washout, cells were patch clamped with Cs+ containing electrodes to block GABAB (GABA-sensitive metabotropic receptors) receptor-activated currents. 3 Chronically treated DRG neurons showed no difference in the peak amplitude of GABA-induced currents. However, NGF-treated cells exhibited increased fading of the response to continuous GABA application, with faster desensitization onset, decreased residual current at the end of agonist application and slower recovery from desensitization. Moreover, the deactivation phase after brief agonist pulses was also accelerated. 4 Unlike responses to GABA, chronic NGF treatment had no effect on the desensitization process to the excitatory transmitter ATP, as no difference in peak amplitude, fast and slow time constants of current decay was found. 5 Experimental tests indicated that the observed effects on GABA currents were not a reactive process triggered by washing out NGF after its long application. Acutely applied NGF did not change GABAA receptor-mediated responses. 6 NGF-treated neurons showed decreased sensitivity to the antagonist picrotoxin. The action of pentobarbitone, midazolam, bicuculline or gabazine was, however, unchanged. 7 These observations suggest that the modulation of GABAA receptor function of DRG nociceptors by NGF may contribute to the algogenic action of this neurotrophin.
Collapse
Affiliation(s)
- Alessandra Fabbro
- Neurobiology Sector and INFM Unit, International School for Advanced Studies, SISSA, via Beirut, 34014 Trieste , Italy
| | - Andrea Nistri
- Neurobiology Sector and INFM Unit, International School for Advanced Studies, SISSA, via Beirut, 34014 Trieste , Italy
| |
Collapse
|
48
|
Miko A, Werby E, Sun H, Healey J, Zhang L. A TM2 residue in the beta1 subunit determines spontaneous opening of homomeric and heteromeric gamma-aminobutyric acid-gated ion channels. J Biol Chem 2004; 279:22833-40. [PMID: 15014066 DOI: 10.1074/jbc.m402577200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gamma-aminobutyric acid type A (GABAA) receptors are major inhibitory neurotransmitter-gated ion channels in the central nervous system. GABAA receptors consist of multiple subunits and exhibit distinct pharmacological and channel properties. Of all GABAA receptor subunits, the beta subunit is thought to be a key component for the functionality of the receptors. Certain types of GABAA receptors have been found to be constitutively active. However, the molecular basis for spontaneous opening of channels of these receptors is not totally understood. In this study, we showed that channels that contain the beta1 but not beta3 subunits opened spontaneously when these subunits were expressed homomerically or co-expressed with other types of GABAA receptor subunits in Xenopus oocytes. Using subunit chimeras and site-directed mutagenesis, we localized a key amino acid residue, a serine at position 265, that is critical in conferring an open state of the beta1 subunit-containing GABAA receptors in the absence of agonist. Moreover, some point mutations of Ser-265 also produced constitutively active channels. The magnitude of spontaneous activity of these receptors was correlated with the molecular volume of the residue at 265 for both homomeric and heteromeric GABAA receptors, suggesting that the spontaneous activity of the beta1 subunit-containing GABAA receptors may be mediated through a similar molecular mechanism that is dependent on the molecular volume of the residue at 265.
