1
|
Rogliani P, Matera MG, Facciolo F, Page C, Cazzola M, Calzetta L. Beclomethasone dipropionate, formoterol fumarate and glycopyrronium bromide: Synergy of triple combination therapy on human airway smooth muscle ex vivo. Br J Pharmacol 2020; 177:1150-1163. [PMID: 31660611 DOI: 10.1111/bph.14909] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Combining inhaled corticosteroids (ICSs), long-acting β2 -adrenoceptor agonists (LABAs) and long-acting muscarinic antagonists (LAMAs) is recommended to treat severe forms of asthma and chronic obstructive pulmonary disease (COPD). Clinical benefits have been demonstrated for ICS/LABA/LAMA combinations. This study characterized the interaction between the ICS beclomethasone dipropionate, the LABA formoterol fumarate and the LAMA glycopyrronium bromide in human airways. EXPERIMENTAL APPROACH Human passively sensitized airways and bronchi from COPD donors were stimulated with histamine or carbachol. Tissues were incubated overnight with beclomethasone and then treated with formoterol and glycopyrronium, alone or in triple combination. The interaction was assessed by using Bliss Independence and Unified Theory theorems. KEY RESULTS Beclomethasone/formoterol/glycopyrronium combination synergistically relaxed medium bronchi and small airways. Beclomethasone/formoterol/glycopyrronium combination at 100:6:12.5 combination ratio was a balanced drug mixture leading to very strong synergistic effect on relaxation of medium bronchi (Combination Index: from 0.042 to 0.96) and middle to very strong synergy in small airways (Combination Index: from 0.018 to 0.310). The synergy was related with the activation of intracellular glucocorticoid receptors and Gsα subunit G-protein of β2 -adrenoceptors, leading to the modulation of cyclic AMP-dependent PKA pathway. CONCLUSION Triple beclomethasone/formoterol/glycopyrronium combination induces synergistic bronchorelaxant effect in medium and small human airways, at least in ex vivo experiments. Further research is needed to confirm these findings in clinical studies in patients with asthma or COPD.
Collapse
Affiliation(s)
- Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Facciolo
- Thoracic Surgery Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Luigino Calzetta
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
2
|
Ueshima C, Kataoka TR, Hirata M, Sugimoto A, Iemura Y, Minamiguchi S, Nomura T, Haga H. Possible Involvement of Human Mast Cells in the Establishment of Pregnancy via Killer Cell Ig-Like Receptor 2DL4. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1497-1508. [PMID: 29577936 DOI: 10.1016/j.ajpath.2018.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/30/2018] [Accepted: 02/22/2018] [Indexed: 12/21/2022]
Abstract
The involvement of mast cells in the establishment of pregnancy is unclear. Herein, we found that human mast cells are present in the decidual tissues of parous women and expressed a human-specific protein killer cell Ig-like receptor (KIR) 2DL4, a receptor for human leukocyte antigen G expressed on human trophoblasts. In contrast, decreased numbers of decidual mast cells and reduced KIR2DL4 expression were observed in these cells of infertile women who had undergone long-term corticosteroid treatment. Co-culture of the human mast cell line, LAD2, and human trophoblast cell line, HTR-8/SVneo, accelerated the migration and tube formation of HTR-8/SVneo cells in a KIR2DL4-dependent manner. These observations suggest the possible involvement of human mast cells in the establishment of pregnancy via KIR2DL4 and that long-term corticosteroid treatment may cause infertility by influencing the phenotypes of decidual mast cells.
Collapse
Affiliation(s)
- Chiyuki Ueshima
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Tatsuki R Kataoka
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan.
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Akihiko Sugimoto
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Yoshiki Iemura
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | | | - Takashi Nomura
- Department of Dermatology, Kyoto University Hospital, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
3
|
Song EH, Chung KS, Kang YM, Lee JH, Lee M, An HJ. Eupatilin suppresses the allergic inflammatory response in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:1-8. [PMID: 29655675 DOI: 10.1016/j.phymed.2017.08.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/21/2017] [Accepted: 08/31/2017] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Eupatilin, a pharmacologically active ingredient found in Artemisia asiatica, has been reported to have anti-oxidative, anti-inflammatory, and anti-apoptotic activities. However, molecular mechanisms underlying its anti-allergic properties are not yet clear. In this study, we investigated the effects of eupatilin on allergic inflammation in phorbol 12-myristate 13-acetate plus calcium ionophore A23187 (PMACI)-stimulated human mast cells and a compound 48/80-induced anaphylactic shock model. METHODS Cytokine assays, histamine assays, quantitative real-time polymerase chain reaction analysis, western blot analysis and compound 48/80-induced anaphylactic shock model were used in this study. RESULTS Eupatilin significantly suppresses the expression and production of pro-inflammatory cytokines, such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6 in vitro and in vivo. In addition, eupatilin inhibits nuclear factor kappa B (NF-κB) activation by regulating the phosphorylation and degradation of IκBα via the Akt/IKK(α/β) pathway. Eupatilin treatment also attenuates the phosphorylation of p38, ERK, and JNK MAPKs. Furthermore, eupatilin blocked anaphylactic shock and decreased the release of histamine. CONCLUSIONS Anti-allergic inflammation may involve the expression and production of regulating pro-inflammatory cytokines via Akt/IKK(α/β) and MAPK activation of NF-κB. On the basis of these data, eupatilin is a potential candidate for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Eun-Hye Song
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 220-702, Republic of Korea
| | - Kyung-Sook Chung
- Catholic Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Yun-Mi Kang
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 220-702, Republic of Korea
| | - Jong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dongduk Women's University, Seoul 136-714, Republic of Korea
| | - Minho Lee
- Catholic Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 220-702, Republic of Korea.
