1
|
Moreau JM, Gouirand V, Rosenblum MD. T-Cell Adhesion in Healthy and Inflamed Skin. JID INNOVATIONS 2021; 1:100014. [PMID: 35024681 PMCID: PMC8669513 DOI: 10.1016/j.xjidi.2021.100014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
The diverse populations of tissue-resident and transitory T cells present in the skin share a common functional need to enter, traverse, and interact with their environment. These processes are largely dependent on the regulated expression of adhesion molecules, such as selectins and integrins, which mediate bidirectional interactions between immune cells and skin stroma. Dysregulation and engagement of adhesion pathways contribute to ectopic T-cell activity in tissues, leading to the initiation and/or exacerbation of chronic inflammation. In this paper, we review how the molecular interactions supported by adhesion pathways contribute to T-cell dynamics and function in the skin. A comprehensive understanding of the molecular mechanisms underpinning T-cell adhesion in inflammatory skin disorders will facilitate the development of novel tissue-specific therapeutic strategies.
Collapse
Key Words
- AD, atopic dermatitis
- BM, basement membrane
- DC, dendritic cell
- DETC, dendritic epidermal γδ T cell
- ECM, extracellular matrix
- HF, hair follicle
- JC, John Cunningham
- LAD, leukocyte adhesion deficiency
- PML, progressive multifocal leukoencephalopathy
- Th, T helper
- Treg, regulatory T cell
- Trm, tissue-resident memory
Collapse
Affiliation(s)
- Joshua M. Moreau
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Victoire Gouirand
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Michael D. Rosenblum
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Modulation of Gene Expression in a Sterile Atopic Dermatitis Model and Inhibition of Staphylococcus aureus Adhesion by Fucoidan. Dermatopathology (Basel) 2021; 8:69-83. [PMID: 33806193 PMCID: PMC8103255 DOI: 10.3390/dermatopathology8020012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/12/2023] Open
Abstract
Atopic dermatitis is a multifactorial pathology that includes perturbations of gene expression and increased adhesion of Staphylococcus aureus. Fucoidans are seaweed-derived sulfated fucose-rich polysaccharides that are known to be anti-inflammatory and may inhibit adhesion of pathogens. Fucoidan was assessed for effects on gene expression of an in vitro 3D model of atopic dermatitis. It was also assessed for inhibitory effects on the adhesion of bacteria onto 3D reconstructed skin. Fucoidan significantly altered gene expression in the atopic dermatitis model, and there was a trend to reduce periostin levels. Fucoidan significantly inhibited the adhesion of Staphylococcus aureus and Cutibacterium acnes but did not affect the adhesion of Staphylococcus epidermidis. Fucoidan may be a useful topical agent to assist in the management of atopic dermatitis.
Collapse
|
3
|
Smith BAH, Bertozzi CR. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat Rev Drug Discov 2021; 20:217-243. [PMID: 33462432 PMCID: PMC7812346 DOI: 10.1038/s41573-020-00093-1] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/31/2023]
Abstract
Carbohydrates - namely glycans - decorate every cell in the human body and most secreted proteins. Advances in genomics, glycoproteomics and tools from chemical biology have made glycobiology more tractable and understandable. Dysregulated glycosylation plays a major role in disease processes from immune evasion to cognition, sparking research that aims to target glycans for therapeutic benefit. The field is now poised for a boom in drug development. As a harbinger of this activity, glycobiology has already produced several drugs that have improved human health or are currently being translated to the clinic. Focusing on three areas - selectins, Siglecs and glycan-targeted antibodies - this Review aims to tell the stories behind therapies inspired by glycans and to outline how the lessons learned from these approaches are paving the way for future glycobiology-focused therapeutics.
