1
|
Tan Q, Wu D, Lin Y, Ai H, Xu J, Zhou H, Gu Q. Identifying eleven new ferroptosis inhibitors as neuroprotective agents from FDA-approved drugs. Bioorg Chem 2024; 146:107261. [PMID: 38460336 DOI: 10.1016/j.bioorg.2024.107261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
With increasing evidence that ferroptosis is associated with diverse neurological disorders, targeting ferroptosis offers a promising avenue for developing effective pharmaceutical agents for neuroprotection. In this study, we identified ferroptosis inhibitors as neuroprotective agents from US Food and Drug Administration (FDA)-approved drugs. 1176 drugs have been screened against erastin-induced ferroptosis in HT22 cells, resulting in 89 ferroptosis inhibitors. Among them, 26 drugs showed significant activity with EC50 below10 μM. The most active ferroptosis inhibitor is lumateperone tosylate at nanomolar level. 11 drugs as ferroptosis inhibitors were not reported previously. Further mechanistic studies revealed that their mechanisms of actions involve free radical scavenging, Fe2+ chelation, and 15-lipoxygenase inhibition. Notably, the active properties of some drugs were firstly revealed here. These ferroptosis inhibitors increase the chemical diversity of ferroptosis inhibitors, and offer new therapeutic possibilities for the treatments of related neurological diseases.
Collapse
Affiliation(s)
- Qingyun Tan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Deyin Wu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yating Lin
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Haopeng Ai
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Lopes RM, Souza ACS, Otręba M, Rzepecka-Stojko A, Tersariol ILS, Rodrigues T. Targeting autophagy by antipsychotic phenothiazines: potential drug repurposing for cancer therapy. Biochem Pharmacol 2024; 222:116075. [PMID: 38395266 DOI: 10.1016/j.bcp.2024.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/14/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Cancer is recognized as the major cause of death worldwide and the most challenging public health issues. Tumor cells exhibit molecular adaptations and metabolic reprograming to sustain their high proliferative rate and autophagy plays a pivotal role to supply the high demand for metabolic substrates and for recycling cellular components, which has attracted the attention of the researchers. The modulation of the autophagic process sensitizes tumor cells to chemotherapy-induced cell death and reverts drug resistance. In this regard, many in vitro and in vivo studies having shown the anticancer activity of phenothiazine (PTZ) derivatives due to their potent cytotoxicity in tumor cells. Interestingly, PTZ have been used as antiemetics in antitumor chemotherapy-induced vomiting, maybe exerting a combined antitumor effect. Among the mechanisms of cytotoxicity, the modulation of autophagy by these drugs has been highlighted. Therefore, the use of PTZ derivatives can be considered as a repurposing strategy in antitumor chemotherapy. Here, we provided an overview of the effects of antipsychotic PTZ on autophagy in tumor cells, evidencing the molecular targets and discussing the underlying mechanisms. The modulation of autophagy by PTZ in tumor cells have been consistently related to their cytotoxic action. These effects depend on the derivative, their concentration, and also the type of cancer. Most data have shown the impairment of autophagic flux by PTZ, probably due to the blockade of lysosome-autophagosome fusion, but some studies have also suggested the induction of autophagy. These data highlight the therapeutic potential of targeting autophagy by PTZ in cancer chemotherapy.
Collapse
Affiliation(s)
- Rayssa M Lopes
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, SP, Brazil.
| | - Ana Carolina S Souza
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, SP, Brazil.
| | - Michał Otręba
- Department of Drug and Cosmetics Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Poland.
| | - Anna Rzepecka-Stojko
- Department of Drug and Cosmetics Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Poland.
| | - Ivarne L S Tersariol
- Departament of Molecular Biology, Federal University of São Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - Tiago Rodrigues
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, SP, Brazil.
