1
|
Wang S, Wang SQ, Chen XB, Xu Q, Deng H, Teng QX, Chen ZS, Zhang X, Chen FE. Cell-Based Screen Identifies a Highly Potent and Orally Available ABCB1 Modulator for Treatment of Multidrug Resistance. J Med Chem 2024; 67:18764-18780. [PMID: 39425773 DOI: 10.1021/acs.jmedchem.4c01081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Targeting ABCB1 is a promising strategy in combating multidrug resistance. Our cell-based phenotypic screening led to the discovery of novel triazolo[1,5-a]pyrimidone-based ABCB1 modulators. Notably, WS-917 was identified as a significant contributor to heightened sensitization of human colorectal adenocarcinoma cells (SW620/Ad300) to paclitaxel (IC50 = 5 nM). Mechanistic elucidation revealed that this compound substantially augmented intracellular paclitaxel and [3H]-paclitaxel, concurrently mitigating the efflux of [3H]-paclitaxel in SW620/Ad300 through the inhibition of ABCB1 efflux. The cellular thermal shift assay underscored its ability to stabilize ABCB1 through direct binding. Additionally, WS-917 induced stimulation of ABCB1 ATPase activity while exhibiting negligible inhibitory effect against CYP3A4. Remarkable was its capacity to enhance the sensitivity of SW620/Ad300 to paclitaxel, as well as the sensitivity of CT26/TAXOL to paclitaxel and PD-L1 inhibitor (Atezolizumab) in vivo, all achieved without inducing observable toxicity. The discovery of WS-917 holds promise for the development of more potent ABCB1 modulators.
Collapse
Affiliation(s)
- Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin 133002, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiao-Bing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Qian Xu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Hao Deng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Qiu-Xu Teng
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin 133002, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Liu Z, Wang F, Yuan H, Tian F, Yang C, Hu F, Liu Y, Tang M, Ping M, Kang C, Luo T, Yang G, Hu M, Gao Z, Li P. An LQT2-related mutation in the voltage-sensing domain is involved in switching the gating polarity of hERG. BMC Biol 2024; 22:29. [PMID: 38317233 PMCID: PMC11380439 DOI: 10.1186/s12915-024-01833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Cyclic Nucleotide-Binding Domain (CNBD)-family channels display distinct voltage-sensing properties despite sharing sequence and structural similarity. For example, the human Ether-a-go-go Related Gene (hERG) channel and the Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channel share high amino acid sequence similarity and identical domain structures. hERG conducts outward current and is activated by positive membrane potentials (depolarization), whereas HCN conducts inward current and is activated by negative membrane potentials (hyperpolarization). The structural basis for the "opposite" voltage-sensing properties of hERG and HCN remains unknown. RESULTS We found the voltage-sensing domain (VSD) involves in modulating the gating polarity of hERG. We identified that a long-QT syndrome type 2-related mutation within the VSD, K525N, mediated an inwardly rectifying non-deactivating current, perturbing the channel closure, but sparing the open state and inactivated state. K525N rescued the current of a non-functional mutation in the pore helix region (F627Y) of hERG. K525N&F627Y switched hERG into a hyperpolarization-activated channel. The reactivated inward current induced by hyperpolarization mediated by K525N&F627Y can be inhibited by E-4031 and dofetilide quite well. Moreover, we report an extracellular interaction between the S1 helix and the S5-P region is crucial for modulating the gating polarity. The alanine substitution of several residues in this region (F431A, C566A, I607A, and Y611A) impaired the inward current of K525N&F627Y. CONCLUSIONS Our data provide evidence that a potential cooperation mechanism in the extracellular vestibule of the VSD and the PD would determine the gating polarity in hERG.
Collapse
Affiliation(s)
- Zhipei Liu
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Feng Wang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
| | - Hui Yuan
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
| | - Fuyun Tian
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chuanyan Yang
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Fei Hu
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yiyao Liu
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
| | - Meiqin Tang
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Meixuan Ping
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunlan Kang
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ting Luo
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Guimei Yang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
| | - Mei Hu
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
- Pharmacology Laboratory, Zhongshan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Zhongshan, 528401, China
| | - Zhaobing Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China.
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ping Li
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China.
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Wu T, Chen Y, Yang C, Lu M, Geng F, Guo J, Pi Y, Ling Y, Xu J, Cai T, Lu L, Zhou Y. Systematical Evaluation of the Structure-Cardiotoxicity Relationship of 7-Azaindazole-based PI3K Inhibitors Designed by Bioisosteric Approach. Cardiovasc Toxicol 2023; 23:364-376. [PMID: 37787964 DOI: 10.1007/s12012-023-09809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
A growing concern of cardiotoxicity induced by PI3K inhibitors has raised the requirements to evaluate the structure-cardiotoxicity relationship (SCR) in the development process of novel inhibitors. Based on three bioisosteric 7-azaindazole-based candidate inhibitors namely FD269, FD268 and FD274 that give same order of inhibitory concentration 50% (IC50) magnitude against PI3Ks, in this work, we proposed to systematically evaluate the SCR of 7-azaindazole-based PI3K inhibitors designed by bioisosteric approach. The 24-h lethal concentrations 50% (LC50) of FD269, FD268 and FD274 against zebrafish embryos were 0.35, 4.82 and above 50 μM (not detected), respectively. Determination of the heart rate, pericardial and yolk-sac areas and vascular malformation confirmed the remarkable reduction in the cardiotoxicity of from FD269 to FD268 and to FD274. The IC50s of all three compounds against the hERG channel were tested on the CHO cell line that constitutively expressing hERG channel, which were all higher than 20 μM. The transcriptomic analysis revealed that FD269 and FD268 induced the up-regulation of noxo1b, which encodes a subunit of an NADPH oxidase evoking the oxidative stress. Furthermore, immunohistochemistry tests confirmed the structure-dependent attenuation of the overproduction of ROS and cardiac apoptosis. Our results verified the feasibility of bioisosteric replacement to attenuate the cardiotoxicity of 7-azaindazole-based PI3K inhibitors, suggesting that the screening for PI3K inhibitors with both high potency and low cardiotoxicity from bioisosteres would be a beneficial trial.
Collapse
Affiliation(s)
- Tianze Wu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yi Chen
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Chengbin Yang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Mingzhu Lu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Fang Geng
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jianhua Guo
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yan Pi
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yun Ling
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Jun Xu
- ABA Chemicals Co., Ltd, Taicang, 215400, Jiangsu, China
| | - Tong Cai
- ABA Chemicals Co., Ltd, Taicang, 215400, Jiangsu, China
| | - Lei Lu
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yaming Zhou
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Helliwell MV, Zhang Y, El Harchi A, Dempsey CE, Hancox JC. Inhibition of the hERG Potassium Channel by a Methanesulphonate-Free E-4031 Analogue. Pharmaceuticals (Basel) 2023; 16:1204. [PMID: 37765012 PMCID: PMC10536391 DOI: 10.3390/ph16091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
hERG (human Ether-à-go-go Related Gene)-encoded potassium channels underlie the cardiac rapid delayed rectifier (IKr) potassium current, which is a major target for antiarrhythmic agents and diverse non-cardiac drugs linked to the drug-induced form of long QT syndrome. E-4031 is a high potency hERG channel inhibitor from the methanesulphonanilide drug family. This study utilized a methanesulphonate-lacking E-4031 analogue, "E-4031-17", to evaluate the role of the methanesulphonamide group in E-4031 inhibition of hERG. Whole-cell patch-clamp measurements of the hERG current (IhERG) were made at physiological temperature from HEK 293 cells expressing wild-type (WT) and mutant hERG constructs. For E-4031, WT IhERG was inhibited by a half-maximal inhibitory concentration (IC50) of 15.8 nM, whilst the comparable value for E-4031-17 was 40.3 nM. Both compounds exhibited voltage- and time-dependent inhibition, but they differed in their response to successive applications of a long (10 s) depolarisation protocol, consistent with greater dissociation of E-4031-17 than the parent compound between applied commands. Voltage-dependent inactivation was left-ward voltage shifted for E-4031 but not for E-4031-17; however, inhibition by both compounds was strongly reduced by attenuated-inactivation mutations. Mutations of S6 and S5 aromatic residues (F656V, Y652A, F557L) greatly attenuated actions of both drugs. The S624A mutation also reduced IhERG inhibition by both molecules. Overall, these results demonstrate that the lack of a methanesulphonate in E-4031-17 is not an impediment to high potency inhibition of IhERG.
Collapse
Affiliation(s)
- Matthew V. Helliwell
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK; (M.V.H.); (C.E.D.)
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK; (Y.Z.); (A.E.H.)
| | - Yihong Zhang
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK; (Y.Z.); (A.E.H.)
| | - Aziza El Harchi
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK; (Y.Z.); (A.E.H.)
| | - Christopher E. Dempsey
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK; (M.V.H.); (C.E.D.)
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK; (Y.Z.); (A.E.H.)
| |
Collapse
|
5
|
Adelusi TI, Boyenle ID, Tolulope A, Adebisi J, Fatoki JO, Ukachi CD, Oyedele AQK, Ayoola AM, Timothy AA. GCMS fingerprints and phenolic extracts of Allium sativum inhibit key enzymes associated with type 2 diabetes. J Taibah Univ Med Sci 2023; 18:337-347. [PMID: 36817213 PMCID: PMC9926220 DOI: 10.1016/j.jtumed.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/20/2022] [Accepted: 09/16/2022] [Indexed: 02/01/2023] Open
Abstract
Objectives Inhibition of carbohydrate digestion enzymes (α-amylase and α-glucosidase) has been reported in studies as a therapeutic approach for the management or treatment of type 2 diabetes mellitus, owing to its potential to decrease postprandial hyperglycemia. The anti-diabetic potential of Allium sativum (also known as garlic) against diabetes mellitus has been established. Therefore, in this study, we assessed the antidiabetic potential of A. sativum using in vitro enzyme assays after which we explored computational modelling approach using the quantified GC-MS identities to unravel the key bioactive compounds responsible for the anti-diabetic potential. Methods We used in vitro enzyme inhibition assays (α-amylase and α-glucosidase) to evaluate antidiabetic potential and subsequently performed gas chromatography-mass spectroscopy (GC-MS) to identify and quantify the bioactive compounds of the plant extract. The identified bioactive compounds were subjected to in silico docking and pharmacokinetic assessment. Results A. sativum phenolic extract showed high dose-dependent inhibition of α-amylase and α-glucosidase (p < 0.05). Interestingly, the extract inhibited α-glucosidase with a half maximal inhibitory concentration of 53.75 μg/mL, a value higher than that obtained for the standard acarbose. Docking simulation revealed that morellinol and phentolamine were the best binders of α-glucosidase, with mean affinity values of -7.3 and -7.1 kcal/mol, respectively. These compounds had good affinity toward active site residues of the enzyme, and excellent drug-like and pharmacokinetic properties supporting clinical applications. Conclusions Our research reveals the potential of A. sativum as a functional food for the management of type 2 diabetes, and suggests that morellinol and phentolamine may be the most active compounds responsible for this anti-diabetic prowess. Therefore these compounds require further clinical asessment to demonstrate their potential for drug development.