Collapse
Affiliation(s)
- Angela Miko
- Laboratory of Molecular and Cellular Neurobiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-8115, USA
| | | | | | | | | |
Collapse
|
49
|
Pau D, Belelli D, Callachan H, Peden DR, Dunlop JI, Peters JA, Guitart X, Gutierrez B, Lambert JJ. GABAA receptor modulation by the novel intravenous general anaesthetic E-6375. Neuropharmacology 2003; 45:1029-40. [PMID: 14614946 DOI: 10.1016/s0028-3908(03)00299-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
E-6375 (4-butoxy-2-[4-(2-cyanobenzoyl)-1-piperazinyl] pyrimidine hydrochloride) is a new intravenous general anaesthetic with an anaesthetic potency, in mice, comparable to propofol, or etomidate. Here, we examined the effect of E-6375 upon the GABAA receptor, a putative target of intravenous anaesthetic action. E-6375 reversibly enhanced GABA-evoked currents mediated by recombinant GABAA (alpha1beta2gamma2L) receptors expressed in Xenopus laevis oocytes, with little effect on NMDA- and kainate-evoked currents mediated by NR1a/NR2A and GluR1o/GluR2o glutamate receptors, respectively. E-6375 prolonged the decay of GABA-evoked miniature inhibitory postsynaptic currents recorded from rat Purkinje neurones demonstrating the anaesthetic also enhanced the activity of synaptic GABAA receptors. The GABA enhancing action of E-6375 on recombinant GABAA receptors was unaffected by the subtype of the alpha isoform (i.e. alphaxbeta2gamma2L; x=1-3) within the receptor, but was increased by the omission of the gamma2L subunit. Receptors incorporating beta2, or beta3, subunits were more sensitive to modulation by E-6375 than those containing the beta1 subunit. The selectivity of E-6375 was largely governed by the identity (serine or asparagine) of a single amino acid residue within the second transmembrane domain of the beta-subunit. The various in vivo actions of general anaesthetics may be mediated by GABAA receptor isoforms that have a differential distribution within the CNS. The identification of agents, such as E-6375, that discriminate between GABAA receptor subtypes may augur the development of general anaesthetics with an improved therapeutic profile.
Collapse
Affiliation(s)
- D Pau
- Neuroscience Institute, Department of Pharmacology and Neuroscience, Ninewells Hospital and Medical School, The University of Dundee, Dundee DD1 9SY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bamber BA, Twyman RE, Jorgensen EM. Pharmacological characterization of the homomeric and heteromeric UNC-49 GABA receptors in C. elegans. Br J Pharmacol 2003; 138:883-93. [PMID: 12642390 PMCID: PMC1573730 DOI: 10.1038/sj.bjp.0705119] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
(1) UNC-49B and UNC-49C are gamma-aminobutyric acid (GABA) receptor subunits encoded by the Caenorhabditis elegans unc-49 gene. UNC-49B forms a homomeric GABA receptor, or can co-assemble with UNC-49C to form a heteromeric receptor. The pharmacological properties of UNC-49B homomers and UNC-49B/C heteromers were investigated in Xenopus oocytes. (2) The UNC-49 subunits are most closely related to the bicuculline- and benzodiazepine-insensitive RDL GABA receptors of insects. Consistent with this classification, bicuculline (10 micro M) did not inhibit, nor did diazepam (10 micro M) enhance UNC-49B homomeric or UNC-49B/C heteromeric receptors. (3) The UNC-49C subunit strongly affects the pharmacology of UNC-49B/C heteromeric receptors. UNC-49B homomers were much more picrotoxin sensitive than UNC-49B/C heteromers (IC(50)=0.9+/-0.2 micro M and 166+/-42 micro M, respectively). Pentobarbitone enhancement was greater for UNC-49B homomers compared to UNC-49B/C heteromers. Propofol (50 micro M) slightly enhanced UNC-49B homomers but slightly inhibited UNC-49B/C heteromers. Penicillin G (10 mM) inhibited UNC-49B homomers less strongly than UNC-49B/C heteromers (30% compared to 53% inhibition, respectively). (4) Several aspects of UNC-49 pharmacology were unusual. Picrotoxin sensitivity strongly correlates with dieldrin sensitivity, yet UNC-49B homomers were highly dieldrin resistant. The enhancing neurosteroid pregnanolone (5beta-pregnan-3alpha-ol-20-one; 10 micro M) strongly inhibited both UNC-49 receptors. Alphaxalone (10 micro M), another enhancing neurosteroid, did not affect UNC-49B homomers, but slightly inhibited UNC-49B/C heteromers. (5) UNC-49 subunits and mammalian GABA(A) receptor alpha, beta, and gamma subunit classes all share roughly the same degree of sequence similarity. Thus, although they are most similar to other invertebrate GABA receptors, the UNC-49 receptors share significant structural and pharmacological overlap with mammalian GABA(A) receptors.
Collapse
Affiliation(s)
- Bruce A Bamber
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | |
Collapse
|