| |
Collapse
|
4
|
Nicolau CA, Prorock A, Bao Y, Neves-Ferreira AGDC, Valente RH, Fox JW. Revisiting the Therapeutic Potential of Bothrops jararaca Venom: Screening for Novel Activities Using Connectivity Mapping. Toxins (Basel) 2018; 10:toxins10020069. [PMID: 29415440 PMCID: PMC5848170 DOI: 10.3390/toxins10020069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/12/2022] Open
Abstract
Snake venoms are sources of molecules with proven and potential therapeutic applications. However, most activities assayed in venoms (or their components) are of hemorrhagic, hypotensive, edematogenic, neurotoxic or myotoxic natures. Thus, other relevant activities might remain unknown. Using functional genomics coupled to the connectivity map (C-map) approach, we undertook a wide range indirect search for biological activities within the venom of the South American pit viper Bothrops jararaca. For that effect, venom was incubated with human breast adenocarcinoma cell line (MCF7) followed by RNA extraction and gene expression analysis. A list of 90 differentially expressed genes was submitted to biosimilar drug discovery based on pattern recognition. Among the 100 highest-ranked positively correlated drugs, only the antihypertensive, antimicrobial (both antibiotic and antiparasitic), and antitumor classes had been previously reported for B. jararaca venom. The majority of drug classes identified were related to (1) antimicrobial activity; (2) treatment of neuropsychiatric illnesses (Parkinson’s disease, schizophrenia, depression, and epilepsy); (3) treatment of cardiovascular diseases, and (4) anti-inflammatory action. The C-map results also indicated that B. jararaca venom may have components that target G-protein-coupled receptors (muscarinic, serotonergic, histaminergic, dopaminergic, GABA, and adrenergic) and ion channels. Although validation experiments are still necessary, the C-map correlation to drugs with activities previously linked to snake venoms supports the efficacy of this strategy as a broad-spectrum approach for biological activity screening, and rekindles the snake venom-based search for new therapeutic agents.
Collapse
Affiliation(s)
- Carolina Alves Nicolau
- Laboratory of Toxinology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil.
- National Institute of Science and Technology on Toxins (INCTTOX), CNPq, Brasília, DF 71605-170, Brazil.
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Alyson Prorock
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Yongde Bao
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Ana Gisele da Costa Neves-Ferreira
- Laboratory of Toxinology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil.
- National Institute of Science and Technology on Toxins (INCTTOX), CNPq, Brasília, DF 71605-170, Brazil.
| | - Richard Hemmi Valente
- Laboratory of Toxinology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil.
- National Institute of Science and Technology on Toxins (INCTTOX), CNPq, Brasília, DF 71605-170, Brazil.
| | - Jay William Fox
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
5
|
De Leo B, Esnal-Zufiaurre A, Collins F, Critchley HO, Saunders PT. Immunoprofiling of human uterine mast cells identifies three phenotypes and expression of ERβ and glucocorticoid receptor. F1000Res 2017; 6:667. [PMID: 28620462 PMCID: PMC5461902 DOI: 10.12688/f1000research.11432.2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 12/31/2022] Open
Abstract
Background: Human mast cells (MCs) are long-lived tissue-resident immune cells characterised by granules containing the proteases chymase and/or tryptase. Their phenotype is modulated by their tissue microenvironment. The human uterus has an outer muscular layer (the myometrium) surrounding the endometrium, both of which play an important role in supporting a pregnancy. The endometrium is a sex steroid target tissue consisting of epithelial cells (luminal, glandular) surrounded by a multicellular stroma, with the latter containing an extensive vascular compartment as well as fluctuating populations of immune cells that play an important role in regulating tissue function. The role of MCs in the human uterus is poorly understood with little known about their regulation or the impact of steroids on their differentiation status. The current study had two aims: 1) To investigate the spatial and temporal location of uterine MCs and determine their phenotype; 2) To determine whether MCs express receptors for steroids implicated in uterine function, including oestrogen (ERα, ERβ), progesterone (PR) and glucocorticoids (GR). Methods: Tissue samples from women (n=46) were used for RNA extraction (n=26) or fixed (n=20) for immunohistochemistry. Results: Messenger RNAs encoded by TPSAB1 (tryptase) and CMA1 (chymase) were detected in endometrial tissue homogenates. Immunohistochemistry revealed the relative abundance of tryptase MCs was myometrium>basal endometrium>functional endometrium. We show for the first time that uterine MCs are predominantly of the classical MC subtypes: (positive, +; negative, -) tryptase+/chymase- and tryptase+/chymase+, but a third subtype was also identified (tryptase-/chymase+). Tryptase+ MCs were of an ERβ+/ERα-/PR-/GR+ phenotype mirroring other uterine immune cell populations, including natural killer cells. Conclusions: Endometrial tissue resident immune MCs have three protease-specific phenotypes. Expression of both ERβ and GR in MCs mirrors that of other immune cells in the endometrium and suggests that MC function may be altered by the local steroid microenvironment.