Collapse
Affiliation(s)
- Benjamin A H Smith
- Department of Chemical & Systems Biology and ChEM-H, Stanford School of Medicine, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Department of Chemical & Systems Biology and ChEM-H, Stanford School of Medicine, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Soeberdt M, Molenveld P, Storcken RPM, Bouzanne des Mazery R, Sterk GJ, Autar R, Bolster MG, Wagner C, Aerts SNH, van Holst FR, Wegert A, Tangherlini G, Frehland B, Schepmann D, Metze D, Lotts T, Knie U, Lin KY, Huang TY, Lai CC, Ständer S, Wünsch B, Abels C. Design and Synthesis of Enantiomerically Pure Decahydroquinoxalines as Potent and Selective κ-Opioid Receptor Agonists with Anti-Inflammatory Activity in Vivo. J Med Chem 2017; 60:2526-2551. [PMID: 28218838 DOI: 10.1021/acs.jmedchem.6b01868] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In order to develop novel κ agonists restricted to the periphery, a diastereo- and enantioselective synthesis of (4aR,5S,8aS)-configured decahydroquinoxalines 5-8 was developed. Physicochemical and pharmacological properties were fine-tuned by structural modifications in the arylacetamide and amine part of the pharmacophore as well as in the amine part outside the pharmacophore. The decahydroquinoxalines 5-8 show single-digit nanomolar to subnanomolar κ-opioid receptor affinity, full κ agonistic activity in the [35S]GTPγS assay, and high selectivity over μ, δ, σ1, and σ2 receptors as well as the PCP binding site of the NMDA receptor. Several analogues were selective for the periphery. The anti-inflammatory activity of 5-8 after topical application was investigated in two mouse models of dermatitis. The methanesulfonamide 8a containing the (S)-configured hydroxypyrrolidine ring was identified as a potent (Ki = 0.63 nM) and highly selective κ agonist (EC50 = 1.8 nM) selective for the periphery with dose-dependent anti-inflammatory activity in acute and chronic skin inflammation.
Collapse
Affiliation(s)
- Michael Soeberdt
- Dr. August Wolff GmbH & Co. KG Arzneimittel , Sudbrackstraße 56, D-33611 Bielefeld, Germany
| | - Peter Molenveld
- Mercachem , Kerkenbos 1013, NL-6546 BB Nijmegen, The Netherlands
| | - Roy P M Storcken
- Mercachem , Kerkenbos 1013, NL-6546 BB Nijmegen, The Netherlands
| | | | - Geert Jan Sterk
- Mercachem , Kerkenbos 1013, NL-6546 BB Nijmegen, The Netherlands
| | - Reshma Autar
- Mercachem , Kerkenbos 1013, NL-6546 BB Nijmegen, The Netherlands
| | - Marjon G Bolster
- Mercachem , Kerkenbos 1013, NL-6546 BB Nijmegen, The Netherlands
| | - Clemens Wagner
- Mercachem , Kerkenbos 1013, NL-6546 BB Nijmegen, The Netherlands
| | | | | | - Anita Wegert
- Mercachem , Kerkenbos 1013, NL-6546 BB Nijmegen, The Netherlands
| | - Giovanni Tangherlini
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Correnstraße 48, D-48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Universität Münster , D-48149 Münster, Germany
| | - Bastian Frehland
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Correnstraße 48, D-48149 Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Correnstraße 48, D-48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Universität Münster , D-48149 Münster, Germany
| | - Dieter Metze
- Klinik für Hautkrankheiten, Universitätsklinikium Münster , Von-Esmarch-Straße 58, D-48149 Münster, Germany
| | - Tobias Lotts
- Klinik für Hautkrankheiten, Universitätsklinikium Münster , Von-Esmarch-Straße 58, D-48149 Münster, Germany.,Kompetenzzentrum chronischer Pruritus (KCP), Universitätsklinikium Münster , Von-Esmarch-Straße 58, D-48149 Münster, Germany
| | - Ulrich Knie
- Dr. August Wolff GmbH & Co. KG Arzneimittel , Sudbrackstraße 56, D-33611 Bielefeld, Germany
| | - Kun-Yuan Lin
- Eurofins Panlabs Taiwan, Ltd. , 158 Li-Teh Road, Peitou, Taipei 11259, Taiwan
| | - Tai-Yu Huang
- Eurofins Panlabs Taiwan, Ltd. , 158 Li-Teh Road, Peitou, Taipei 11259, Taiwan
| | - Chih-Ching Lai
- Eurofins Panlabs Taiwan, Ltd. , 158 Li-Teh Road, Peitou, Taipei 11259, Taiwan
| | - Sonja Ständer