Collapse
Affiliation(s)
- Temitope I. Adelusi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Department of Biochemistry, Ladoke Akintola University of Technology, Nigeria
| | - Ibrahim D. Boyenle
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- College of Health Sciences, Crescent University, Abeokuta, Nigeria
| | - Ajao Tolulope
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Jonathan Adebisi
- Department of Biochemistry, Ladoke Akintola University of Technology, Nigeria
| | - John O. Fatoki
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Osogbo, Osun State, Nigeria
| | - Chiamaka D. Ukachi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Abdul-Quddus K. Oyedele
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Ashiru M. Ayoola
- Department of Chemical Sciences, Biochemistry Unit, College of Natural and Applied Sciences, Fountain University, Osogbo, Nigeria
| | - Akinniyi A. Timothy
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
6
|
Delre P, Lavado GJ, Lamanna G, Saviano M, Roncaglioni A, Benfenati E, Mangiatordi GF, Gadaleta D. Ligand-based prediction of hERG-mediated cardiotoxicity based on the integration of different machine learning techniques. Front Pharmacol 2022; 13:951083. [PMID: 36133824 PMCID: PMC9483173 DOI: 10.3389/fphar.2022.951083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Drug-induced cardiotoxicity is a common side effect of drugs in clinical use or under postmarket surveillance and is commonly due to off-target interactions with the cardiac human-ether-a-go-go-related (hERG) potassium channel. Therefore, prioritizing drug candidates based on their hERG blocking potential is a mandatory step in the early preclinical stage of a drug discovery program. Herein, we trained and properly validated 30 ligand-based classifiers of hERG-related cardiotoxicity based on 7,963 curated compounds extracted by the freely accessible repository ChEMBL (version 25). Different machine learning algorithms were tested, namely, random forest, K-nearest neighbors, gradient boosting, extreme gradient boosting, multilayer perceptron, and support vector machine. The application of 1) the best practices for data curation, 2) the feature selection method VSURF, and 3) the synthetic minority oversampling technique (SMOTE) to properly handle the unbalanced data, allowed for the development of highly predictive models (BAMAX = 0.91, AUCMAX = 0.95). Remarkably, the undertaken temporal validation approach not only supported the predictivity of the herein presented classifiers but also suggested their ability to outperform those models commonly used in the literature. From a more methodological point of view, the study put forward a new computational workflow, freely available in the GitHub repository (https://github.com/PDelre93/hERG-QSAR), as valuable for building highly predictive models of hERG-mediated cardiotoxicity.
Collapse
Affiliation(s)
- Pietro Delre
- CNR—Institute of Crystallography, Bari, Italy
- Chemistry Department, University of Bari “Aldo Moro”, Bari, Italy
| | - Giovanna J. Lavado
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giuseppe Lamanna
- CNR—Institute of Crystallography, Bari, Italy
- Chemistry Department, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Alessandra Roncaglioni
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giuseppe Felice Mangiatordi
- CNR—Institute of Crystallography, Bari, Italy
- *Correspondence: Giuseppe Felice Mangiatordi, ; Domenico Gadaleta,
| | - Domenico Gadaleta
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- *Correspondence: Giuseppe Felice Mangiatordi, ; Domenico Gadaleta,
| |
Collapse
|
7
|
Jeon D, Ryu K, Jo S, Kim I, Namkung W. VI-116, A Novel Potent Inhibitor of VRAC with Minimal Effect on ANO1. Int J Mol Sci 2022; 23:ijms23095168. [PMID: 35563558 PMCID: PMC9103758 DOI: 10.3390/ijms23095168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
Volume-regulated anion channel (VRAC) is ubiquitously expressed and plays a pivotal role in vertebrate cell volume regulation. A heterologous complex of leucine-rich repeat containing 8A (LRRC8A) and LRRC8B-E constitutes the VRAC, which is involved in various processes such as cell proliferation, migration, differentiation, intercellular communication, and apoptosis. However, the lack of a potent and selective inhibitor of VRAC limits VRAC-related physiological and pathophysiological studies, and most previous VRAC inhibitors strongly blocked the calcium-activated chloride channel, anoctamin 1 (ANO1). In the present study, we performed a cell-based screening for the identification of potent and selective VRAC inhibitors. Screening of 55,000 drug-like small-molecules and subsequent chemical modification revealed 3,3′-((2-hydroxy-3-methoxyphenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) (VI-116), a novel potent inhibitor of VRAC. VI-116 fully inhibited VRAC-mediated I− quenching with an IC50 of 1.27 ± 0.18 μM in LN215 cells and potently blocked endogenous VRAC activity in PC3, HT29 and HeLa cells in a dose-dependent manner. Notably, VI-116 had no effect on intracellular calcium signaling up to 10 μM, which completely inhibited VRAC, and showed high selectivity for VRAC compared to ANO1 and ANO2. However, DCPIB, a VRAC inhibitor, significantly affected ATP-induced increases in intracellular calcium levels and Eact-induced ANO1 activation. In addition, VI-116 showed minimal effect on hERG K+ channel activity up to 10 μM. These results indicate that VI-116 is a potent and selective VRAC inhibitor and a useful research tool for pharmacological dissection of VRAC.
Collapse
|
8
|
Krishna S, Borrel A, Huang R, Zhao J, Xia M, Kleinstreuer N. High-Throughput Chemical Screening and Structure-Based Models to Predict hERG Inhibition. BIOLOGY 2022; 11:209. [PMID: 35205076 PMCID: PMC8869358 DOI: 10.3390/biology11020209] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/23/2022]
Abstract
Chemical inhibition of the human ether-a -go-go-related gene (hERG) potassium channel leads to a prolonged QT interval that can contribute to severe cardiotoxicity. The adverse effects of hERG inhibition are one of the principal causes of drug attrition in clinical and pre-clinical development. Preliminary studies have demonstrated that a wide range of environmental chemicals and toxicants may also inhibit the hERG channel and contribute to the pathophysiology of cardiovascular (CV) diseases. As part of the US federal Tox21 program, the National Center for Advancing Translational Science (NCATS) applied a quantitative high throughput screening (qHTS) approach to screen the Tox21 library of 10,000 compounds (~7871 unique chemicals) at 14 concentrations in triplicate to identify chemicals perturbing hERG activity in the U2OS cell line thallium flux assay platform. The qHTS cell-based thallium influx assay provided a robust and reliable dataset to evaluate the ability of thousands of drugs and environmental chemicals to inhibit hERG channel protein, and the use of chemical structure-based clustering and chemotype enrichment analysis facilitated the identification of molecular features that are likely responsible for the observed hERG activity. We employed several machine-learning approaches to develop QSAR prediction models for the assessment of hERG liabilities for drug-like and environmental chemicals. The training set was compiled by integrating hERG bioactivity data from the ChEMBL database with the Tox21 qHTS thallium flux assay data. The best results were obtained with the random forest method (~92.6% balanced accuracy). The data and scripts used to generate hERG prediction models are provided in an open-access format as key in vitro and in silico tools that can be applied in a translational toxicology pipeline for drug development and environmental chemical screening.
Collapse
Affiliation(s)
- Shagun Krishna
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle, NC 27560, USA;
| | | | - Ruili Huang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD 20892-4874, USA; (R.H.); (J.Z.); (M.X.)
| | - Jinghua Zhao
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD 20892-4874, USA; (R.H.); (J.Z.); (M.X.)
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD 20892-4874, USA; (R.H.); (J.Z.); (M.X.)
| | - Nicole Kleinstreuer
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle, NC 27560, USA;
| |
Collapse
|
9
|
Consensus scoring-based virtual screening and molecular dynamics simulation of some TNF-alpha inhibitors. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2021.100833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
10
|
Stankiewicz A, Kaczorowska K, Bugno R, Kozioł A, Paluchowska MH, Burnat G, Chruścicka B, Chorobik P, Brański P, Wierońska JM, Duszyńska B, Pilc A, Bojarski AJ. New 1,2,4-oxadiazole derivatives with positive mGlu 4 receptor modulation activity and antipsychotic-like properties. J Enzyme Inhib Med Chem 2021; 37:211-225. [PMID: 34894953 PMCID: PMC8667925 DOI: 10.1080/14756366.2021.1998022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Considering the allosteric regulation of mGlu receptors for potential therapeutic applications, we developed a group of 1,2,4-oxadiazole derivatives that displayed mGlu4 receptor positive allosteric modulatory activity (EC50 = 282–656 nM). Selectivity screening revealed that they were devoid of activity at mGlu1, mGlu2 and mGlu5 receptors, but modulated mGlu7 and mGlu8 receptors, thus were classified as group III-preferring mGlu receptor agents. None of the compounds was active towards hERG channels or in the mini-AMES test. The most potent in vitro mGlu4 PAM derivative 52 (N-(3-chloro-4-(5-(2-chlorophenyl)-1,2,4-oxadiazol-3-yl)phenyl)picolinamide) was readily absorbed after i.p. administration (male Albino Swiss mice) and reached a maximum brain concentration of 949.76 ng/mL. Five modulators (34, 37, 52, 60 and 62) demonstrated significant anxiolytic- and antipsychotic-like properties in the SIH and DOI-induced head twitch test, respectively. Promising data were obtained, especially for N-(4-(5-(2-chlorophenyl)-1,2,4-oxadiazol-3-yl)-3-methylphenyl)picolinamide (62), whose effects in the DOI-induced head twitch test were comparable to those of clozapine and better than those reported for the selective mGlu4 PAM ADX88178.
Collapse
Affiliation(s)
- Anna Stankiewicz
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Kaczorowska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ryszard Bugno
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Aneta Kozioł
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Maria H Paluchowska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Burnat
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Barbara Chruścicka
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Paulina Chorobik
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Brański
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna M Wierońska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Beata Duszyńska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej Pilc
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
11
|
Ishida A, Okabe Y, Matsushita T, Sekiguchi T, Nishio T, Komagata T, Iwaki M, Miyata H, Katagi J, Naganawa A, Maruyama T, Imagawa A. Design, synthesis, and biological evaluation of novel somatostatin receptor subtype-2 agonists: Optimization for potency and risk mitigation of hERG and phospholipidosis. Bioorg Med Chem 2021; 49:116424. [PMID: 34626901 DOI: 10.1016/j.bmc.2021.116424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/07/2021] [Accepted: 09/19/2021] [Indexed: 11/25/2022]
Abstract
Somatostatin receptors are members of G-protein coupled receptor superfamily. Receptors can be classified into five subtypes, SSTR1 to 5. The highly potent and orally active SSTR2 agonist 7, which had been identified by our group, was found out to have toxicological liabilities such as hERG inhibition and phospholipidosis (PLD). We investigated the relationship between in silico physicochemical properties and hERG and PLD, and explored well-balanced agonists to identify amide 19 and benzimidazole 30. As a result of this exploration, we found out that the value of (cLogP) [2] + (pKa) [2] needs to be less than 110 to mitigate the liabilities.