Collapse
Affiliation(s)
- Bianca De Leo
- MRC Centres for Inflammation Research and Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | | | - Frances Collins
- MRC Centre for Inflammation Research, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Hilary O.D. Critchley
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Philippa T.K. Saunders
- MRC Centre for Inflammation Research, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
6
|
De Leo B, Esnal-Zufiaurre A, Collins F, Critchley HO, Saunders PT. Immunoprofiling of human uterine mast cells identifies three phenotypes and expression of ERβ and glucocorticoid receptor. F1000Res 2017; 6:667. [PMID: 28620462 PMCID: PMC5461902 DOI: 10.12688/f1000research.11432.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2017] [Indexed: 11/08/2023] Open
Abstract
Background: Human mast cells (MCs) are long-lived tissue-resident immune cells characterised by granules containing the proteases chymase and/or tryptase. Their phenotype is modulated by their tissue microenvironment. The human uterus has an outer muscular layer (the myometrium) surrounding the endometrium, both of which play an important role in supporting a pregnancy. The endometrium is a sex steroid target tissue consisting of epithelial cells (luminal, glandular) surrounded by a multicellular stroma, with the latter containing an extensive vascular compartment as well as fluctuating populations of immune cells that play an important role in regulating tissue function. The role of MCs in the human uterus is poorly understood with little known about their regulation or the impact of steroids on their differentiation status. The current study had two aims: 1) To investigate the spatial and temporal location of uterine MCs and determine their phenotype; 2) To determine whether MCs express receptors for steroids implicated in uterine function, including oestrogen (ERα, ERβ), progesterone (PR) and glucocorticoids (GR). Methods: Tissue samples from women (n=46) were used for RNA extraction or fixed for immunohistochemistry. Results: Messenger RNAs encoded by TPSAB1 (tryptase) and CMA1 (chymase) were detected in endometrial tissue homogenates. Immunohistochemistry revealed the relative abundance of tryptase MCs was myometrium>basal endometrium>functional endometrium. We show for the first time that uterine MCs are predominantly of the classical MC subtypes: (positive, +; negative, -) tryptase+/chymase- and tryptase+/chymase+, but a third subtype was also identified (tryptase-/chymase+). Tryptase+ MCs were of an ERβ+/ERα-/PR-/GR+ phenotype mirroring other uterine immune cell populations, including natural killer cells. Conclusions: Endometrial tissue resident immune MCs have three protease-specific phenotypes. Expression of both ERβ and GR in MCs mirrors that of other immune cells in the endometrium and suggests that MC function may be altered by the local steroid microenvironment.
Collapse
Affiliation(s)
- Bianca De Leo
- MRC Centres for Inflammation Research and Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | | | - Frances Collins
- MRC Centre for Inflammation Research, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Hilary O.D. Critchley
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Philippa T.K. Saunders
- MRC Centre for Inflammation Research, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
7
|
Pelaia G, Vatrella A, Busceti MT, Fabiano F, Terracciano R, Matera MG, Maselli R. Molecular and cellular mechanisms underlying the therapeutic effects of budesonide in asthma. Pulm Pharmacol Ther 2016; 40:15-21. [PMID: 27381656 DOI: 10.1016/j.pupt.2016.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/04/2016] [Accepted: 07/01/2016] [Indexed: 02/07/2023]
Abstract
Inhaled glucocorticoids are the mainstay of asthma treatment. Indeed, such therapeutic agents effectively interfere with many pathogenic circuits underpinning asthma. Among these drugs, during the last decades budesonide has been probably the most used molecule in both experimental studies and clinical practice. Therefore, a large body of evidence clearly shows that budesonide, either alone or in combination with long-acting bronchodilators, provides a successful control of asthma in many patients ranging throughout the overall spectrum of disease severity. These excellent therapeutic properties of budesonide basically depend on its molecular mechanisms of action, capable of inhibiting within the airways the activity of multiple immune-inflammatory and structural cells involved in asthma pathobiology.
Collapse
Affiliation(s)
- Girolamo Pelaia
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, University "Magna Græcia" of Catanzaro, Italy.
| | - Alessandro Vatrella
- Department of Medicine and Surgery, Section of Respiratory Diseases, University of Salerno, Italy
| | - Maria Teresa Busceti
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, University "Magna Græcia" of Catanzaro, Italy
| | - Francesco Fabiano
- Pulmonary Rehabilitation, "Fondazione Don Carlo Gnocchi", Milan, Italy
| | - Rosa Terracciano
- Department of Health Science, University "Magna Græcia" of Catanzaro, Italy
| | - Maria Gabriella Matera
- Department of Experimental Medicine, Unit of Pharmacology, Second University of Naples, Italy
| | - Rosario Maselli
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, University "Magna Græcia" of Catanzaro, Italy
| |
Collapse
|
8
|
Wyszynski RW, Gibbs BF, Varani L, Iannotta D, Sumbayev VV. Interleukin-1 beta induces the expression and production of stem cell factor by epithelial cells: crucial involvement of the PI-3K/mTOR pathway and HIF-1 transcription complex. Cell Mol Immunol 2016; 13:47-56. [PMID: 25418470 PMCID: PMC4711673 DOI: 10.1038/cmi.2014.113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/17/2014] [Accepted: 10/17/2014] [Indexed: 11/09/2022] Open
Abstract
Potential crosslinks between inflammation and leukaemia have been discussed for some time, but experimental evidence to support this dogma is scarce. In particular, it is important to understand the mechanisms responsible for potential upregulation of proto-oncogenic growth factor expressions by inflammatory mediators. Here, we investigated the ability of the highly inflammatory cytokine interleukin-1 beta (IL-1β) to induce the production of stem cell factor (SCF), which is a major hematopoietic growth factor that controls the progression of acute myeloid leukaemia upon malignant transformation of haematopoietic myeloid cells. We found that human IL-1β induced the expression/secretion of SCF in MCF-7 human epithelial breast cancer cells and that this process depended on the hypoxia-inducible factor 1 (HIF-1) transcription complex. We also demonstrated a crucial role of the phosphatidylinositol-3 kinase (PI-3K)/mammalian target of rapamycin (mTOR) pathway in IL-1β-induced HIF-1α accumulation in MCF-7 cells. Importantly, mTOR was also found to play a role in IL-1β-induced SCF production. Furthermore, a tendency for a positive correlation of IL-1β and SCF levels in the plasma of healthy human donors was observed. Altogether, our results demonstrate that IL-1β, which normally bridges innate and adaptive immunity, induces the production of the major haematopoietic/proleukaemic growth factor SCF through the PI-3K/mTOR pathway and the HIF-1 transcription complex. These findings strongly support a cross-talk between inflammation and acute myeloid leukaemia.