| |
Collapse
|
3
|
Harden SA, Courbon GM, Liang Y, Kim AS, Rubinstein JL. A simple assay for inhibitors of mycobacterial oxidative phosphorylation. J Biol Chem 2024; 300:105483. [PMID: 37992805 PMCID: PMC10770618 DOI: 10.1016/j.jbc.2023.105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
Oxidative phosphorylation, the combined activities of the electron transport chain (ETC) and ATP synthase, has emerged as a valuable target for antibiotics to treat infection with Mycobacterium tuberculosis and related pathogens. In oxidative phosphorylation, the ETC establishes a transmembrane electrochemical proton gradient that powers ATP synthesis. Monitoring oxidative phosphorylation with luciferase-based detection of ATP synthesis or measurement of oxygen consumption can be technically challenging and expensive. These limitations reduce the utility of these methods for characterization of mycobacterial oxidative phosphorylation inhibitors. Here, we show that fluorescence-based measurement of acidification of inverted membrane vesicles (IMVs) can detect and distinguish between inhibition of the ETC, inhibition of ATP synthase, and nonspecific membrane uncoupling. In this assay, IMVs from Mycobacterium smegmatis are acidified either through the activity of the ETC or ATP synthase, the latter modified genetically to allow it to serve as an ATP-driven proton pump. Acidification is monitored by fluorescence from 9-amino-6-chloro-2-methoxyacridine, which accumulates and quenches in acidified IMVs. Nonspecific membrane uncouplers prevent both succinate- and ATP-driven IMV acidification. In contrast, the ETC Complex III2IV2 inhibitor telacebec (Q203) prevents succinate-driven acidification but not ATP-driven acidification, and the ATP synthase inhibitor bedaquiline prevents ATP-driven acidification but not succinate-driven acidification. We use the assay to show that, as proposed previously, lansoprazole sulfide is an inhibitor of Complex III2IV2, whereas thioridazine uncouples the mycobacterial membrane nonspecifically. Overall, the assay is simple, low cost, and scalable, which will make it useful for identifying and characterizing new mycobacterial oxidative phosphorylation inhibitors.
Collapse
Affiliation(s)
- Serena A Harden
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gautier M Courbon
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada
| | - Yingke Liang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, The University of Toronto, Toronto, Ontario, Canada
| | - Angelina S Kim
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, The University of Toronto, Toronto, Ontario, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, The University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Targeting Ca2+ and Mitochondrial Homeostasis by Antipsychotic Thioridazine in Leukemia Cells. Life (Basel) 2022; 12:life12101477. [PMID: 36294912 PMCID: PMC9605445 DOI: 10.3390/life12101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria have pivotal roles in cellular physiology including energy metabolism, reactive oxygen species production, Ca2+ homeostasis, and apoptosis. Altered mitochondrial morphology and function is a common feature of cancer cells and the regulation of mitochondrial homeostasis has been identified as a key to the response to chemotherapeutic agents in human leukemias. Here, we explore the mechanistic aspects of cytotoxicity produced by thioridazine (TR), an antipsychotic drug that has been investigated for its anticancer potential in human leukemia cellular models. TR exerts selective cytotoxicity against human leukemia cells in vitro. A PCR array provided a general view of the expression of genes involved in cell death pathways. TR immediately produced a pulse of cytosolic Ca2+, followed by mitochondrial uptake, resulting in mitochondrial permeabilization, caspase 9/3 activation, endoplasmic reticulum stress, and apoptosis. Ca2+ chelators, thiol reducer dithiothreitol, or CHOP knockdown prevented TR-induced cell death. TR also exhibited potent cytotoxicity against BCL-2/BCL-xL-overexpressing leukemia cells. Additionally, previous studies have shown that TR exhibits potent antitumor activity in vivo in different solid tumor models. These findings show that TR induces a Ca2+-mediated apoptosis with involvement of mitochondrial permeabilization and ER stress in leukemia and it emphasizes the pharmacological potential of TR as an adjuvant in antitumor chemotherapy.