Collapse
Affiliation(s)
- Akiharu Ishida
- Medicinal Chemistry Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan.
| | - Yasuyuki Okabe
- Medicinal Chemistry Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Takeshi Matsushita
- Medicinal Chemistry Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Tetsuya Sekiguchi
- Medicinal Chemistry Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Takuya Nishio
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Tatsuya Komagata
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Masanori Iwaki
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Hidenori Miyata
- Safety Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Jun Katagi
- Safety Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Atsushi Naganawa
- Medicinal Chemistry Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Toru Maruyama
- Medicinal Chemistry Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Akira Imagawa
- Medicinal Chemistry Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| |
Collapse
|
12
|
Nirogi R, Mohammed AR, Shinde AK, Gagginapally SR, Kancharla DM, Ravella SR, Bogaraju N, Middekadi VR, Subramanian R, Palacharla RC, Benade V, Muddana N, Abraham R, Medapati RB, Thentu JB, Mekala VR, Petlu S, Lingavarapu BB, Yarra S, Kagita N, Goyal VK, Pandey SK, Jasti V. Discovery and Preclinical Characterization of Usmarapride (SUVN-D4010): A Potent, Selective 5-HT 4 Receptor Partial Agonist for the Treatment of Cognitive Deficits Associated with Alzheimer's Disease. J Med Chem 2021; 64:10641-10665. [PMID: 34251799 DOI: 10.1021/acs.jmedchem.1c00703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of oxadiazole derivatives were synthesized and evaluated as 5-hydroxytryptamine-4 receptor (5-HT4R) partial agonists for the treatment of cognitive deficits associated with Alzheimer's disease. Starting from a reported 5-HT4R antagonist, a systematic structure-activity relationship was conducted, which led to the discovery of potent and selective 5-HT4R partial agonist 1-isopropyl-3-{5-[1-(3-methoxypropyl) piperidin-4-yl]-[1,3,4]oxadiazol-2-yl}-1H-indazole oxalate (Usmarapride, 12l). It showed balanced physicochemical-pharmacokinetic properties with robust nonclinical efficacy in cognition models. It also showed disease-modifying potential, as it increased neuroprotective soluble amyloid precursor protein alpha levels, and dose-dependent target engagement and correlation of efficacy with oral exposures. Phase 1 clinical studies have been completed and projected efficacious concentration was achieved without any major safety concerns. Phase 2 enabling long-term safety studies have been completed with no concerns for further development.
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Abdul Rasheed Mohammed
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Anil Karbhari Shinde
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | | | | | - Srinivasa Rao Ravella
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Narsimha Bogaraju
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Vanaja Reddy Middekadi
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Ramkumar Subramanian
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | | | - Vijay Benade
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Nageswararao Muddana
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Renny Abraham
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Rajesh Babu Medapati
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Jagadeesh Babu Thentu
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Venkat Reddy Mekala
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Surendra Petlu
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Bujji Babu Lingavarapu
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Sivasekhar Yarra
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Narendra Kagita
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Vinod Kumar Goyal
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Santosh Kumar Pandey
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Venkat Jasti
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| |
Collapse
|
13
|
Su S, Sun J, Wang Y, Xu Y. Cardiac hERG K + Channel as Safety and Pharmacological Target. Handb Exp Pharmacol 2021; 267:139-166. [PMID: 33829343 DOI: 10.1007/164_2021_455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The human ether-á-go-go related gene (hERG, KCNH2) encodes the pore-forming subunit of the potassium channel responsible for a fast component of the cardiac delayed rectifier potassium current (IKr). Outward IKr is an important determinant of cardiac action potential (AP) repolarization and effectively controls the duration of the QT interval in humans. Dysfunction of hERG channel can cause severe ventricular arrhythmias and thus modulators of the channel, including hERG inhibitors and activators, continue to attract intense pharmacological interest. Certain inhibitors of hERG channel prolong the action potential duration (APD) and effective refractory period (ERP) to suppress premature ventricular contraction and are used as class III antiarrhythmic agents. However, a reduction of the hERG/IKr current has been recognized as a predominant mechanism responsible for the drug-induced delayed repolarization known as acquired long QT syndromes (LQTS), which is linked to an increased risk for "torsades de pointes" (TdP) ventricular arrhythmias and sudden cardiac death. Many drugs of different classes and structures have been identified to carry TdP risk. Hence, assessing hERG/IKr blockade of new drug candidates is mandatory in the drug development process according to the regulatory agencies. In contrast, several hERG channel activators have been shown to enhance IKr and shorten the APD and thus might have potential antiarrhythmic effects against pathological LQTS. However, these activators may also be proarrhythmic due to excessive shortening of APD and the ERP.
Collapse
Affiliation(s)
- Shi Su
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Jinglei Sun
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Yi Wang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China.
| |
Collapse
|
14
|
Strauss DG, Wu WW, Li Z, Koerner J, Garnett C. Translational Models and Tools to Reduce Clinical Trials and Improve Regulatory Decision Making for QTc and Proarrhythmia Risk (ICH E14/S7B Updates). Clin Pharmacol Ther 2021; 109:319-333. [PMID: 33332579 PMCID: PMC7898549 DOI: 10.1002/cpt.2137] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/06/2023]
Abstract
After multiple drugs were removed from the market secondary to drug-induced torsade de pointes (TdP) risk, the International Council for Harmonisation (ICH) released guidelines in 2005 that focused on the nonclinical (S7B) and clinical (E14) assessment of surrogate biomarkers for TdP. Recently, Vargas et al. published a pharmaceutical-industry perspective making the case that "double-negative" nonclinical data (negative in vitro hERG and in vivo heart-rate corrected QT (QTc) assays) are associated with such low probability of clinical QTc prolongation and TdP that potentially all double-negative drugs would not need detailed clinical QTc evaluation. Subsequently, the ICH released a new E14/S7B Draft Guideline containing Questions and Answers (Q&As) that defined ways that double-negative nonclinical data could be used to reduce the number of "Thorough QT" (TQT) studies and reach a low-risk determination when a TQT or equivalent could not be performed. We review the Vargas et al. proposal in the context of what was contained in the ICH E14/S7B Draft Guideline and what was proposed by the ICH E14/S7B working group for a "stage 2" of updates (potential expanded roles for nonclinical data and details for assessing TdP risk of QTc-prolonging drugs). Although we do not agree with the exact probability statistics in the Vargas et al. paper because of limitations in the underlying datasets, we show how more modest predictive value of individual assays could still result in low probability for TdP with double-negative findings. Furthermore, we expect that the predictive value of the nonclinical assays will improve with implementation of the new ICH E14/S7B Draft Guideline.
Collapse
Affiliation(s)
- David G. Strauss
- Division of Applied Regulatory ScienceOffice of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Wendy W. Wu
- Division of Applied Regulatory ScienceOffice of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Zhihua Li
- Division of Applied Regulatory ScienceOffice of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - John Koerner
- Division of Pharm/Tox for Cardiology, Hematology, Endocrinology and NephrologyOffice of Cardiology, Hematology, Endocrinology and NephrologyOffice of New DrugsCenter for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Christine Garnett
- Division of Cardiology and NephrologyOffice of Cardiology, Hematology, Endocrinology and NephrologyOffice of New DrugsCenter for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
15
|
Tran PN, Sheng J, Randolph AL, Baron CA, Thiebaud N, Ren M, Wu M, Johannesen L, Volpe DA, Patel D, Blinova K, Strauss DG, Wu WW. Mechanisms of QT prolongation by buprenorphine cannot be explained by direct hERG channel block. PLoS One 2020; 15:e0241362. [PMID: 33157550 PMCID: PMC7647070 DOI: 10.1371/journal.pone.0241362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/13/2020] [Indexed: 12/04/2022] Open
Abstract
Buprenorphine is a μ-opioid receptor (MOR) partial agonist used to manage pain and addiction. QTC prolongation that crosses the 10 msec threshold of regulatory concern was observed at a supratherapeutic dose in two thorough QT studies for the transdermal buprenorphine product BUTRANS®. Because QTC prolongation can be associated with Torsades de Pointes (TdP), a rare but potentially fatal ventricular arrhythmia, these results have led to further investigation of the electrophysiological effects of buprenorphine. Drug-induced QTC prolongation and TdP are most commonly caused by acute inhibition of hERG current (IhERG) that contribute to the repolarizing phase of the ventricular action potentials (APs). Concomitant inhibition of inward late Na+ (INaL) and/or L-type Ca2+ (ICaL) current can offer some protection against proarrhythmia. Therefore, we characterized the effects of buprenorphine and its major metabolite norbuprenorphine on cardiac hERG, Ca2+, and Na+ ion channels, as well as cardiac APs. For comparison, methadone, a MOR agonist associated with QTC prolongation and high TdP risk, and naltrexone and naloxone, two opioid receptor antagonists, were also studied. Whole cell recordings were performed at 37°C on cells stably expressing hERG, CaV1.2, and NaV1.5 proteins. Microelectrode array (MEA) recordings were made on human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). The results showed that buprenorphine, norbuprenorphine, naltrexone, and naloxone had no effect on IhERG, ICaL, INaL, and peak Na+ current (INaP) at clinically relevant concentrations. In contrast, methadone inhibited IhERG, ICaL, and INaL. Experiments on iPSC-CMs showed a lack of effect for buprenorphine, norbuprenorphine, naltrexone, and naloxone, and delayed repolarization for methadone at clinically relevant concentrations. The mechanism of QTC prolongation is opioid moiety-specific. This remains undefined for buprenorphine, while for methadone it involves direct hERG channel block. There is no evidence that buprenorphine use is associated with TdP. Whether this lack of TdP risk can be generalized to other drugs with QTC prolongation not mediated by acute hERG channel block warrants further study.
Collapse
Affiliation(s)
- Phu N. Tran
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
- Division of Immunology and Hematology Devices, Center for Devices and Radiological Health, US Food and Drug Administration. Silver Spring, Maryland, United States of America
| | - Jiansong Sheng
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
- CiPALab, Gaithersburg, Maryland, United States of America
| | - Aaron L. Randolph
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Claudia Alvarez Baron
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Nicolas Thiebaud
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
- Vertex Pharmaceuticals (Europe) Ltd, Abingdon, Oxfordshire, United Kingdom
| | - Ming Ren
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Min Wu
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
- Division of Immunology and Hematology Devices, Center for Devices and Radiological Health, US Food and Drug Administration. Silver Spring, Maryland, United States of America
| | - Lars Johannesen
- Division of Cardiology and Nephrology, Office of Cardiology, Hematology, Endocrinology and Nephrology, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Donna A. Volpe
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Dakshesh Patel
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, United States of America
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ksenia Blinova
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - David G. Strauss
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Wendy W. Wu
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
16
|
Hamatani T, Noda N, Takagaki T, Yodo Y, Kawai H, Kakuyama H, Kaji Y, Fujio Y. Thorough QT/QTc Study Shows That a Novel 5-HT 4 Receptor Partial Agonist Minesapride Has No Effect on QT Prolongation. Clin Pharmacol Drug Dev 2020; 9:938-951. [PMID: 32087003 DOI: 10.1002/cpdd.778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022]
Abstract
Minesapride (drug code: DSP-6952) is a potential gastrointestinal prokinetic agent with high selectivity for 5-hydroxytryptamine 4 (5-HT4 ) receptor that acts as a partial agonist. Although 5-HT4 receptor agonists are expected to show efficacy in patients with irritable bowel syndrome with constipation, only tegaserod is available for female patients, with limitations, in the United States. Previously, another 5-HT4 receptor agonist, cisapride, was widely used for the treatment of upper gastrointestinal diseases, but was withdrawn from the market because of arrhythmia with QT prolongation. Chemically, benzamide is one of the most common structures among 5-HT4 receptor agonists. Some benzamide derivatives, such as cisapride, are responsible for QT prolongation, while some, such as mosapride, are not. Thus, we planned a thorough QT/QTc study to investigate the effects of minesapride, a newly designed benzamide derivative, on the QT/QTc. This was a randomized, placebo-controlled, 4-arm, 4-period, crossover study conducted in healthy adults, with administration of single oral doses of minesapride (40 mg and 120 mg), placebo, and moxifloxacin in the fasted state. Minesapride and placebo were administered in a double-blind fashion, while the positive control moxifloxacin was administered in an open-label fashion. Japanese subjects (48 total: 24 males and 24 females) were randomized, and 47 subjects completed all treatment periods. A review of other electrocardiographic data revealed that neither therapeutic (40 mg) nor supratherapeutic (120 mg) doses of minesapride were associated with increased risk of prolonged QT interval.