Collapse
Affiliation(s)
| | | | - Luca Varani
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | | | | |
Collapse
|
9
|
Interaction between corticosteroids and muscarinic antagonists in human airways. Pulm Pharmacol Ther 2015; 36:1-9. [PMID: 26656790 DOI: 10.1016/j.pupt.2015.11.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/05/2015] [Accepted: 11/25/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND To date there is emerging clinical evidence to add long-acting anti-muscarinic agents (LAMAs) with inhaled corticosteroid (ICSs) in asthma, but the pharmacological rationale that supports the use of such a combination has not yet been explained. The aim of this study was to pharmacologically investigate the interaction between the ICS beclomethasone and the LAMA glycopyrronium on the human airway smooth muscle (ASM) tone. METHODS We investigated the rapid non-genomic bronchorelaxant effect of beclomethasone and glycopyrronium, administered alone and in combination, in human isolated bronchi and bronchioles. Experiments were carried out also in passively sensitized airways and the pharmacological analysis of drug interaction was performed by Bliss Independence method. RESULTS The acute administration of beclomethasone and glycopyrronium induced a significant relaxation of passively sensitized ASM pre-contracted with histamine, by causing submaximal/maximal inhibition of the contractile tone in both medium bronchi and bronchioles. Beclomethasone was characterized by a rapid non-genomic and epithelium independent bronchorelaxant effect. In passively sensitized airways, this effect seemed to be dependent by the activation of a Gsα--cyclic adenosine monophosphate (cAMP)--protein kinase A cascade. While no synergistic interaction was detected in non-sensitized bronchi, the beclomethasone/glycopyrronium combination synergistically enhanced the relaxation of passively sensitized medium and small bronchi. The synergistic interaction between beclomethasone and glycopyrronium was associated with an increase of cAMP concentrations. CONCLUSIONS Our study provides for the first time the pharmacological rationale for combining low doses of an ICS plus a LAMA.
Collapse
|
10
|
Huusko JM, Mahlman M, Karjalainen MK, Kaukola T, Haataja R, Marttila R, Toldi G, Szabó M, Kingsmore SF, Rämet M, Lavoie PM, Hallman M. Polymorphisms of the gene encoding Kit ligand are associated with bronchopulmonary dysplasia. Pediatr Pulmonol 2015; 50:260-270. [PMID: 24610823 DOI: 10.1002/ppul.23018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/17/2014] [Indexed: 12/21/2022]
Abstract
UNLABELLED Bronchopulmonary dysplasia (BPD) is a chronic inflammatory lung disease that affects infants born preterm. Family studies indicate that BPD has a significant genetic component. RATIONALE We assessed the gene encoding Kit ligand (KITLG) as a candidate for genetic predisposition to moderate-to-severe BPD (controls were infants with no or mild BPD). STUDY DESIGN Eight KITLG-tagging single nucleotide polymorphisms (SNPs) were analyzed in cohorts of very preterm infants originating from northern Finland (56 cases and 197 controls), southern Finland (n = 59 + 52), and Canada (n = 58 + 68). Additional replication populations included infants born in Finland (n = 41 + 241) and Hungary (n = 29 + 40). All infants were of European origin. Results were controlled for risk factors of BPD. Kit ligand concentration in umbilical cord blood, collected from very preterm infants (n = 120), was studied. RESULTS Six SNPs of KITLG and a haplotype including all eight genotyped SNPs were associated with moderate-to-severe BPD in the northern Finnish population. When all the populations were combined, SNP rs11104948 was significantly associated with BPD. Kit ligand concentration in umbilical cord blood of infants born very preterm was an independent risk factor of BPD. CONCLUSIONS We show that KITLG polymorphisms are associated with susceptibility to moderate-to-severe BPD. In addition, higher Kit ligand concentrations were observed in infants that subsequently developed BPD. These results support the possibility that KITLG gene is involved in predisposition to BPD. Pediatr Pulmonol. 2015; 50:260-270. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Johanna M Huusko
- Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Mari Mahlman
- Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Minna K Karjalainen
- Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Tuula Kaukola
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Ritva Haataja
- Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Riitta Marttila