- Klinik für Hautkrankheiten, Universitätsklinikium Münster , Von-Esmarch-Straße 58, D-48149 Münster, Germany.,Kompetenzzentrum chronischer Pruritus (KCP), Universitätsklinikium Münster , Von-Esmarch-Straße 58, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Correnstraße 48, D-48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Universität Münster , D-48149 Münster, Germany
| | - Christoph Abels
- Dr. August Wolff GmbH & Co. KG Arzneimittel , Sudbrackstraße 56, D-33611 Bielefeld, Germany
| |
Collapse
|
5
|
Mechanisms and mediators of inflammation: potential models for skin rejection and targeted therapy in vascularized composite allotransplantation. Clin Dev Immunol 2012; 2012:757310. [PMID: 23049603 PMCID: PMC3459345 DOI: 10.1155/2012/757310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/09/2012] [Indexed: 02/07/2023]
Abstract
Vascularized composite allotransplantation (VCA) is an effective treatment option for patients suffering from limb loss or severe disfigurement. However, postoperative courses of VCA recipients have been complicated by skin rejection, and long-term immunosuppression remains a necessity for allograft survival. To widen the scope of this quality-of-life improving procedure minimization of immunosuppression in order to limit risks and side effects is needed. In some aspects, the molecular mechanisms and dynamics of skin allograft rejection seem similar to inflammatory skin conditions. T cells are key players in skin rejection and are recruited to the skin via activation of adhesion molecules, cytokines, and chemokines. Blocking these molecules has not only shown success in the treatment of inflammatory dermatoses, but also prolonged graft survival in various models of solid organ transplantation. In addition to T cell recruitment, ectopic lymphoid structures within the allograft associated with chronic rejection in solid organ transplantation might contribute to the strong alloimmune response towards the skin. Selectively targeting the molecules involved offers exciting novel therapeutic options in the prevention and treatment of skin rejection after VCA.
Collapse
|
6
|
Abstract
Carbohydrates are the most abundant natural products. Besides their role in metabolism and as structural building blocks, they are fundamental constituents of every cell surface, where they are involved in vital cellular recognition processes. Carbohydrates are a relatively untapped source of new drugs and therefore offer exciting new therapeutic opportunities. Advances in the functional understanding of carbohydrate-protein interactions have enabled the development of a new class of small-molecule drugs, known as glycomimetics. These compounds mimic the bioactive function of carbohydrates and address the drawbacks of carbohydrate leads, namely their low activity and insufficient drug-like properties. Here, we examine examples of approved carbohydrate-derived drugs, discuss the potential of carbohydrate-binding proteins as new drug targets (focusing on the lectin families) and consider ways to overcome the challenges of developing this unique class of novel therapeutics.
Collapse
Affiliation(s)
- Beat Ernst
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, Basel, Switzerland.
| | | |
Collapse
|
7
|
Brown JR, Crawford BE, Esko JD. Glycan antagonists and inhibitors: a fount for drug discovery. Crit Rev Biochem Mol Biol 2008; 42:481-515. [PMID: 18066955 DOI: 10.1080/10409230701751611] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycans, the carbohydrate chains of glycoproteins, proteoglycans, and glycolipids, represent a relatively unexploited area for drug development compared with other macromolecules. This review describes the major classes of glycans synthesized by animal cells, their mode of assembly, and available inhibitors for blocking their biosynthesis and function. Many of these agents have proven useful for studying the biological activities of glycans in isolated cells, during embryological development, and in physiology. Some are being used to develop drugs for treating metabolic disorders, cancer, and infection, suggesting that glycans are excellent targets for future drug development.