Collapse
Affiliation(s)
- Tatsuto Hamatani
- Clinical Research, Drug Development Division, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Naoto Noda
- Clinical Research, Drug Development Division, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Takeshi Takagaki
- Clinical Research, Drug Development Division, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Yasuhide Yodo
- Data Science, Drug Development Division, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Hirotaka Kawai
- Clinical Operation, Drug Development Division, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Hiroyoshi Kakuyama
- Clinical Research, Drug Development Division, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | | | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
17
|
Lee W, Windley MJ, Perry MD, Vandenberg JI, Hill AP. Protocol-Dependent Differences in IC 50 Values Measured in Human Ether-Á-Go-Go-Related Gene Assays Occur in a Predictable Way and Can Be Used to Quantify State Preference of Drug Binding. Mol Pharmacol 2019; 95:537-550. [PMID: 30770456 DOI: 10.1124/mol.118.115220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/10/2019] [Indexed: 12/22/2022] Open
Abstract
Current guidelines around preclinical screening for drug-induced arrhythmias require the measurement of the potency of block of voltage-gated potassium channel subtype 11.1 (Kv11.1) as a surrogate for risk. A shortcoming of this approach is that the measured IC50 of Kv11.1 block varies widely depending on the voltage protocol used in electrophysiological assays. In this study, we aimed to investigate the factors that contribute to these differences and to identify whether it is possible to make predictions about protocol-dependent block that might facilitate the comparison of potencies measured using different assays. Our data demonstrate that state preferential binding, together with drug-binding kinetics and trapping, is an important determinant of the protocol dependence of Kv11.1 block. We show for the first time that differences in IC50 measured between protocols occurs in a predictable way, such that machine-learning algorithms trained using a selection of simple voltage protocols can indeed predict protocol-dependent potency. Furthermore, we also show that the preference of a drug for binding to the open versus the inactivated state of Kv11.1 can also be inferred from differences in IC50 values measured between protocols. Our work therefore identifies how state preferential drug binding is a major determinant of the protocol dependence of IC50 values measured in preclinical Kv11.1 assays. It also provides a novel method for quantifying the state dependence of Kv11.1 drug binding that will facilitate the development of more complete models of drug binding to Kv11.1 and improve our understanding of proarrhythmic risk associated with compounds that block Kv11.1.
Collapse
Affiliation(s)
- William Lee
- Victor Chang Cardiac Research Institute (W.L., M.J.W., M.D.P., J.I.V., A.P.H.) and St Vincent's Clinical School (W.L., M.J.W., M.D.P., J.I.V., A.P.H.), University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Monique J Windley
- Victor Chang Cardiac Research Institute (W.L., M.J.W., M.D.P., J.I.V., A.P.H.) and St Vincent's Clinical School (W.L., M.J.W., M.D.P., J.I.V., A.P.H.), University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Matthew D Perry
- Victor Chang Cardiac Research Institute (W.L., M.J.W., M.D.P., J.I.V., A.P.H.) and St Vincent's Clinical School (W.L., M.J.W., M.D.P., J.I.V., A.P.H.), University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute (W.L., M.J.W., M.D.P., J.I.V., A.P.H.) and St Vincent's Clinical School (W.L., M.J.W., M.D.P., J.I.V., A.P.H.), University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Adam P Hill
- Victor Chang Cardiac Research Institute (W.L., M.J.W., M.D.P., J.I.V., A.P.H.) and St Vincent's Clinical School (W.L., M.J.W., M.D.P., J.I.V., A.P.H.), University of New South Wales, Darlinghurst, New South Wales, Australia
| |
Collapse
|
18
|
Munawar S, Windley MJ, Tse EG, Todd MH, Hill AP, Vandenberg JI, Jabeen I. Experimentally Validated Pharmacoinformatics Approach to Predict hERG Inhibition Potential of New Chemical Entities. Front Pharmacol 2018; 9:1035. [PMID: 30333745 PMCID: PMC6176658 DOI: 10.3389/fphar.2018.01035] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
The hERG (human ether-a-go-go-related gene) encoded potassium ion (K+) channel plays a major role in cardiac repolarization. Drug-induced blockade of hERG has been a major cause of potentially lethal ventricular tachycardia termed Torsades de Pointes (TdPs). Therefore, we presented a pharmacoinformatics strategy using combined ligand and structure based models for the prediction of hERG inhibition potential (IC50) of new chemical entities (NCEs) during early stages of drug design and development. Integrated GRid-INdependent Descriptor (GRIND) models, and lipophilic efficiency (LipE), ligand efficiency (LE) guided template selection for the structure based pharmacophore models have been used for virtual screening and subsequent hERG activity (pIC50) prediction of identified hits. Finally selected two hits were experimentally evaluated for hERG inhibition potential (pIC50) using whole cell patch clamp assay. Overall, our results demonstrate a difference of less than ±1.6 log unit between experimentally determined and predicted hERG inhibition potential (IC50) of the selected hits. This revealed predictive ability and robustness of our models and could help in correctly rank the potency order (lower μM to higher nM range) against hERG.
Collapse
Affiliation(s)
- Saba Munawar
- Research Center for Modeling and Simulation, National University of Science and Technology, Islamabad, Pakistan.,Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | | | - Edwin G Tse
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Matthew H Todd
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | | | - Ishrat Jabeen
- Research Center for Modeling and Simulation, National University of Science and Technology, Islamabad, Pakistan
| |
Collapse
|
19
|
Tsubouchi T, Kunimatsu T, Tsujimoto S, Kiyoshi A, Katsura Y, Oku S, Chihara K, Mine Y, Yamada T, Shimizu I, Bando K. The in vitro pharmacology and non-clinical cardiovascular safety studies of a novel 5-HT 4 receptor agonist, DSP-6952. Eur J Pharmacol 2018; 826:96-105. [PMID: 29501863 DOI: 10.1016/j.ejphar.2018.02.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/08/2018] [Accepted: 02/26/2018] [Indexed: 12/18/2022]
Abstract
The pharmacological activity of DSP-6952, a novel compound was investigated, compared to that of clinically efficacious gastrointestinal (GI) prokinetic 5-hydroxytryptamine4 (5-HT4) receptor agonists. DSP-6952 had a strong affinity of Ki = 51.9 nM for 5-HT4(b) receptor, and produced contraction in the isolated guinea pig colon with EC50 of 271.6 nM and low intrinsic activity of 57%, similar to tegaserod and mosapride. In the development of the 5-HT4 receptor agonists, cardiovascular risk was deliberately evaluated, because some related prokinetics were reported to cause with cardiovascular adverse events, such as ventricular arrhythmias or ischemia. DSP-6952 showed minimal effects up to 100 μM in human ether-a-go-go-related gene (hERG) channels or guinea pig cardiomyocytes. In telemetered conscious monkeys, DSP-6952 did not affect blood pressure or any electrocardiogram (ECG) up to 180 mg/kg, p.o.; however, DSP-6952 transiently increased heart rate, as well as in anesthetized dogs. The positive chronotropic effects of DSP-6952 were completely antagonized by a 5-HT4 receptor antagonist, and another 5-HT4 receptor agonist, TD-5108 also increased heart rate. These effects are considered a class effect seen in clinically developing and marketed 5-HT4 receptor agonists, and have not been regarded as a critical issue in clinical use. DSP-6952 did not induce contraction in the rabbit coronary artery up to 100 μM, which differed from tegaserod or sumatriptan. These results show that DSP-6952 does not have cardiac ischemic risk via coronary vasoconstriction. In conclusion, DSP-6952 is a promising GI prokinetic compound with partial 5-HT4 receptor agonistic activity as well as a favorable cardiovascular safety profile.
Collapse
Affiliation(s)
- Tadashi Tsubouchi
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan.
| | - Takeshi Kunimatsu
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Shinji Tsujimoto
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Akihiko Kiyoshi
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Yasunori Katsura
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Seiko Oku
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Kazuhiro Chihara
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Yukiko Mine
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Toru Yamada
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Isao Shimizu
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Kiyoko Bando
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| |
Collapse
|
20
|
Windley MJ, Lee W, Vandenberg JI, Hill AP. The Temperature Dependence of Kinetics Associated with Drug Block of hERG Channels Is Compound-Specific and an Important Factor for Proarrhythmic Risk Prediction. Mol Pharmacol 2018; 94:760-769. [DOI: 10.1124/mol.117.111534] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/02/2018] [Indexed: 01/08/2023] Open
|
21
|
Lee W, Windley MJ, Vandenberg JI, Hill AP. In Vitro and In Silico Risk Assessment in Acquired Long QT Syndrome: The Devil Is in the Details. Front Physiol 2017; 8:934. [PMID: 29201009 PMCID: PMC5696636 DOI: 10.3389/fphys.2017.00934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022] Open
Abstract
Acquired long QT syndrome, mostly as a result of drug block of the Kv11. 1 potassium channel in the heart, is characterized by delayed cardiac myocyte repolarization, prolongation of the T interval on the ECG, syncope and sudden cardiac death due to the polymorphic ventricular arrhythmia Torsade de Pointes (TdP). In recent years, efforts are underway through the Comprehensive in vitro proarrhythmic assay (CiPA) initiative, to develop better tests for this drug induced arrhythmia based in part on in silico simulations of pharmacological disruption of repolarization. However, drug binding to Kv11.1 is more complex than a simple binary molecular reaction, meaning simple steady state measures of potency are poor surrogates for risk. As a result, there is a plethora of mechanistic detail describing the drug/Kv11.1 interaction—such as drug binding kinetics, state preference, temperature dependence and trapping—that needs to be considered when developing in silico models for risk prediction. In addition to this, other factors, such as multichannel pharmacological profile and the nature of the ventricular cell models used in simulations also need to be considered in the search for the optimum in silico approach. Here we consider how much of mechanistic detail needs to be included for in silico models to accurately predict risk and further, how much of this detail can be retrieved from protocols that are practical to implement in high throughout screens as part of next generation of preclinical in silico drug screening approaches?