Collapse
|
5
|
The Joint Influence of Tl+ and Thiol-Modifying Agents on Rat Liver Mitochondrial Parameters In Vitro. Int J Mol Sci 2022; 23:ijms23168964. [PMID: 36012228 PMCID: PMC9409397 DOI: 10.3390/ijms23168964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Recent data have shown that the mitochondrial permeability transition pore (MPTP) is the complex of the Ca2+-modified adenine nucleotide translocase (ANT) and the Ca2+-modified ATP synthase. We found in a previous study that ANT conformational changes may be involved in Tl+-induced MPTP opening in the inner membrane of Ca2+-loaded rat liver mitochondria. In this study, the effects of thiol-modifying agents (eosin-5-maleimide (EMA), fluorescein isothiocyanate (FITC), Cu(o-phenanthroline)2 (Cu(OP)2), and embelin (Emb)), and MPTP inhibitors (ADP, cyclosporine A (CsA), n-ethylmaleimide (NEM), and trifluoperazine (TFP)) on MPTP opening were tested simultaneously with increases in swelling, membrane potential (ΔΨmito) decline, decreases in state 3, 4, and 3UDNP (2,4-dinitrophenol-uncoupled) respiration, and changes in the inner membrane free thiol group content. The effects of these thiol-modifying agents on the studied mitochondrial characteristics were multidirectional and showed a clear dependence on their concentration. This research suggests that Tl+-induced MPTP opening in the inner membrane of calcium-loaded mitochondria may be caused by the interaction of used reagents (EMA, FITC, Emb, Cu(OP)2) with active groups of ANT, the mitochondrial phosphate carrier (PiC) and the mitochondrial respiratory chain complexes. This study provides further insight into the causes of thallium toxicity and may be useful in the development of new treatments for thallium poisoning.
Collapse
|
6
|
Martins RM, Alves GDAD, Martins SDS, de Freitas LAP, Rochette PJ, Moulin VJ, Fonseca MJV. Apple Extract ( Malus sp.) and Rutin as Photochemopreventive Agents: Evaluation of Ultraviolet B-Induced Alterations on Skin Biopsies and Tissue-Engineered Skin. Rejuvenation Res 2020; 23:465-475. [PMID: 32242497 DOI: 10.1089/rej.2019.2219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The skin is exposed to the solar ultraviolet B (UVB) radiation, which leads to the formation of several types of skin damage responsible for cancer initiation and aging. Malus sp. is a genus of apples, which are a good source of polyphenolic compounds. Malus sp. and more precisely one of its components, rutin, have preventive effects on many diseases caused by reactive oxygen species. In addition, previous studies have suggested the topical usage of the extract as a cosmetic product to prevent skin damage caused by oxidative stress. In this study, we evaluated the efficacy of two topical formulations containing 1.25% of Malus sp. extract and the equivalent amount of rutin (0.75%). The photochemopreventive effect was assessed on two three-dimensional (3D) skin models, that is, ex vivo skin explants and 3D tissue-engineered skin to compare the models. Both formulations protected against the UVB-induced increase in sunburn cell formation, as well as caspase-3 activation and cyclobutane pyrimidine dimer formation in both skin models. Furthermore, the formulations inhibited the lipid peroxidation and the metalloproteinase formation induced by UVB radiation. The tissue-engineered skins and the skin explants provided effective tools to assess the UVB-induced damages. These results support use of the Malus sp. extract and rutin as skin photochemopreventive agents for topical application.
Collapse
Affiliation(s)
- Rodrigo Molina Martins
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Georgia de Assis Dias Alves
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Silvia de Siqueira Martins
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Alexandre Pedro de Freitas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Patrick J Rochette
- Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada.,Department of Ophthalmology, Faculty of Medicine, Université Laval, Quebec, Canada.,Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec, Canada
| | - Véronique J Moulin
- Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada.,Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec, Canada.,Department of Surgery, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Maria José Vieira Fonseca
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Alves GDAD, Fernandes da Silva D, Venteu Teixeira T, de Souza RO, Rogez H, Fonseca MJV. Obtainment of an enriched fraction of Inga edulis: identification using UPLC-DAD-MS/MS and photochemopreventive screening. Prep Biochem Biotechnol 2019; 50:28-36. [PMID: 31453734 DOI: 10.1080/10826068.2019.1658118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Inga edulis is a fruit tree native from Central and South America. Different species of Inga have demonstrated high polyphenolic content and high antioxidant capacity. The oxidative stress significantly contributes to the development of several chronicle diseases, particularly age-related diseases. Therefore, photochemoprevention is an emerging interest in the use of naturally occurring antioxidants for their therapeutic use. A partial purification of the extract was carried out onto macroporous resin and the main components of I. edulis leaf extract and fraction were identified using UPLC-DAD-MS/MS as epicatechin, apigenin C-di-hexoside, myricetin-O-hexose-deoxyhexose, myricetin-O-deoxyhexose and vicenin-2, which was identified for the first time in I. edulis. Both extract and fraction presented high antioxidant capacity, the fraction exhibiting higher polyphenol and flavonoid contents and higher content of vicenin-2, suggesting that the fractioning process effectively resulted in the partial purification of the extract. The cytotoxicity and photostability were assessed in L929 fibroblast cells to evaluate whether I. edulis extract and fraction were suitable for topical application. The UVA and UVB irradiated extract and fraction did not decrease the antioxidant capacity and cell viability of L929 fibroblasts, demonstrating the photostability of the samples. The fractioning process successfully purified and enriched I. edulis extract, and both the extract and fraction are potential candidates to be safely incorporated in topical photochemopreventive formulations.