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Gergely Toldi
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Miklós Szabó
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | | | - Mika Rämet
- Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.,Institute of Biomedical Technology, and BioMediTech, University of Tampere, Finland.,Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Pascal M Lavoie
- Child & Family Research Institute of British Columbia, Vancouver, Canada
| | - Mikko Hallman
- Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | | |
Collapse
|
11
|
Mukhopadhyay A, Do D, Ong C, Khoo Y, Masilamani J, Chan S, Vincent A, Wong P, Lim C, Cao X, Lim I, Phan T. The role of stem cell factor and c-KIT in keloid pathogenesis: do tyrosine kinase inhibitors have a potential therapeutic role? Br J Dermatol 2010; 164:372-86. [DOI: 10.1111/j.1365-2133.2010.10035.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Reber L, Vermeulen L, Haegeman G, Frossard N. Ser276 phosphorylation of NF-kB p65 by MSK1 controls SCF expression in inflammation. PLoS One 2009; 4:e4393. [PMID: 19197368 PMCID: PMC2632887 DOI: 10.1371/journal.pone.0004393] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 12/09/2008] [Indexed: 02/07/2023] Open
Abstract
Transcription of the mast cell growth factor SCF (stem cell factor) is upregulated in inflammatory conditions, and this is dependent upon NF-κB, as well as the MAP kinases p38 and ERK activation. We show here that the MAPK downstream nuclear kinase MSK1 induces NF-κB p65 Ser276 phosphorylation upon IL-1ß treatment, which was inhibited in cells transfected with a MSK1 kinase-dead (KD) mutant compared to the WT control. In addition, we show by ChIP experiments that MSK1 as well as MAPK inhibition abolishes binding of p65, of its coactivator CBP, and of MSK1 itself to the κB intronic enhancer site of the SCF gene. We show that interaction between NF-κB and CBP is prevented in cells transfected by a p65 S276C mutant. Finally, we demonstrate that both transfections of MSK1-KD and MSK1 siRNA - but not the WT MSK1 or control siRNA - downregulate the expression of SCF induced by IL-1ß. Our study provides therefore a direct link between MSK1-mediated phosphorylation of Ser276 p65 of NF-κB, allowing its binding to the SCF intronic enhancer, and pathophysiological SCF expression in inflammation.
Collapse
Affiliation(s)
- Laurent Reber
- EA3771, Inflammation and Environment in Asthma, Université Louis Pasteur-Strasbourg-I, Faculté de Pharmacie, Illkirch, France
| | - Linda Vermeulen
- LEGEST, Department of Molecular Biology, Ghent University, Ghent, Belgium
| | - Guy Haegeman
- LEGEST, Department of Molecular Biology, Ghent University, Ghent, Belgium
| | - Nelly Frossard
- EA3771, Inflammation and Environment in Asthma, Université Louis Pasteur-Strasbourg-I, Faculté de Pharmacie, Illkirch, France
- * E-mail:
| |
Collapse
|
13
|
Stanclift RM, Gilson SD. Evaluation of neoadjuvant prednisone administration and surgical excision in treatment of cutaneous mast cell tumors in dogs. J Am Vet Med Assoc 2008; 232:53-62. [DOI: 10.2460/javma.232.1.53] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Brown JM, Wilson TM, Metcalfe DD. The mast cell and allergic diseases: role in pathogenesis and implications for therapy. Clin Exp Allergy 2007; 38:4-18. [PMID: 18031566 DOI: 10.1111/j.1365-2222.2007.02886.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mast cells have long been recognized for their role in the genesis of allergic inflammation; and more recently for their participation in innate and acquired immune responses. Mast cells reside within tissues including the skin and mucosal membranes, which interface with the external environment; as well as being found within vascularized tissues next to nerves, blood vessels and glandular structures. Mast cells have the capability of reacting both within minutes and over hours to specific stimuli, with local and systemic effects. Mast cells express the high affinity IgE receptor (FcepsilonRI) and upon aggregation of FcepsilonRI by allergen-specific IgE, mast cells release and generate biologically active preformed and newly synthesized mediators which are involved in many aspects of allergic inflammation. While mast cells have been well documented to be essential for acute allergic reactions, more recently the importance of mast cells in reacting through pattern recognition receptors in innate immune responses has become recognized. Moreover, as our molecular understanding of the mast cell has evolved, novel targets for modulation have been identified with promising therapeutic potential.