Collapse
|
8
|
Bock D, Philipp S, Wolff G. Therapeutic potential of selectin antagonists in psoriasis. Expert Opin Investig Drugs 2007; 15:963-79. [PMID: 16859397 DOI: 10.1517/13543784.15.8.963] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Psoriasis is a systemic chronic inflammatory disorder. One of the major characteristics is an excess of infiltration of inflammatory cells, mainly lymphocytes, into the skin. Because the adhesion family of selectins is suggested to play a relevant role in this process, selectins have emerged as an interesting target for drug discovery and development in psoriasis. Different strategies targeting selectins have been described. This review discusses these approaches and summarises the current development of selectin antagonists for the treatment of psoriasis. An expert opinion will give the authors' personal opinion about selectin antagonism in psoriasis and which approach might be preferable.
Collapse
Affiliation(s)
- Daniel Bock
- Revotar Biopharmaceuticals AG, Neuendorfstrasse 24a, 16761 Hennigsdorf, Germany.
| | | | | |
Collapse
|
9
|
Schön MP, Ludwig RJ. Lymphocyte trafficking to inflamed skin--molecular mechanisms and implications for therapeutic target molecules. Expert Opin Ther Targets 2006; 9:225-43. [PMID: 15934912 DOI: 10.1517/14728222.9.2.225] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tissue-selective recruitment of lymphocytes to peripheral organs, such as the skin, is crucial for spatial compartmentalisation within the immune system as well as immune surveillance under normal conditions. In addition, this process plays a key role for the pathogenesis of various diseases including common inflammatory disorders such as atopic dermatitis or psoriasis, but also malignancies such as cutaneous T cell lymphomas. Recruitment of lymphocytes to the skin is a highly complex process that involves adhesion to the endothelial lining, extravasation, migration through the connective tissue, and, finally, localisation of a subpopulation of lymphocytes to the epithelial compartment, the epidermis. An intertwined network of constitutively expressed and inducible cytokines, chemokines and other mediators provides guidance for lymphocyte migration, and a large number of adhesion receptors mediate sequential steps of cell-cell- and cell-substrate-interactions resulting in tissue-specific localisation of immune cells. Selectively targeting the functions of one or several key molecules involved in this complex cascade promises exciting new therapeutic options for treating inflammatory disorders, but at the same time, bears considerable imponderables which will be discussed in this article.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology and Venereology, Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, Bayerische Julius-Maximilians University, Würzburg, Germany.
| | | |
Collapse
|
10
|
Mihara K, Smit MJ, Krajnc-Franken M, Gossen J, Rooseboom M, Dokter W. Human CXCR2 (hCXCR2) takes over functionalities of its murine homolog in hCXCR2 knockin mice. Eur J Immunol 2005; 35:2573-82. [PMID: 16094689 DOI: 10.1002/eji.200526021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human CXCR2 (hCXCR2) has been implicated in diverse inflammatory diseases. When roles of this receptor studied in animal models are extrapolated into men, large species differences in expression of the receptor and its ligands must be considered. These differences seriously weaken conclusions toward the role of hCXCR2 in the development of human diseases. It furthermore hampers straightforward testing of CXCR2 antagonists, especially when compounds discriminate between human and other species' receptors. Using gene targeting in embryonic stem cells, a hCXCR2 knockin mouse strain was generated in which endogenous murine CXCR2 (mCXCR2) sequences are replaced by the hCXCR2 gene. Correct targeting and expression on neutrophils were confirmed by Southern blot and immunohistochemical analyses. A phenotypic analysis of the hCXCR2 knockin mice, in comparison to wild-type and CXCR2 knockout mice, confirmed proper function of the hCXCR2 gene. In vivo migratory responses of neutrophils were intact in hCXCR2 knockin mice. Finally, an experiment with a CXCR2 antagonist demonstrated that the knockin model is indeed useful for in vivo evaluation of low-molecular weight compounds. In conclusion, our data unequivocally show that hCXCR2 can functionally replace mCXCR2, making this an attractive model to test novel pharmaceuticals designed to antagonize human CXCR2 in vivo.