Collapse
Affiliation(s)
- Georgia de Assis Dias Alves
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniele Fernandes da Silva
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Rebeca Oliveira de Souza
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Hervé Rogez
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA), Federal University of Pará, Belém, Pará, Brazil
| | - Maria José Vieira Fonseca
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
8
|
Mondal NK, Behera J, Kelly KE, George AK, Tyagi PK, Tyagi N. Tetrahydrocurcumin epigenetically mitigates mitochondrial dysfunction in brain vasculature during ischemic stroke. Neurochem Int 2018; 122:120-138. [PMID: 30472160 DOI: 10.1016/j.neuint.2018.11.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/07/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022]
Abstract
The objectives of this study are to identify the mechanism of mitochondrial dysfunction during cerebral ischemic/reperfusion (I/R) injury and the therapeutic potential of tetrahydrocurcumin (THC) to mitigate mitochondrial dysfunction in experimental stroke model. In our study, 8-10 weeks old male C57BL/6 wild-type mice were subjected to middle cerebral artery occlusion (MCAO) for 40 min, followed by reperfusion for 72 h. THC (25mg/kg-BW/day) was injected intraperitoneally once daily for 3 days after 4 h of ischemia. The experimental groups were: (i) sham, (ii) I/R and (iii) I/R + THC. We noticed that THC treatment in ischemic mice significantly improved the functional capacity and motor co-ordination along with reduced neuroscore, infarct volume, brain edema and microvascular leakage in brain parenchyma. The study revealed that level of total homocysteine (tHcy), homocysteine metabolizing enzymes, mitochondrial oxidative stress were significantly altered in I/R mice compared to sham. We also observed alteration in mitochondrial transition pore, ATP production and O2 consumption in the ischemic brain as compared to sham. Further, elevated matrix metalloproteinases-9 (MMP-9) activity and reduced tight junction protein expressions intensified the brain vascular impairment in I/R mice compared to sham. Interestingly, we found that levels of mitophagy markers, fusion and fission proteins were significantly altered. However THC treatment in I/R mice almost normalized the above functional and molecular changes. Mechanistic study demonstrated that DNA Methyltransferase 1 (DNMT1) expression was higher and was associated with reduced mitochondrial tissue inhibitor of metalloproteinases 2 (TIMP-2) expression through hyper-methylation of CpG island of TIMP-2 promoter in I/R mice compared to sham. However, administration of epigenetic inhibitor, 5-Azacytidine (5-Aza) abrogated I/R induced hyper-methylation of TIMP-2 promoter and maintaining the extracellular matrix (ECM) integrity. In conclusion, this study suggests that THC epigenetically ameliorates mitochondrial dysfunction in brain vasculature during Ischemic Stroke.