Collapse
Affiliation(s)
- William Lee
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Monique J Windley
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Jamie I Vandenberg
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Adam P Hill
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
22
|
Nguyen CH, Huttary N, Atanasov AG, Chatuphonprasert W, Brenner S, Fristiohady A, Hong J, Stadler S, Holzner S, Milovanovic D, Dirsch VM, Kopp B, Saiko P, Krenn L, Jäger W, Krupitza G. Fenofibrate inhibits tumour intravasation by several independent mechanisms in a 3-dimensional co-culture model. Int J Oncol 2017; 50:1879-1888. [PMID: 28393180 DOI: 10.3892/ijo.2017.3956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 01/16/2017] [Indexed: 11/06/2022] Open
Abstract
Lymph node metastasis of breast cancer is a clinical marker of poor prognosis. Yet, there exist no therapies targeting mechanisms of intravasation into lymphatics. Herein we report on an effect of the antidyslipidemic drug fenofibrate with vasoprotective activity, which attenuates breast cancer intravasation in vitro, and describe the potential mechanisms. To measure intravasation in a 3-dimensional co-culture model MDA-MB231 and MCF-7 breast cancer spheroids were placed on immortalised lymphendothelial cell (LEC) monolayers. This provokes the formation of circular chemorepellent induced defects (CCIDs) in the LEC barrier resembling entry ports for the intravasating tumour. Furthermore, the expression of adhesion molecules ICAM-1, CD31 and FAK was investigated in LECs by western blotting as well as cell-cell adhesion and NF-κB activity by respective assays. In MDA-MB231 cells the activity of CYP1A1 was measured by EROD assay. Fenofibrate inhibited CCID formation in the MDA-MB231/LEC- and MCF-7/LEC models and the activity of NF-κB, which in turn downregulated ICAM-1 in LECs and the adhesion of cancer cells to LECs. Furthermore, CD31 and the activity of FAK were inhibited. In MDA-MB231 cells, fenofibrate attenuated CYP1A1 activity. Combinations with other FDA-approved drugs, which reportedly inhibit different ion channels, attenuated CCID formation additively or synergistically. In summary, fenofibrate inhibited NF-κB and ICAM-1, and inactivated FAK, thereby attenuating tumour intravasation in vitro. A combination with other FDA-approved drugs further improved this effect. Our new concept may lead to a novel therapy for cancer patients.
Collapse
Affiliation(s)
- Chi Huu Nguyen
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Nicole Huttary
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | | | | | - Stefan Brenner
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Adryan Fristiohady
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Junli Hong
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Serena Stadler
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Silvio Holzner
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Daniela Milovanovic
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Philipp Saiko
- Department of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Liselotte Krenn
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Georg Krupitza
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Windley MJ, Abi-Gerges N, Fermini B, Hancox JC, Vandenberg JI, Hill AP. Measuring kinetics and potency of hERG block for CiPA. J Pharmacol Toxicol Methods 2017; 87:99-107. [PMID: 28192183 DOI: 10.1016/j.vascn.2017.02.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/25/2017] [Accepted: 02/07/2017] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The Comprehensive in vitro Proarrhythmic Assay (CiPA) aims to update current cardiac safety testing to better evaluate arrhythmic risk. A central theme of CiPA is the use of in silico approaches to risk prediction incorporating models of drug binding to hERG. To parameterize these models, accurate in vitro measurement of potency and kinetics of block is required. The Ion Channel Working Group was tasked with: i) selecting a protocol that could measure kinetics of block and was easily implementable on automated platforms for future rollout in industry and ii) acquiring a reference dataset using the standardized protocol. METHODS Data were acquired using a 'step depolarisation' protocol using manual patch-clamp at ambient temperature. RESULTS Potency, kinetics and trapping characteristics of hERG block for the CiPA training panel of twelve drugs were measured. Timecourse of block and trapping characteristics could be reliably measured if the time constant for onset of block was between ~500ms and ~15s. Seven drugs, however had time courses of block faster than this cut-off. DISCUSSION Here we describe the implementation of the standardized protocol for measurement of kinetics and potency of hERG block for CiPA. The results highlight the challenges in identifying a single protocol to measure hERG block over a range of kinetics. The dataset from this study is being used by the In Silico Working Group to develop models of drug binding for risk prediction and is freely available as a 'gold standard' ambient temperature dataset to evaluate variability across high throughput platforms.
Collapse
Affiliation(s)
- Monique J Windley
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Bernard Fermini
- Coyne Scientific, LLC, 58 Edgewood Ave NE Atlanta, GA 30303, USA
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, UK
| | - Jamie I Vandenberg
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Adam P Hill
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
24
|
Modification of distinct ion channels differentially modulates Ca 2+ dynamics in primary cultured rat ventricular cardiomyocytes. Sci Rep 2017; 7:40952. [PMID: 28102360 PMCID: PMC5244425 DOI: 10.1038/srep40952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/12/2016] [Indexed: 01/03/2023] Open
Abstract
Primary cultured cardiomyocytes show spontaneous Ca2+ oscillations (SCOs) which not only govern contractile events, but undergo derangements that promote arrhythmogenesis through Ca2+ -dependent mechanism. We systematically examined influence on SCOs of an array of ion channel modifiers by recording intracellular Ca2+ dynamics in rat ventricular cardiomyocytes using Ca2+ specific fluorescence dye, Fluo-8/AM. Voltage-gated sodium channels (VGSCs) activation elongates SCO duration and reduces SCO frequency while inhibition of VGSCs decreases SCO frequency without affecting amplitude and duration. Inhibition of voltage-gated potassium channel increases SCO duration. Direct activation of L-type Ca2+ channels (LTCCs) induces SCO bursts while suppressing LTCCs decreases SCO amplitude and slightly increases SCO frequency. Activation of ryanodine receptors (RyRs) increases SCO duration and decreases both SCO amplitude and frequency while inhibiting RyRs decreases SCO frequency without affecting amplitude and duration. The potencies of these ion channel modifiers on SCO responses are generally consistent with their affinities in respective targets demonstrating that modification of distinct targets produces different SCO profiles. We further demonstrate that clinically-used drugs that produce Long-QT syndrome including cisapride, dofetilide, sotalol, and quinidine all induce SCO bursts while verapamil has no effect. Therefore, occurrence of SCO bursts may have a translational value to predict cardiotoxicants causing Long-QT syndrome.
Collapse
|
25
|
Hill AP, Perry MD, Abi-Gerges N, Couderc JP, Fermini B, Hancox JC, Knollmann BC, Mirams GR, Skinner J, Zareba W, Vandenberg JI. Computational cardiology and risk stratification for sudden cardiac death: one of the grand challenges for cardiology in the 21st century. J Physiol 2016; 594:6893-6908. [PMID: 27060987 PMCID: PMC5134408 DOI: 10.1113/jp272015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/16/2016] [Indexed: 12/25/2022] Open
Abstract
Risk stratification in the context of sudden cardiac death has been acknowledged as one of the major challenges facing cardiology for the past four decades. In recent years, the advent of high performance computing has facilitated organ-level simulation of the heart, meaning we can now examine the causes, mechanisms and impact of cardiac dysfunction in silico. As a result, computational cardiology, largely driven by the Physiome project, now stands at the threshold of clinical utility in regards to risk stratification and treatment of patients at risk of sudden cardiac death. In this white paper, we outline a roadmap of what needs to be done to make this translational step, using the relatively well-developed case of acquired or drug-induced long QT syndrome as an exemplar case.
Collapse
Affiliation(s)
- Adam P Hill
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Matthew D Perry
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Najah Abi-Gerges
- AnaBios Corporation, 3030 Bunker Hill St., San Diego, CA, 92109, USA
| | | | - Bernard Fermini
- Global Safety Pharmacology, Pfizer Inc, MS8274-1347 Eastern Point Road, Groton, CT, 06340, USA
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Bjorn C Knollmann
- Vanderbilt University School of Medicine, 1285 Medical Research Building IV, Nashville, Tennessee, 37232, USA
| | - Gary R Mirams
- Computational Biology, Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Jon Skinner
- Cardiac Inherited Disease Group, Starship Hospital, Auckland, New Zealand
| | - Wojciech Zareba
- University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
26
|
Windley MJ, Mann SA, Vandenberg JI, Hill AP. Temperature Effects on Kinetics of KV11.1 Drug Block Have Important Consequences for In Silico Proarrhythmic Risk Prediction. Mol Pharmacol 2016; 90:1-11. [PMID: 27190211 DOI: 10.1124/mol.115.103127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023] Open
Abstract
Drug block of voltage-gated potassium channel subtype 11.1 human ether-a-go-go related gene (Kv11.1) (hERG) channels, encoded by the KCNH2 gene, is associated with reduced repolarization of the cardiac action potential and is the predominant cause of acquired long QT syndrome that can lead to fatal cardiac arrhythmias. Current safety guidelines require that potency of KV11.1 block is assessed in the preclinical phase of drug development. However, not all drugs that block KV11.1 are proarrhythmic, meaning that screening on the basis of equilibrium measures of block can result in high attrition of potentially low-risk drugs. The basis of the next generation of drug-screening approaches is set to be in silico risk prediction, informed by in vitro mechanistic descriptions of drug binding, including measures of the kinetics of block. A critical issue in this regard is characterizing the temperature dependence of drug binding. Specifically, it is important to address whether kinetics relevant to physiologic temperatures can be inferred or extrapolated from in vitro data gathered at room temperature in high-throughout systems. Here we present the first complete study of the temperature-dependent kinetics of block and unblock of a proarrhythmic drug, cisapride, to KV11.1. Our data highlight a complexity to binding that manifests at higher temperatures and can be explained by accumulation of an intermediate, non-blocking encounter-complex. These results suggest that for cisapride, physiologically relevant kinetic parameters cannot be simply extrapolated from those measured at lower temperatures; rather, data gathered at physiologic temperatures should be used to constrain in silico models that may be used for proarrhythmic risk prediction.
Collapse
Affiliation(s)
- Monique J Windley
- Computational Cardiology, Victor Chang Cardiac Research Institute, Darlinghurst, Australia (M.J.W., S.A.M., J.I.V., A.P.H.); and St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia (S.A.M., J.I.V., A.P.H.)
| | - Stefan A Mann
- Computational Cardiology, Victor Chang Cardiac Research Institute, Darlinghurst, Australia (M.J.W., S.A.M., J.I.V., A.P.H.); and St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia (S.A.M., J.I.V., A.P.H.)
| | - Jamie I Vandenberg
- Computational Cardiology, Victor Chang Cardiac Research Institute, Darlinghurst, Australia (M.J.W., S.A.M., J.I.V., A.P.H.); and St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia (S.A.M., J.I.V., A.P.H.)
| | - Adam P Hill
- Computational Cardiology, Victor Chang Cardiac Research Institute, Darlinghurst, Australia (M.J.W., S.A.M., J.I.V., A.P.H.); and St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia (S.A.M., J.I.V., A.P.H.)
| |
Collapse
|
27
|
Li Z, Dutta S, Sheng J, Tran PN, Wu W, Colatsky T. A temperature-dependent in silico model of the human ether-à-go-go-related (hERG) gene channel. J Pharmacol Toxicol Methods 2016; 81:233-9. [PMID: 27178106 DOI: 10.1016/j.vascn.2016.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/20/2016] [Accepted: 05/09/2016] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Current regulatory guidelines for assessing the risk of QT prolongation include in vitro assays assessing drug effects on the human ether-à-go-go-related (hERG; also known as Kv11.1) channel expressed in cell lines. These assays are typically conducted at room temperature to promote the ease and stability of recording hERG currents. However, the new Comprehensive in vitro Proarrhythmia Assay (CiPA) paradigm proposes to use an in silico model of the human ventricular myocyte to assess risk, requiring as input hERG channel pharmacology data obtained at physiological temperatures. To accommodate current industry safety pharmacology practices for measuring hERG channel activity, an in silico model of hERG channel that allows for the extrapolation of hERG assay data across different temperatures is desired. Because temperature may have an effect on both channel gating and drug binding rate, such models may need to have two components: a base model dealing with temperature-dependent gating changes without drug, and a pharmacodynamic component simulating temperature-dependent drug binding kinetics. As a first step, a base mode that can capture temperature effects on hERG channel gating without drug is needed. METHODS AND RESULTS To meet this need for a temperature-dependent base model, a Markov model of the hERG channel with state transition rates explicitly dependent on temperature was developed and calibrated using data from a variety of published experiments conducted over a range of temperatures. The model was able to reproduce observed temperature-dependent changes in key channel gating properties and also to predict the results obtained in independent sets of new experiments. DISCUSSION This new temperature-sensitive model of hERG gating represents an attempt to improve the predictivity of safety pharmacology testing by enabling the translation of room temperature hERG assay data to more physiological conditions. With further development, this model can be incorporated into the CiPA paradigm and also be used as a tool for developing insights into the thermodynamics of hERG channel gating mechanisms and the temperature-dependence of hERG channel block by drugs.