Collapse
|
11
|
Schön MP. Inhibitors of selectin functions in the treatment of inflammatory skin disorders. Ther Clin Risk Manag 2005; 1:201-8. [PMID: 18360560 PMCID: PMC1661630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Selectins mediate tethering and rolling of leukocytes to the vascular endothelium, the first adhesive step in the recruitment of immune cells to inflamed tissues. Thus, selectins play a key role in the pathogenesis of common inflammatory skin disorders such as atopic dermatitis or psoriasis. As a consequence of their key functions, selectins have received much attention as potential target structures for new therapies. Indeed, a number of agents including small-molecule as well as peptide compounds interfering with selectin functions have been developed to treat inflammatory disorders. However, many of the selectin-directed compounds have not held up to the high expectations, in some cases due to overlapping and mutually compensating functions of selectins or suboptimal pharmacokinetic properties of the compounds, while other agents appear to be more promising candidates and have already entered clinical trials. Selectively targeting the functions of one or several selectins involved in the cascade of leukocyte recruitment promises exciting new therapeutic options, but, at the same time, bears considerable imponderables, which will be discussed in this review article.
Collapse
|
12
|
Schon MP. Viewpoint 3. Exp Dermatol 2005. [DOI: 10.1111/j.0906-6705.2005.290d.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Gonlugur U, Efeoglu T. Vascular adhesion and transendothelial migration of eosinophil leukocytes. Cell Tissue Res 2004; 318:473-82. [PMID: 15578268 DOI: 10.1007/s00441-004-0925-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 05/19/2004] [Indexed: 11/29/2022]
Abstract
Tissues respond to injury with inflammation in an effort to protect and repair the damaged site. During inflammation, leukocytes typically accumulate in response to certain chemicals produced within the tissue itself. The passage of leukocytes through the vascular lumen into tissues occurs in several phases, including rolling, activation, firm adhesion, transendothelial migration, and subendothelial migration. Although infiltration of eosinophil leukocytes is one of the most important aspects of allergic inflammatory reactions, eosinophils also participate in nonallergic inflammation. Eosinophil accumulation is regulated not only by endothelial adhesion molecules, but also by interactions between eosinophil adhesion molecules and extracellular matrix elements. This review summarizes the regulation of eosinophil leukocyte adhesion and migration. A better understanding of eosinophil recruitment responses may lead to the development of novel therapeutics for chronic allergic diseases.
Collapse
Affiliation(s)
- Ugur Gonlugur
- Department of Chest Diseases, Cumhuriyet University Medical School Gogus, Hastaliklari Klinigi, 58140, Sivas, Turkey
| | | |
Collapse
|
14
|
Schön MP, Zollner TM, Boehncke WH. The molecular basis of lymphocyte recruitment to the skin: clues for pathogenesis and selective therapies of inflammatory disorders. J Invest Dermatol 2004; 121:951-62. [PMID: 14708592 DOI: 10.1046/j.1523-1747.2003.12563.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Spatial compartmentalization and tissue-selective localization of T lymphocytes to the skin are crucial for immune surveillance and the pathogenesis of various disorders including common inflammatory diseases such as atopic dermatitis or psoriasis, but also malignancies such as cutaneous T cell lymphomas. Cutaneous recruitment of lymphocytes is a highly complex process that involves extravasation, migration through the dermal connective tissue, and eventually, localization to the epidermis. An intertwined network of cytokines and chemokines provides the road signs for leukocyte migration, while various adhesion receptors orchestrate the dynamic events of cell-cell and cell-substrate interactions resulting in cutaneous localization of T cells. Selectively targeting the functions of molecules involved in this interplay promises exciting new therapeutic options for treating inflammatory skin disorders.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology, Otto-von-Guericke-University, Magdeburg, Germany.
| | | | | |
Collapse
|