Collapse
Affiliation(s)
- Nandan K Mondal
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA; Department of Surgery, Baylor College of Medicine, Texas Heart Institute, Houston, TX, 77030, USA
| | - Jyotirmaya Behera
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Kimberly E Kelly
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Akash K George
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Pranav K Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Neetu Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
9
|
Środa-Pomianek K, Michalak K, Świątek P, Poła A, Palko-Łabuz A, Wesołowska O. Increased lipid peroxidation, apoptosis and selective cytotoxicity in colon cancer cell line LoVo and its doxorubicin-resistant subline LoVo/Dx in the presence of newly synthesized phenothiazine derivatives. Biomed Pharmacother 2018; 106:624-636. [PMID: 29990852 DOI: 10.1016/j.biopha.2018.06.170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022] Open
Abstract
Cancer cells often develop the resistance to pro-apoptotic signaling that makes them invulnerable to conventional treatment. Therapeutic strategies that make cancer cells enter the path of apoptosis are desirable due to the avoidance of inflammatory reaction that usually accompanies necrosis. In the present study phenothiazines (fluphenazine and four recently synthesized derivatives) were investigated in order to identify compounds with a potent anticancer activity. Since phenothiazines are known as multidrug resistance modulators the sensitive human colorectal adenocarcinoma cell line (LoVo) and its doxorubicin-resistant, ABCB1 overexpressing, subline (LoVo/Dx) have been employed as a model system. In studied cancer cells cytotoxic effect of the phenothiazine derivatives was accompanied by apoptosis and autophagy induction as well as by the increase of cellular lipid peroxidation and intracellular reactive oxygen species generation. Molecular modelling revealed that reactivity of phenothazines (manifested by their low energy gap) but not lipophilicity was positively correlated with their anticancer potency, pro-oxidant properties and apoptosis induction ability. Additionally, some of the studied compounds turned out to be more potent cytotoxic and pro-apoptotic agents in doxorubicin-resistant (LoVo/Dx) cells than in sensitive ones (LoVo). The hypothesis was assumed that studied phenothiazine derivatives induced apoptotic cell death by increasing the production of reactive oxygen species.
Collapse
Affiliation(s)
- Kamila Środa-Pomianek
- Department of Biophysics, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland.
| | - Krystyna Michalak
- Department of Biophysics, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Piotr Świątek
- Department of Drug Chemistry, Wroclaw Medical University, ul. Borowska 211, 50-556 Wroclaw, Poland
| | - Andrzej Poła
- Department of Biophysics, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Anna Palko-Łabuz
- Department of Biophysics, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Olga Wesołowska
- Department of Biophysics, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland
| |
Collapse
|
10
|
Seo SU, Kim TH, Kim DE, Min KJ, Kwon TK. NOX4-mediated ROS production induces apoptotic cell death via down-regulation of c-FLIP and Mcl-1 expression in combined treatment with thioridazine and curcumin. Redox Biol 2017; 13:608-622. [PMID: 28806703 PMCID: PMC5554966 DOI: 10.1016/j.redox.2017.07.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/25/2017] [Accepted: 07/30/2017] [Indexed: 10/24/2022] Open
Abstract
Thioridazine is known to have anti-tumor effects by inhibiting PI3K/Akt signaling, which is an important signaling pathway in cell survival. However, thioridazine alone does not induce apoptosis in head and neck squamous cell carcinoma (AMC-HN4), human breast carcinoma (MDA-MB231), and human glioma (U87MG) cells. Therefore, we investigated whether combined treatment with thioridazine and curcumin induces apoptosis. Combined treatment with thioridazine and curcumin markedly induced apoptosis in cancer cells without inducing apoptosis in human normal mesangial cells and human normal umbilical vein cells (EA.hy926). We found that combined treatment with thioridazine and curcumin had synergistic effects in AMC-HN4 cells. Among apoptosis-related proteins, thioridazine plus curcumin induced down-regulation of c-FLIP and Mcl-1 expression at the post-translational levels in a proteasome-dependent manner. Augmentation of proteasome activity was related to the up-regulation of proteasome subunit alpha 5 (PSMA5) expression in curcumin plus thioridazine-treated cells. Combined treatment with curcumin and thioridazine produced intracellular ROS in a NOX4-dependent manner, and ROS-mediated activation of Nrf2/ARE signaling played a critical role in the up-regulation of PSMA5 expression. Furthermore, ectopic expression of c-FLIP and Mcl-1 inhibited apoptosis in thioridazine and curcumin-treated cells. Therefore, we demonstrated that thioridazine plus curcumin induces proteasome activity by up-regulating PSMA5 expression via NOX4-mediated ROS production and that down-regulation of c-FLIP and Mcl-1 expression post-translationally is involved in apoptosis.