Collapse
Affiliation(s)
- J M Brown
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
15
|
Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM, Chen SH. Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 2007; 111:219-28. [PMID: 17885078 PMCID: PMC2200807 DOI: 10.1182/blood-2007-04-086835] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tumor growth induced a significant increase of myeloid-derived suppressor cells (MDSCs) in the tumor-bearing host. In our previous study, we showed that MDSCs induced tumor-specific T-cell tolerance and the development of T regulatory cells (Tregs). Tumor-derived factors have been implicated in the accumulation of MDSCs. We hypothesize that reduction of MDSC accumulation in tumor-bearing hosts, through the blockade of tumor factors, can prevent T-cell anergy and Treg development and thereby improve immune therapy for the treatment of advanced tumors. Several tumor-derived factors were identified by gene array analysis. Among the candidate factors, stem- cell factor (SCF) is expressed by various human and murine carcinomas and was selected for further study. Mice bearing tumor cells with SCF siRNA knockdown exhibited significantly reduced MDSC expansion and restored proliferative responses of tumor-infiltrating T cells. More importantly, blockade of SCF receptor (ckit)-SCF interaction by anti-ckit prevented tumor-specific T-cell anergy, Treg development, and tumor angiogenesis. Furthermore, the prevention of MDSC accumulation in conjunction with immune activation therapy showed synergistic therapeutic effect when treating mice bearing large tumors. This information supports the notion that modulation of MDSC development may be required to achieve effective immune-enhancing therapy for the treatment of advanced tumors.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Immune Tolerance/immunology
- Immunotherapy
- Liver Neoplasms, Experimental/immunology
- Liver Neoplasms, Experimental/secondary
- Liver Neoplasms, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Myeloid Cells/cytology
- Myeloid Cells/immunology
- Neovascularization, Pathologic/immunology
- Proto-Oncogene Proteins c-kit/metabolism
- RNA, Small Interfering
- Signal Transduction/immunology
- Stem Cell Factor/genetics
- Stem Cell Factor/immunology
- Stem Cell Factor/metabolism
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Ping-Ying Pan
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Da Silva CA, Blay F, Israel-Biet D, Laval AM, Glasser N, Pauli G, Frossard N. Effect of glucocorticoids on stem cell factor expression in human asthmatic bronchi. Clin Exp Allergy 2006; 36:317-24. [PMID: 16499642 DOI: 10.1111/j.1365-2222.2006.02431.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Stem cell factor (SCF) is a major mast cell growth factor promoting differentiation, chemotaxis as well as inhibition of apoptosis of mast cells. Regulation of SCF expression by glucocorticoids has not yet been reported in human asthmatic bronchi. OBJECTIVE To evaluate SCF mRNA and protein expression in biopsy specimen and bronchoalveolar lavage fluid, respectively, and to determine the mast cell numbers in biopsy sections from control and asthmatic subjects treated or not with glucocorticoids. METHODS Volunteers were recruited out of pollen season. Asthmatic patients were allergic to common allergen extracts including grass and tree pollen, cat, dog or mite; three volunteers had non-allergic asthma. Mast cell numbers were counted after anti-human tryptase immunolabelling. SCF mRNA was quantified by real-time fluorescent PCR (LightCycler) after reverse transcription, and SCF protein was measured by ELISA. RESULTS Asthmatic patients not treated with glucocorticoids showed a 5.8-, 1.8- and 3.1-fold significant increase in SCF mRNA, protein levels and mast cell numbers, respectively, compared with healthy volunteers of the control group (7.8 and 1.3 pg/mug SCF mRNA/GAPDH; 99.8+/-11.5 and 56.0+/-11.0 pg/mL SCF protein; 103+/-21 and 33+/-8 mast cells/mm(2), respectively; P<0.05). In asthmatic patients treated with glucocorticoids, a significant decrease of SCF mRNA, protein levels and mast cell numbers was observed as compared with untreated asthmatic patients (1.1 pg/microg mRNA; 62.0+/-10.3 pg/mL SCF protein and 39+/-13 mast cells/mm(2); P<0.05), reaching levels comparable to those of the control group. CONCLUSION Our study shows that SCF is expressed in the bronchus in humans in vivo. This expression is increased in asthma, and is parallel to the increased mast cell numbers in the airways. Both increases were normalized in glucocorticoid-treated patients, strongly suggesting an involvement of SCF in the mast cell-associated asthmatic disease.
Collapse
Affiliation(s)
- C A Da Silva
- EA 3771, Faculté de Pharmacie, Université Louis Pasteur Strasbourg - I, Illkirch, Cedex, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Da Silva CA, Adda M, Stern M, de Blay F, Frossard N, Israel-Biet D. Marked stem cell factor expression in the airways of lung transplant recipients. Respir Res 2006; 7:90. [PMID: 16780589 PMCID: PMC1513216 DOI: 10.1186/1465-9921-7-90] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Accepted: 06/16/2006] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Airways repair is critical to lung function following transplantation. We hypothesised that the stem cell factor (SCF) could play a role in this setting. METHODS We studied 9 lung transplant recipients (LTx recipients) during their first year postgraft, and evaluated SCF mRNA expression in bronchial biopsy specimens using on-line fluorescent PCR and SCF protein levels in bronchoalveolar lavage (BAL) and serum using ELISA. The expression of SCF receptor Kit was assessed using immunostaining of paraffin-embedded bronchial sections. RESULTS SCF mRNA was highly expressed during the early postgraft period [Month (M)1-M3] (300% increase vs controls: 356 vs 1.2 pg SCF/microg GAPDH cDNA, p < 0.001) and decreased thereafter (M4-M12: 187 pg/microg), although remaining at all times 10-100 times higher than in controls. While SCF protein levels in BAL were similar in LTx recipients and in controls, the SCF serum levels were at all times higher in LTx recipients than in controls (p < 0.05), with no relationship between these levels and the acute complications of the graft. Finally, Kit was strongly expressed by the mast cells as well as by the bronchial epithelium of LTx recipients. CONCLUSION SCF and Kit are expressed in bronchial biopsies from lung transplant recipients irrespective of the clinical status of the graft. A role for these factors in tissue repair following lung transplantation is hypothesised.