Collapse
Affiliation(s)
- Zhihua Li
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, United States.
| | - Sara Dutta
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, United States
| | - Jiansong Sheng
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, United States
| | - Phu N Tran
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, United States
| | - Wendy Wu
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, United States
| | - Thomas Colatsky
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, United States
| |
Collapse
|
28
|
Obergrussberger A, Bru ggemann A, Goetze TA, Rapedius M, Haarmann C, Rinke I, Becker N, Oka T, Ohtsuki A, Stengel T, Vogel M, Steindl J, Mueller M, Stiehler J, George M, Fertig N. Automated Patch Clamp Meets High-Throughput Screening: 384 Cells Recorded in Parallel on a Planar Patch Clamp Module. ACTA ACUST UNITED AC 2015; 21:779-793. [DOI: 10.1177/2211068215623209] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 11/15/2022]
|
29
|
Lee W, Mann SA, Windley MJ, Imtiaz MS, Vandenberg JI, Hill AP. In silico assessment of kinetics and state dependent binding properties of drugs causing acquired LQTS. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 120:89-99. [PMID: 26713558 DOI: 10.1016/j.pbiomolbio.2015.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/06/2015] [Accepted: 12/16/2015] [Indexed: 11/24/2022]
Abstract
The Kv11.1 or hERG potassium channel is responsible for one of the major repolarising currents (IKr) in cardiac myocytes. Drug binding to hERG can result in reduction in IKr, action potential prolongation, acquired long QT syndrome and fatal cardiac arrhythmias. The current guidelines for pre-clinical assessment of drugs in development is based on the measurement of the drug concentration that causes 50% current block, i.e., IC50. However, drugs with the same apparent IC50 may have very different kinetics of binding and unbinding, as well as different affinities for the open and inactivated states of Kv11.1. Therefore, IC50 measurements may not reflect the true risk of drug induced arrhythmias. Here we have used an in silico approach to test the hypothesis that drug binding kinetics and differences in state-dependent affinity will influence the extent of cardiac action potential prolongation independent of apparent IC50 values. We found, in general that drugs with faster overall kinetics and drugs with higher affinity for the open state relative to the inactivated state cause more action potential prolongation. These characteristics of drug-hERG interaction are likely to be more arrhythmogenic but cannot be predicted by IC50 measurement alone. Our results suggest that the pre-clinical assessment of Kv11.1-drug interactions should include descriptions of the kinetics and state dependence of drug binding. Further, incorporation of this information into sophisticated in silico models should be able to better predict arrhythmia risk and therefore more accurately assess safety of new drugs in development.
Collapse
Affiliation(s)
- William Lee
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, NSW 2052, Australia
| | - Stefan A Mann
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, NSW 2052, Australia
| | - Monique J Windley
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia
| | - Mohammad S Imtiaz
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, NSW 2052, Australia
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, NSW 2052, Australia
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
30
|
Yan M, Zhang K, Shi Y, Feng L, Lv L, Li B. Mechanism and pharmacological rescue of berberine-induced hERG channel deficiency. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5737-47. [PMID: 26543354 PMCID: PMC4622489 DOI: 10.2147/dddt.s91561] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Berberine (BBR), an isoquinoline alkaloid mainly isolated from plants of Berberidaceae family, is extensively used to treat gastrointestinal infections in clinics. It has been reported that BBR can block human ether-a-go-go-related gene (hERG) potassium channel and inhibit its membrane expression. The hERG channel plays crucial role in cardiac repolarization and is the target of diverse proarrhythmic drugs. Dysfunction of hERG channel can cause long QT syndrome. However, the regulatory mechanisms of BBR effects on hERG at cell membrane level remain unknown. This study was designed to investigate in detail how BBR decreased hERG expression on cell surface and further explore its pharmacological rescue strategies. In this study, BBR decreases caveolin-1 expression in a concentration-dependent manner in human embryonic kidney 293 (HEK293) cells stably expressing hERG channel. Knocking down the basal expression of caveolin-1 alleviates BBR-induced hERG reduction. In addition, we found that aromatic tyrosine (Tyr652) and phenylalanine (Phe656) in S6 domain mediate the long-term effect of BBR on hERG by using mutation techniques. Considering both our previous and present work, we propose that BBR reduces hERG membrane stability with multiple mechanisms. Furthermore, we found that fexofenadine and resveratrol shorten action potential duration prolongated by BBR, thus having the potential effects of alleviating the cardiotoxicity of BBR.
Collapse
Affiliation(s)
- Meng Yan
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Kaiping Zhang
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Yanhui Shi
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Lifang Feng
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Lin Lv
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Baoxin Li
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China ; State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
31
|
Combined action potential- and dynamic-clamp for accurate computational modelling of the cardiac IKr current. J Mol Cell Cardiol 2015; 79:187-94. [DOI: 10.1016/j.yjmcc.2014.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/29/2014] [Accepted: 11/12/2014] [Indexed: 11/18/2022]
|
32
|
Kauthale RR, Dadarkar SS, Husain R, Karande VV, Gatne MM. Assessment of temperature-induced hERG channel blockade variation by drugs. J Appl Toxicol 2014; 35:799-805. [PMID: 25348819 DOI: 10.1002/jat.3074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 12/21/2022]
Abstract
Drug-induced QT prolongation has been reported in humans and animals. This potentially lethal effect can be induced by drugs interacting with a cardiac potassium channel, namely hERG (human ether-a go-go-related gene) leading to arrhythmia or torsade de pointes (TdP). Hence, in vitro evaluation of therapeutics for their effects on the rapid delayed rectifier current (IKr) mediated by the K(+) ion channel encoded by hERG is a valuable tool for identifying potential arrhythmic side effects during drug safety testing. Our objective was to evaluate the temperature-induced hERG channel blockade variation by human and veterinary drugs using the IonFlux 16 system. A panel of eight drugs was tested for IKr inhibition at both ambient (23 °C) and physiological (37 °C) temperatures at various concentrations using IonFlux 16, an automated patch clamp system. Our results established that both amiodarone (IC(50) = 0.56 μM at 23 °C and 0.30 μM at 37 °C) and β-estradiol (IC(50) = 24.72 μM at 23 °C and 8.17 μM at 37 °C) showed a dose-dependent IKr blockade with a higher blockade at 37 °C. Whereas, blockade of IKr by both ivermectin (IC(50) = 12.52 μM at 23 °C and 24.41 μM at 37 °C) and frusemide (IC(50) = 12.58 μM at 23 °C and 25.55 μM at 37 °C) showed a dose-dependent IKr blockade with a lower blockade at 37 °C. Gentamicin, enrofloxacin, xylazine and albendazole did not block IKr at both the assessed temperatures. Collectively, these results demonstrate that the effect of temperature variation should be taken into consideration during the evaluation of test drugs for their hERG channel blockade potential.
Collapse
Affiliation(s)
- Rahul R Kauthale
- Department of Pharmacology and Toxicology, Bombay Veterinary College, Mumbai, 400012, Maharashtra, India
| | - Shruta S Dadarkar
- Department of Toxicology, Piramal Enterprises Limited, Mumbai, 400063, Maharashtra, India
| | - Raghib Husain
- Department of Toxicology, Piramal Enterprises Limited, Mumbai, 400063, Maharashtra, India
| | - Vikas V Karande
- Department of Pharmacology and Toxicology, Bombay Veterinary College, Mumbai, 400012, Maharashtra, India
| | - Madhumanjiri M Gatne
- Department of Pharmacology and Toxicology, Bombay Veterinary College, Mumbai, 400012, Maharashtra, India
| |
Collapse
|
33
|
Majumder R, Pandit R, Panfilov AV. Turbulent electrical activity at sharp-edged inexcitable obstacles in a model for human cardiac tissue. Am J Physiol Heart Circ Physiol 2014; 307:H1024-35. [DOI: 10.1152/ajpheart.00593.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wave propagation around various geometric expansions, structures, and obstacles in cardiac tissue may result in the formation of unidirectional block of wave propagation and the onset of reentrant arrhythmias in the heart. Therefore, we investigated the conditions under which reentrant spiral waves can be generated by high-frequency stimulation at sharp-edged obstacles in the ten Tusscher-Noble-Noble-Panfilov (TNNP) ionic model for human cardiac tissue. We show that, in a large range of parameters that account for the conductance of major inward and outward ionic currents of the model [fast inward Na+ current ( INa), L—type slow inward Ca2+ current ( ICaL), slow delayed-rectifier current ( IKs), rapid delayed-rectifier current ( IKr), inward rectifier K+ current ( IK1)], the critical period necessary for spiral formation is close to the period of a spiral wave rotating in the same tissue. We also show that there is a minimal size of the obstacle for which formation of spirals is possible; this size is ∼2.5 cm and decreases with a decrease in the excitability of cardiac tissue. We show that other factors, such as the obstacle thickness and direction of wave propagation in relation to the obstacle, are of secondary importance and affect the conditions for spiral wave initiation only slightly. We also perform studies for obstacle shapes derived from experimental measurements of infarction scars and show that the formation of spiral waves there is facilitated by tissue remodeling around it. Overall, we demonstrate that the formation of reentrant sources around inexcitable obstacles is a potential mechanism for the onset of cardiac arrhythmias in the presence of a fast heart rate.
Collapse
Affiliation(s)
- Rupamanjari Majumder
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rahul Pandit
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - A. V. Panfilov
- Department of Physics and Astronomy, Gent University, Ghent, Belgium; and
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
34
|
Lee MJ, Cho KH, Park HM, Sung HJ, Choi S, Im W. Pharmacological profile of DA-6886, a novel 5-HT4 receptor agonist to accelerate colonic motor activity in mice. Eur J Pharmacol 2014; 735:115-22. [PMID: 24769304 DOI: 10.1016/j.ejphar.2014.03.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 02/07/2023]
Abstract
DA-6886, the gastrointestinal prokinetic benzamide derivative is a novel 5-HT4 receptor agonist being developed for the treatment of constipation-predominant irritable bowel syndrome (IBS-C). The purpose of this study was to characterize in vitro and in vivo pharmacological profile of DA-6886. We used various receptor binding assay, cAMP accumulation assay, organ bath experiment and colonic transit assay in normal and chemically constipated mice. DA-6886 exhibited high affinity and selectivity to human 5-HT4 receptor splice variants, with mean pKi of 7.1, 7.5, 7.9 for the human 5-HT4a, 5-HT4b and 5-HT4d, respectively. By contrast, DA-6886 did not show significant affinity for several receptors including dopamine D2 receptor, other 5-HT receptors except for 5-HT2B receptor (pKi value of 6.2). The affinity for 5-HT4 receptor was translated into functional agonist activity in Cos-7 cells expressing 5-HT4 receptor splice variants. Furthermore, DA-6886 induced relaxation of the rat oesophagus preparation (pEC50 value of 7.4) in a 5-HT4 receptor antagonist-sensitive manner. The evaluation of DA-6886 in CHO cells expressing hERG channels revealed that it inhibited hERG channel current with an pIC50 value of 4.3, indicating that the compound was 1000-fold more selective for the 5-HT4 receptor over hERG channels. In the normal ICR mice, oral administration of DA-6886 (0.4 and 2mg/kg) resulted in marked stimulation of colonic transit. Furthermore, in the loperamide-induced constipation mouse model, 2mg/kg of DA-6886 significantly improved the delay of colonic transit, similar to 10mg/kg of tegaserod. Taken together, DA-6886 is a highly potent and selective 5-HT4 receptor agonist to accelerate colonic transit in mice, which might be therapeutic agent having a favorable safety profile in the treatment of gastrointestinal motor disorders such as IBS-C and chronic constipation.