Collapse
Affiliation(s)
- Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | - Tae Hwan Kim
- Department of Otolaryngology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | - Dong Eun Kim
- Department of Otolaryngology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | - Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea.
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea.
| |
Collapse
|
11
|
Abstract
BACKGROUND Methods for inference and comparison of biological networks are emerging as powerful tools for the identification of groups of tightly connected genes whose activity may be altered during disease progression or due to chemical perturbations. Connectivity-based comparisons help identify aggregate changes that would be difficult to detect with differential analysis methods comparing individual genes. METHODS In this study, we describe a pipeline for network comparison and its application to the analysis of gene expression datasets from chemical perturbation experiments, with the goal of elucidating the modes of actions of the profiled perturbations. We apply our pipeline to the analysis of the DrugMatrix and the TG-GATEs, two of the largest toxicogenomics resources available, containing gene expression measurements for model organisms exposed to hundreds of chemical compounds with varying carcinogenicity and genotoxicity. RESULTS Starting from chemical-specific transcriptional networks inferred from these data, we show that the proposed comparative analysis of their associated networks identifies groups of chemicals with similar functions and similar carcinogenicity/genotoxicity profiles. We also show that the in-silico annotation by pathway enrichment analysis of the gene modules with a significant gain or loss of connectivity for specific groups of compounds can reveal molecular pathways significantly associated with the chemical perturbations and their likely modes of action. CONCLUSIONS The proposed pipeline for transcriptional network inference and comparison is highly reproducible and allows grouping chemicals with similar functions and carcinogenicity/genotoxicity profiles. In the context of drug discovery or drug repositioning, the methods presented here could help assign new functions to novel or existing drugs, based on the similarity of their associated network with those built for other known compounds. Additionally, the method has broad applicability beyond the uses here described and could be used as an alternative or as a complement to standard approaches of differential gene expression analysis.
Collapse
|
12
|
Thioridazine enhances sensitivity to carboplatin in human head and neck cancer cells through downregulation of c-FLIP and Mcl-1 expression. Cell Death Dis 2017; 8:e2599. [PMID: 28182008 PMCID: PMC5386499 DOI: 10.1038/cddis.2017.8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/14/2016] [Accepted: 12/28/2016] [Indexed: 01/15/2023]
Abstract
Carboplatin is a less toxic analog of cisplatin, but carboplatin also has side effects, including bone marrow suppression. Therefore, to improve the capacity of the anticancer activity of carboplatin, we investigated whether combined treatment with carboplatin and thioridazine, which has antipsychotic and anticancer activities, has a synergistic effect on apoptosis. Combined treatment with carboplatin and thioridazine markedly induced caspase-mediated apoptosis in head and neck squamous cell carcinoma (AMC-HN4) cells. Combined treatment with carboplatin and thioridazine induced downregulation of Mcl-1 and c-FLIP expression. Ectopic expression of Mcl-1 and c-FLIP inhibited carboplatin plus thioridazine-induced apoptosis. We found that augmentation of proteasome activity had a critical role in downregulation of Mcl-1 and c-FLIP expression at the post-translational level in carboplatin plus thioridazine-treated cells. Furthermore, carboplatin plus thioridazine induced upregulation of the expression of proteasome subunit alpha 5 (PSMA5) through mitochondrial reactive oxygen species (ROS)-dependent nuclear factor E2-related factor 2 (Nrf2) activation. In addition, combined treatment with carboplatin and thioridazine markedly induced apoptosis in human breast carcinoma (MDA-MB231) and glioma (U87MG) cells, but not in human normal mesangial cells and normal human umbilical vein cells (EA.hy926). Collectively, our study demonstrates that combined treatment with carboplatin and thioridazine induces apoptosis through proteasomal degradation of Mcl-1 and c-FLIP by upregulation of Nrf2-dependent PSMA5 expression.