Collapse
Affiliation(s)
- Carla A Da Silva
- 1EA 3771 'Inflammation and environment in asthma'. Faculté de Pharmacie, BP 60024, 67401 Illkirch Cedex, France
| | - Mélanie Adda
- UPRES EA 220. Université Paris V. UFR Biomédicale des Saints-Pères, 45 rue des Saints-Pères, 75006 Paris, France
| | - Marc Stern
- Service de Pneumologie. CMC Foch, 40 rue Worth, 92151 Suresnes Cedex, France
| | - Frédéric de Blay
- 1EA 3771 'Inflammation and environment in asthma'. Faculté de Pharmacie, BP 60024, 67401 Illkirch Cedex, France
| | - Nelly Frossard
- 1EA 3771 'Inflammation and environment in asthma'. Faculté de Pharmacie, BP 60024, 67401 Illkirch Cedex, France
| | - Dominique Israel-Biet
- UPRES EA 220. Université Paris V. UFR Biomédicale des Saints-Pères, 45 rue des Saints-Pères, 75006 Paris, France
- Service de Pneumologie. Hôpital Européen Georges Pompidou, Faculté de Médecine Paris V, 20 rue Leblanc, 75015 Paris, France
| |
Collapse
|
18
|
Reber L, Da Silva CA, Frossard N. Stem cell factor and its receptor c-Kit as targets for inflammatory diseases. Eur J Pharmacol 2006; 533:327-40. [PMID: 16483568 DOI: 10.1016/j.ejphar.2005.12.067] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
Stem cell factor (SCF), the ligand of the c-Kit receptor, is expressed by various structural and inflammatory cells in the airways. Binding of SCF to c-Kit leads to activation of multiple pathways, including phosphatidyl-inositol-3 (PI3)-kinase, phospholipase C (PLC)-gamma, Src kinase, Janus kinase (JAK)/Signal Transducers and Activators of Transcription (STAT) and mitogen activated protein (MAP) kinase pathways. SCF is an important growth factor for mast cells, promoting their generation from CD34+ progenitor cells. In vitro, SCF induces mast cells survival, adhesion to extracellular matrix and degranulation, leading to expression and release of histamine, pro-inflammatory cytokines and chemokines. SCF also induces eosinophil adhesion and activation. SCF is upregulated in inflammatory conditions both in vitro and in vivo, in human and mice. Inhibition of the SCF/c-Kit pathway leads to significant decrease of histamine levels, mast cells and eosinophil infiltration, interleukin (IL)-4 production and airway hyperresponsiveness in vivo. Taken together, these data suggest that SCF/c-Kit may be a potential therapeutic target for the control of mast cell and eosinophil number and activation in inflammatory diseases.
Collapse
Affiliation(s)
- Laurent Reber
- EA 3771 Inflammation and Environment in Asthma, Université Louis Pasteur-Strasbourg-I, Faculté de Pharmacie, Illkirch, France.
| | | | | |
Collapse
|
19
|
Da Silva CA, Frossard N. Regulation of stem cell factor expression in inflammation and asthma. Mem Inst Oswaldo Cruz 2005; 100 Suppl 1:145-51. [PMID: 15962114 DOI: 10.1590/s0074-02762005000900025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stem cell factor (SCF) is a major mast cell growth factor, which could be involved in the local increase of mast cell number in the asthmatic airways. In vivo, SCF expression increases in asthmatic patients and this is reversed after treatment with glucocorticoids. In vitro in human lung fibroblasts in culture, IL-1beta, a pro-inflammatory cytokine, confirms this increased SCF mRNA and protein expression implying the MAP kinases p38 and ERK1/2 very early post-treatment, and glucocorticoids confirm this decrease. Surprisingly, glucocorticoids potentiate the IL-1beta-enhanced SCF expression at short term treatment, implying increased SCF mRNA stability and SCF gene transcription rate. This potentiation involves p38 and ERK1/2. Transfection experiments with the SCF promoter including intron1 also confirm this increase and decrease of SCF expression by IL-1beta and glucocorticoids, and the potentiation by glucocorticoids of the IL-1beta-induced SCF expression. Deletion of the GRE or kappaB sites abolishes this potentiation, and the effect of IL-1beta or glucocorticoids alone. DNA binding of GR and NF-kappaB are also demonstrated for these effects. In conclusion, this review concerns new mechanisms of regulation of SCF expression in inflammation that could lead to potential therapeutic strategy allowing to control mast cell number in the asthmatic airways.
Collapse
Affiliation(s)
- Carla A Da Silva
- Faculté de Pharmacie, Université Louis Pasteur, 67401 Illkirch cedex, France
| | | |
Collapse
|
20
|
Da Silva CA, Kassel O, Lebouquin R, Lacroix EJ, Frossard N. Paradoxical early glucocorticoid induction of stem cell factor (SCF) expression in inflammatory conditions. Br J Pharmacol 2003; 141:75-84. [PMID: 14662725 PMCID: PMC1574180 DOI: 10.1038/sj.bjp.0705598] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Stem cell factor (SCF) is a major growth factor for mast cells, promoting their differentiation and chemotaxis. Its expression is regulated by glucocorticoids in inflammatory conditions, showing an early increased protein expression, before the expected anti-inflammatory decrease (Da Silva et al., Br. J. Pharmacol. 2002:135,1634). 2. We here evaluated the early kinetic of SCF expression regulated by interleukin (IL)-1beta, budesonide and the combination of both in human lung fibroblasts in culture. 3. Budesonide potentiated the IL-1beta-enhanced expression of SCF mRNA (+103%) and protein (+98%) very shortly after treatment (at 30 min and 1 h, respectively). A gentle downregulation followed. This potentiating effect of budesonide was related to increased SCF mRNA stability and SCF gene transcription. 4. Deletion of a kappaB-like site that we identified in the first intron of the SCF gene, in a luciferase reporter system, abolished the potentiation by budesonide, as well as the effect of IL-1beta alone, as compared to the wild-type construction activity. 5. All budesonide-induced effects were glucocorticoid-receptor dependent, since they were reproduced by dexamethasone and blocked by RU486. 6. IL-1beta+budesonide did not affect the relative expression of the soluble and membrane-bound forms of SCF. 7. In conclusion, our results clearly show that glucocorticoids act very early to adversely increase the expression of SCF mRNA and protein in the inflammatory conditions created by IL-1beta, and that this effect involves increased mRNA stability and increased gene expression through activation of the NF-kappaB-like responsive element.