Collapse
Affiliation(s)
- Min Jung Lee
- Dong-A ST Research Institute, 21 Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin-si 446-905, Gyeonggi-do, Republic of Korea; Department of Anatomy and Cell Biology, School of Medicine, Sungkyunkwan University, Suwon-si 440-746, Gyeonggi-do, Republic of Korea.
| | - Kang Hun Cho
- Dong-A ST Research Institute, 21 Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin-si 446-905, Gyeonggi-do, Republic of Korea
| | - Hyun Min Park
- Dong-A ST Research Institute, 21 Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin-si 446-905, Gyeonggi-do, Republic of Korea
| | - Hyun Jung Sung
- Dong-A ST Research Institute, 21 Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin-si 446-905, Gyeonggi-do, Republic of Korea
| | - Sunghak Choi
- Dong-A ST Research Institute, 21 Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin-si 446-905, Gyeonggi-do, Republic of Korea
| | - Weonbin Im
- Dong-A ST Research Institute, 21 Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin-si 446-905, Gyeonggi-do, Republic of Korea
| |
Collapse
|
35
|
Durdagi S, Randall T, Duff HJ, Chamberlin A, Noskov SY. Rehabilitating drug-induced long-QT promoters: in-silico design of hERG-neutral cisapride analogues with retained pharmacological activity. BMC Pharmacol Toxicol 2014; 15:14. [PMID: 24606761 PMCID: PMC4016140 DOI: 10.1186/2050-6511-15-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/24/2014] [Indexed: 02/05/2023] Open
Abstract
Background The human ether-a-go-go related gene 1 (hERG1), which codes for a potassium ion channel, is a key element in the cardiac delayed rectified potassium current, IKr, and plays an important role in the normal repolarization of the heart’s action potential. Many approved drugs have been withdrawn from the market due to their prolongation of the QT interval. Most of these drugs have high potencies for their principal targets and are often irreplaceable, thus “rehabilitation” studies for decreasing their high hERG1 blocking affinities, while keeping them active at the binding sites of their targets, have been proposed to enable these drugs to re-enter the market. Methods In this proof-of-principle study, we focus on cisapride, a gastroprokinetic agent withdrawn from the market due to its high hERG1 blocking affinity. Here we tested an a priori strategy to predict a compound’s cardiotoxicity using de novo drug design with molecular docking and Molecular Dynamics (MD) simulations to generate a strategy for the rehabilitation of cisapride. Results We focused on two key receptors, a target interaction with the (adenosine) receptor and an off-target interaction with hERG1 channels. An analysis of the fragment interactions of cisapride at human A2A adenosine receptors and hERG1 central cavities helped us to identify the key chemical groups responsible for the drug activity and hERG1 blockade. A set of cisapride derivatives with reduced cardiotoxicity was then proposed using an in-silico two-tier approach. This set was compared against a large dataset of commercially available cisapride analogs and derivatives. Conclusions An interaction decomposition of cisapride and cisapride derivatives allowed for the identification of key active scaffolds and functional groups that may be responsible for the unwanted blockade of hERG1.
Collapse
Affiliation(s)
- Serdar Durdagi
- Centre for Molecular Simulations and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | |
Collapse
|
36
|
Hill AP, Perrin MJ, Heide J, Campbell TJ, Mann SA, Vandenberg JI. Kinetics of Drug Interaction with the Kv11.1 Potassium Channel. Mol Pharmacol 2014; 85:769-76. [DOI: 10.1124/mol.114.091835] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
Shin DS, Park MJ, Lee HA, Lee JY, Chung HC, Yoo DS, Chae CH, Park SJ, Kim KS, Bae MA. A novel assessment of nefazodone-induced hERG inhibition by electrophysiological and stereochemical method. Toxicol Appl Pharmacol 2014; 274:361-71. [DOI: 10.1016/j.taap.2013.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 11/30/2022]
|
38
|
Thurner P, Stary-Weinzinger A, Gafar H, Gawali VS, Kudlacek O, Zezula J, Hilber K, Boehm S, Sandtner W, Koenig X. Mechanism of hERG channel block by the psychoactive indole alkaloid ibogaine. J Pharmacol Exp Ther 2013; 348:346-58. [PMID: 24307198 DOI: 10.1124/jpet.113.209643] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ibogaine is a psychoactive indole alkaloid. Its use as an antiaddictive agent has been accompanied by QT prolongation and cardiac arrhythmias, which are most likely caused by human ether a go-go-related gene (hERG) potassium channel inhibition. Therefore, we studied in detail the interaction of ibogaine with hERG channels heterologously expressed in mammalian kidney tsA-201 cells. Currents through hERG channels were blocked regardless of whether ibogaine was applied via the extracellular or intracellular solution. The extent of inhibition was determined by the relative pH values. Block occurred during activation of the channels and was not observed for resting channels. With increasing depolarizations, ibogaine block grew and developed faster. Steady-state activation and inactivation of the channel were shifted to more negative potentials. Deactivation was slowed, whereas inactivation was accelerated. Mutations in the binding site reported for other hERG channel blockers (Y652A and F656A) reduced the potency of ibogaine, whereas an inactivation-deficient double mutant (G628C/S631C) was as sensitive as wild-type channels. Molecular drug docking indicated binding within the inner cavity of the channel independently of the protonation of ibogaine. Experimental current traces were fit to a kinetic model of hERG channel gating, revealing preferential binding of ibogaine to the open and inactivated state. Taken together, these findings show that ibogaine blocks hERG channels from the cytosolic side either in its charged form alone or in company with its uncharged form and alters the currents by changing the relative contribution of channel states over time.
Collapse
Affiliation(s)
- Patrick Thurner
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria (H.G., V.S.G., K.H., S.B., X.K.), Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria (P.T., O.K., J.Z., W.S.), Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (A.S.-W.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Du C, El Harchi A, Zhang H, Hancox JC. Modification by KCNE1 variants of the hERG potassium channel response to premature stimulation and to pharmacological inhibition. Physiol Rep 2013; 1:e00175. [PMID: 24400172 PMCID: PMC3871485 DOI: 10.1002/phy2.175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/02/2013] [Accepted: 11/04/2013] [Indexed: 01/08/2023] Open
Abstract
human Ether-à-go-go-Related Gene (hERG) encodes the pore-forming subunit of cardiac rapid delayed rectifier K(+) current (I Kr) channels, which play important roles in ventricular repolarization, in protecting the myocardium from unwanted premature stimuli, and in drug-induced Long QT Syndrome (LQTS). KCNE1, a small transmembrane protein, can coassemble with hERG. However, it is not known how KCNE1 variants influence the channel's response to premature stimuli or if they influence the sensitivity of hERG to pharmacological inhibition. Accordingly, whole-cell patch-clamp measurements of hERG current (I hERG) were made at 37°C from hERG channels coexpressed with either wild-type (WT) KCNE1 or with one of three KCNE1 variants (A8V, D76N, and D85N). Under both conventional voltage clamp and ventricular action potential (AP) clamp, the amplitude of I hERG was smaller for A8V, D76N, and D85N KCNE1 + hERG than for WT KCNE1 + hERG. Using paired AP commands, with the second AP waveform applied at varying time intervals following the first to mimic premature ventricular excitation, the response of I hERG carried by each KCNE1 variant was reduced compared to that with WT KCNE1 + hERG. The I hERG blocking potency of the antiarrhythmic drug quinidine was similar between WT KCNE1 and the three KCNE1 variants. However, the I hERG inhibitory potency of the antibiotic clarithromycin and of the prokinetic drug cisapride was altered by KCNE1 variants. These results demonstrate that naturally occurring KCNE1 variants can reduce the response of hERG channels to premature excitation and also alter the sensitivity of hERG channels to inhibition by some drugs linked to acquired LQTS.
Collapse
Affiliation(s)
- Chunyun Du
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol Bristol, BS8 1TD, U.K
| | - Aziza El Harchi
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol Bristol, BS8 1TD, U.K
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester Manchester, M13 9PL, U.K
| | - Jules C Hancox
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol Bristol, BS8 1TD, U.K
| |
Collapse
|
40
|
Coi A, Bianucci AM. Combining structure- and ligand-based approaches for studies of interactions between different conformations of the hERG K+ channel pore and known ligands. J Mol Graph Model 2013; 46:93-104. [PMID: 24185260 DOI: 10.1016/j.jmgm.2013.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 10/01/2013] [Accepted: 10/03/2013] [Indexed: 11/13/2022]
Abstract
Drug-induced insurgence of cardiotoxic effects signaled by the prolongation of the QT interval in the electrocardiogram, has the potential to evolve into a characteristic arrhythmic event named Torsade de Pointes (TdP). Although several different mechanisms can theoretically lead to prolonged QT interval, most of drugs showing this side effect, prolong the cardiac repolarization time through the inhibition of the rapid component of the delayed repolarizing current (IKr) which in humans is carried by a K(+) channel protein encoded by hERG. In this study, four 3D-models, representing different conformational states of hERG K(+) channel, were built by a homology-based technique. A dataset of 59 compounds was collected from the literature and rationally selected according to the availability of IC50 values derived from whole-cell patch clamp performed at 37 °C on HEK cells. Molecular docking was carried out on each one of the four conformations of the channel, hundreds of docking-based molecular descriptors were obtained and used, together with other 2D and 3D molecular descriptors, to develop QSAR models. The statistical parameters describing the accordance between predicted and experimental data and the interpretation of the QSAR models enabled us to assess the reliability of the four 3D-models of the channel pore, thus allowing to look in more depth at binding modes and key features of the interactions occurring between the hERG K(+) channel and ligands endowed of blocking activity.