Collapse
MESH Headings
- Budesonide/antagonists & inhibitors
- Budesonide/pharmacology
- Cells, Cultured
- DNA, Complementary/drug effects
- DNA, Complementary/genetics
- Down-Regulation
- Drug Synergism
- Fibroblasts/drug effects
- Fibroblasts/physiology
- Glucocorticoids/antagonists & inhibitors
- Glucocorticoids/pharmacology
- Glucocorticoids/physiology
- Humans
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/physiopathology
- Interleukin-1/metabolism
- Interleukin-1/pharmacology
- Lung/cytology
- Mifepristone/pharmacology
- NF-kappa B/physiology
- Plasmids/drug effects
- Plasmids/genetics
- RNA Stability/drug effects
- RNA Stability/genetics
- RNA, Messenger/chemical synthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Glucocorticoid/antagonists & inhibitors
- Receptors, Glucocorticoid/physiology
- Stem Cell Factor/drug effects
- Stem Cell Factor/genetics
- Stem Cell Factor/metabolism
- Tissue Engineering/methods
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Transfection/methods
Collapse
|
21
|
Da Silva CA, Heilbock C, Kassel O, Frossard N. Transcription of stem cell factor (SCF) is potentiated by glucocorticoids and interleukin‐1β through concerted regulation of a GRE‐like and an NF‐κB response element. FASEB J 2003; 17:2334-6. [PMID: 14563684 DOI: 10.1096/fj.03-0136fje] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Expression of stem cell factor SCF, a major mast cell growth factor, is potentiated shortly after co-treatment with interleukin (IL)-1beta and glucocorticoids. SCF promoter contains a GRE-like sequence and a putative kappaB site. We assessed the mechanisms of the regulation of SCF transcription in human lung fibroblasts in culture. Chromatin immunoprecipitation showed that co-treatment with IL-1beta and the glucocorticoid budesonide increased the SCF promoter occupancy by NF-kappaB and GR, as compared with IL-1beta and budesonide alone. In reporter gene assays, IL-1beta time-dependently increased the promoter activity, which was abolished by either pre-treatment with the MAP kinase inhibitors PD98059 (MEK) and SB203580 (p38), pre-treatment with the NF-kappaB inhibitor PDTC, or deletion of the kappaB site. Budesonide time-dependently decreased the promoter activity, an effect requiring the GRE-like element. Co-treatment with IL-1beta and budesonide potentiated the promoter activity at 30 min, an effect blocked by PD98059 and SB203580, PDTC, or deletion of the kappaB or GRE-like element. In conclusion, the GRE-like sequence mediating the repression of SCF expression, thus acting as a negative-responsive element, is turned into a positive element in an NF-kappaB site-dependent manner, indicating a concerted action of these two regulatory elements in the potentiation of SCF gene expression.
Collapse
|
22
|
Jeong HJ, Na HJ, Hong SH, Kim HM. Inhibition of the stem cell factor-induced migration of mast cells by dexamethasone. Endocrinology 2003; 144:4080-6. [PMID: 12933682 DOI: 10.1210/en.2003-0115] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cell accumulation can be causally related to several allergic inflammations. Previous work has demonstrated that glucocorticoids decreased tissue mast cell number, and stem cell factor (SCF)-induced migration of mast cells required p38 MAPK activation. In the present study we investigated the effects of dexamethasone on SCF-induced migration of rat peritoneal mast cells (RPMCs). SCF significantly induced the migration of RPMCs at 4 h. Dexamethasone dose-dependently inhibited SCF-induced migration of RPMCs (approximately 90.1% at 100 nM; P < 0.05). The MAPK p38 inhibitor SB203580 (20 microM) also inhibited the SCF-induced migration. The ability of SCF to enhance morphological alteration and filamentous actin formation was also abolished by treatment with dexamethasone. Dexamethasone inhibited SCF-induced p38 MAPK activation to near-basal levels and induced MAPK phosphatase-1 expression. In addition, SCF-induced inflammatory cytokine production was significantly inhibited by treatment with dexamethasone or SB203580 (P < 0.01). Our results show that dexamethasone potently regulates SCF-induced migration, p38 MAPK activation, and inflammatory cytokine production through the expression of MKP-1 protein in RPMCs. Such modulation may have functional consequences during dexamethasone treatment, especially mast cell-mediated allergic inflammation disorders.
Collapse
Affiliation(s)
- Hyun-Ja Jeong
- Department of Pharmacology, Kyung Hee University College of Oriental Medicine, 130-701 Seoul, South Korea
| | | | | | | |
Collapse
|