Collapse
Affiliation(s)
- Alessio Coi
- INSTM (Consorzio National Interuniversity Consortium of Materials Science and Technology), Via Giusti 9, 50121 Firenze, Italy
| | | |
Collapse
|
41
|
Rampe D, Brown AM. A history of the role of the hERG channel in cardiac risk assessment. J Pharmacol Toxicol Methods 2013; 68:13-22. [DOI: 10.1016/j.vascn.2013.03.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/14/2013] [Accepted: 03/14/2013] [Indexed: 01/25/2023]
|
42
|
Long Y, Lin Z, Xia M, Zheng W, Li Z. Mechanism of HERG potassium channel inhibition by tetra-n-octylammonium bromide and benzethonium chloride. Toxicol Appl Pharmacol 2013; 267:155-66. [PMID: 23313619 DOI: 10.1016/j.taap.2012.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/12/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
Abstract
Tetra-n-octylammonium bromide and benzethonium chloride are synthetic quaternary ammonium salts that are widely used in hospitals and industries for the disinfection and surface treatment and as the preservative agent. Recently, the activities of HERG channel inhibition by these compounds have been found to have potential risks to induce the long QT syndrome and cardiac arrhythmia, although the mechanism of action is still elusive. This study was conducted to investigate the mechanism of HERG channel inhibition by these compounds by using whole-cell patch clamp experiments in a CHO cell line stably expressing HERG channels. Tetra-n-octylammonium bromide and benzethonium chloride exhibited concentration-dependent inhibitions of HERG channel currents with IC(50) values of 4nM and 17nM, respectively, which were also voltage-dependent and use-dependent. Both compounds shifted the channel activation I-V curves in a hyperpolarized direction for 10-15mV and accelerated channel activation and inactivation processes by 2-fold. In addition, tetra-n-octylammonium bromide shifted the inactivation I-V curve in a hyperpolarized direction for 24.4mV and slowed the rate of channel deactivation by 2-fold, whereas benzethonium chloride did not. The results indicate that tetra-n-octylammonium bromide and benzethonium chloride are open-channel blockers that inhibit HERG channels in the voltage-dependent, use-dependent and state-dependent manners.
Collapse
Affiliation(s)
- Yan Long
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | | | | | | |
Collapse
|
43
|
Gillie DJ, Novick SJ, Donovan BT, Payne LA, Townsend C. Development of a high-throughput electrophysiological assay for the human ether-à-go-go related potassium channel hERG. J Pharmacol Toxicol Methods 2013; 67:33-44. [DOI: 10.1016/j.vascn.2012.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 10/02/2012] [Accepted: 10/18/2012] [Indexed: 01/03/2023]
|
44
|
Di Veroli GY, Davies MR, Zhang H, Abi-Gerges N, Boyett MR. High-throughput screening of drug-binding dynamics to HERG improves early drug safety assessment. Am J Physiol Heart Circ Physiol 2013; 304:H104-17. [DOI: 10.1152/ajpheart.00511.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The use of computational models to predict drug-induced changes in the action potential (AP) is a promising approach to reduce drug safety attrition but requires a better representation of more complex drug-target interactions to improve the quantitative prediction. The blockade of the human ether-a-go-go-related gene (HERG) channel is a major concern for QT prolongation and Torsade de Pointes risk. We aim to develop quantitative in-silico AP predictions based on a new electrophysiological protocol (suitable for high-throughput HERG screening) and mathematical modeling of ionic currents. Electrophysiological recordings using the IonWorks device were made from HERG channels stably expressed in Chinese hamster ovary cells. A new protocol that delineates inhibition over time was applied to assess dofetilide, cisapride, and almokalant effects. Dynamic effects displayed distinct profiles for these drugs compared with concentration-effects curves. Binding kinetics to specific states were identified using a new HERG Markov model. The model was then modified to represent the canine rapid delayed rectifier K+ current at 37°C and carry out AP predictions. Predictions were compared with a simpler model based on conductance reduction and were found to be much closer to experimental data. Improved sensitivity to concentration and pacing frequency variables was obtained when including binding kinetics. Our new electrophysiological protocol is suitable for high-throughput screening and is able to distinguish drug-binding kinetics. The association of this protocol with our modeling approach indicates that quantitative predictions of AP modulation can be obtained, which is a significant improvement compared with traditional conductance reduction methods.
Collapse
Affiliation(s)
- Giovanni Y. Di Veroli
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
- Global Safety Assessment, AstraZeneca, United Kingdom
| | - Mark R. Davies
- Clinical Informatics, Research and Development Information, AstraZeneca, United Kingdom
| | - Henggui Zhang
- Biological Physics, University of Manchester, Manchester, United Kingdom
| | | | - Mark R. Boyett
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
45
|
Beattie DT, Higgins DL, Ero MP, Amagasu SM, Vickery RG, Kersey K, Hopkins A, Smith JAM. An in vitro investigation of the cardiovascular effects of the 5-HT(4) receptor selective agonists, velusetrag and TD-8954. Vascul Pharmacol 2012. [PMID: 23201772 DOI: 10.1016/j.vph.2012.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The 5-HT(4) receptor agonists, and gastrointestinal (GI) prokinetic agents, cisapride and tegaserod, lack selectivity for the 5-HT(4) receptor. Cisapride is a potent human ether-à-go-go-related gene (hERG) potassium channel inhibitor while cisapride and tegaserod have significant affinity for 5-HT(1) and 5-HT(2) receptor subtypes. Marketing of both compounds was discontinued due to cardiovascular concerns (cardiac arrhythmias with cisapride and ischemic events with tegaserod). The reported association of tegaserod with ischemia has been postulated to involve coronary artery constriction or augmentation of platelet aggregation. This in vitro study investigated the effects of two of the new generation of highly selective 5-HT(4) receptor agonists, velusetrag and TD-8954, on canine, porcine and human coronary artery tone, human platelet aggregation and hERG potassium channel conductance. No significant off-target actions of velusetrag or TD-8954 were identified in these, and prior, studies. While cisapride inhibited potently the hERG channel currents, tegaserod failed to affect platelet aggregation, and had only a small contractile effect on the canine coronary artery at high concentrations. Tegaserod inhibited the 5-HT-induced contractile response in the porcine coronary artery. New generation 5-HT(4) receptor agonists hold promise for the treatment of patients suffering from GI motility disorders with a reduced cardiovascular risk.
Collapse
Affiliation(s)
- D T Beattie
- Theravance, Inc., South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Wilhelms M, Rombach C, Scholz EP, Dossel O, Seemann G. Impact of amiodarone and cisapride on simulated human ventricular electrophysiology and electrocardiograms. Europace 2012; 14 Suppl 5:v90-v96. [DOI: 10.1093/europace/eus281] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
The schizophrenia-associated Kv11.1-3.1 isoform results in reduced current accumulation during repetitive brief depolarizations. PLoS One 2012; 7:e45624. [PMID: 23029143 PMCID: PMC3454411 DOI: 10.1371/journal.pone.0045624] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/20/2012] [Indexed: 12/22/2022] Open
Abstract
Recent genome wide association studies identified a brain and primate specific isoform of a voltage-gated potassium channel, referred to as Kv11.1-3.1, which is significantly associated with schizophrenia. The 3.1 isoform replaces the first 102 amino acids of the most abundant isoform (referred to as Kv11.1-1A) with six unique amino acids. Here we show that the Kv11.1-3.1 isoform has faster rates of channel deactivation but a slowing of the rates of inactivation compared to the Kv11.1-1A isoform. The Kv11.1-3.1 isoform also has a significant depolarizing shift in the voltage-dependence of steady-state inactivation. The consequence of the altered gating kinetics is that there is lower current accumulation for Kv11.1-3.1 expressing cells during repetitive action potential firing compared to Kv11.1-1A expressing cells, which in turn will result in longer lasting trains of action potentials. Increased expression of Kv11.1-3.1 channels in the brain of schizophrenia patients might therefore contribute to disorganized neuronal firing.
Collapse
|
48
|
Polonchuk L. Toward a New Gold Standard for Early Safety: Automated Temperature-Controlled hERG Test on the PatchLiner. Front Pharmacol 2012; 3:3. [PMID: 22303293 PMCID: PMC3266667 DOI: 10.3389/fphar.2012.00003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 01/06/2012] [Indexed: 11/13/2022] Open
Abstract
The Patchliner® temperature-controlled automated patch clamp system was evaluated for testing drug effects on potassium currents through human ether-à-go-go related gene (hERG) channels expressed in Chinese hamster ovary cells at 35-37°C. IC(50) values for a set of reference drugs were compared with those obtained using the conventional voltage clamp technique. The results showed good correlation between the data obtained using automated and conventional electrophysiology. Based on these results, the Patchliner(®) represents an innovative automated electrophysiology platform for conducting the hERG assay that substantially increases throughput and has the advantage of operating at physiological temperature. It allows fast, accurate, and direct assessment of channel function to identify potential proarrhythmic side effects and sets a new standard in ion channel research for drug safety testing.
Collapse
Affiliation(s)
- Liudmila Polonchuk
- Non-Clinical Safety, Pharma Research, F. Hoffmann-La Roche Ltd. Basel, Switzerland
| |
Collapse
|
49
|
Obers S, Staudacher I, Ficker E, Dennis A, Koschny R, Erdal H, Bloehs R, Kisselbach J, Karle CA, Schweizer PA, Katus HA, Thomas D. Multiple mechanisms of hERG liability: K+ current inhibition, disruption of protein trafficking, and apoptosis induced by amoxapine. Naunyn Schmiedebergs Arch Pharmacol 2010; 381:385-400. [PMID: 20229012 DOI: 10.1007/s00210-010-0496-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/05/2010] [Indexed: 12/28/2022]
Abstract
The antidepressant amoxapine has been linked to cases of QT prolongation, acute heart failure, and sudden death. Inhibition of cardiac hERG (Kv11.1) potassium channels causes prolonged repolarization and is implicated in apoptosis. Apoptosis in association with amoxapine has not yet been reported. This study was designed to investigate amoxapine effects on hERG currents, hERG protein trafficking, and hERG-associated apoptosis in order to elucidate molecular mechanisms underlying cardiac side effects of the drug. hERG channels were expressed in Xenopus laevis oocytes and HEK 293 cells, and potassium currents were recorded using patch clamp and two-electrode voltage clamp electrophysiology. Protein trafficking was evaluated in HEK 293 cells by Western blot analysis, and cell viability was assessed in HEK cells by immunocytochemistry and colorimetric MTT assay. Amoxapine caused acute hERG blockade in oocytes (IC(50) = 21.6 microM) and in HEK 293 cells (IC(50) = 5.1 microM). Mutation of residues Y652 and F656 attenuated hERG blockade, suggesting drug binding to a receptor inside the channel pore. Channels were mainly blocked in open and inactivated states, and voltage dependence was observed with reduced inhibition at positive potentials. Amoxapine block was reverse frequency-dependent and caused accelerated and leftward-shifted inactivation. Furthermore, amoxapine application resulted in chronic reduction of hERG trafficking into the cell surface membrane (IC(50) = 15.3 microM). Finally, the antidepressant drug triggered apoptosis in cells expressing hERG channels. We provide evidence for triple mechanisms of hERG liability associated with amoxapine: (1) direct hERG current inhibition, (2) disruption of hERG protein trafficking, and (3) induction of apoptosis. Further experiments are required to validate a specific pro-apoptotic effect mediated through blockade of hERG channels.
Collapse
Affiliation(s)
- Sabrina Obers
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Milnes JT, Witchel HJ, Leaney JL, Leishman DJ, Hancox JC. Investigating dynamic protocol-dependence of hERG potassium channel inhibition at 37°C: Cisapride versus dofetilide. J Pharmacol Toxicol Methods 2010; 61:178-91. [DOI: 10.1016/j.vascn.2010.02.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 02/03/2010] [Accepted: 02/11/2010] [Indexed: 01/08/2023]
|