Collapse
|
13
|
Seredenina T, Nayernia Z, Sorce S, Maghzal GJ, Filippova A, Ling SC, Basset O, Plastre O, Daali Y, Rushing EJ, Giordana MT, Cleveland DW, Aguzzi A, Stocker R, Krause KH, Jaquet V. Evaluation of NADPH oxidases as drug targets in a mouse model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 2016; 97:95-108. [PMID: 27212019 DOI: 10.1016/j.freeradbiomed.2016.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/29/2016] [Accepted: 05/17/2016] [Indexed: 11/27/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by progressive loss of motor neurons, gliosis, neuroinflammation and oxidative stress. The aim of this study was to evaluate the involvement of NADPH oxidases (NOX) in the oxidative damage and progression of ALS neuropathology. We examined the pattern of NOX expression in spinal cords of patients and mouse models of ALS and analyzed the impact of genetic deletion of the NOX1 and 2 isoforms as well as pharmacological NOX inhibition in the SOD1(G93A) ALS mouse model. A substantial (10-60 times) increase of NOX2 expression was detected in three etiologically different ALS mouse models while up-regulation of some other NOX isoforms was model-specific. In human spinal cord samples, high NOX2 expression was detected in microglia. In contrast to previous publications, survival of SOD1(G93A) mice was not modified upon breeding with constitutive NOX1 and NOX2 deficient mice. As genetic deficiency of a single NOX isoform is not necessarily predictive of a pharmacological intervention, we treated SOD1(G93A) mice with broad-spectrum NOX inhibitors perphenazine and thioridazine. Both compounds reached in vivo CNS concentrations compatible with NOX inhibition and thioridazine significantly decreased superoxide levels in the spinal cord of SOD1(G93A) mice in vivo. Yet, neither perphenazine nor thioridazine prolonged survival. Thioridazine, but not perphenazine, dampened the increase of microglia markers in SOD1(G93A) mice. Thioridazine induced an immediate and temporary enhancement of motor performance (rotarod) but its precise mode of action needs further investigation. Additional studies using specific NOX inhibitors will provide further evidence on the relevance of NOX as drug targets for ALS and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Tamara Seredenina
- Department of Pathology and Immunology, Medical School, University of Geneva, Switzerland
| | - Zeynab Nayernia
- Department of Pathology and Immunology, Medical School, University of Geneva, Switzerland
| | - Silvia Sorce
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Ghassan J Maghzal
- Victor Chang Cardiac Research Institute, Vascular Biology Division, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | - Aleksandra Filippova
- Department of Pathology and Immunology, Medical School, University of Geneva, Switzerland
| | - Shuo-Chien Ling
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Physiology, National University of Singapore, Singapore
| | - Olivier Basset
- Department of Pathology and Immunology, Medical School, University of Geneva, Switzerland
| | - Olivier Plastre
- Department of Pathology and Immunology, Medical School, University of Geneva, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospital, Geneva, Switzerland
| | - Elisabeth J Rushing
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Maria T Giordana
- Department of Neuroscience, Medical School of the University of Turin, Italy
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, Vascular Biology Division, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Medical School, University of Geneva, Switzerland; Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Medical School, University of Geneva, Switzerland.
| |
Collapse
|
14
|
de Keijzer J, Mulder A, de Haas PEW, de Ru AH, Heerkens EM, Amaral L, van Soolingen D, van Veelen PA. Thioridazine Alters the Cell-Envelope Permeability of Mycobacterium tuberculosis. J Proteome Res 2016; 15:1776-86. [PMID: 27068340 DOI: 10.1021/acs.jproteome.5b01037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The increasing occurrence of multidrug resistant tuberculosis exerts a major burden on treatment of this infectious disease. Thioridazine, previously used as a neuroleptic, is active against extensively drug resistant tuberculosis when added to other second- and third-line antibiotics. By quantitatively studying the proteome of thioridazine-treated Mycobacterium tuberculosis, we discovered the differential abundance of several proteins that are involved in the maintenance of the cell-envelope permeability barrier. By assessing the accumulation of fluorescent dyes in mycobacterial cells over time, we demonstrate that long-term drug exposure of M. tuberculosis indeed increased the cell-envelope permeability. The results of the current study demonstrate that thioridazine induced an increase in cell-envelope permeability and thereby the enhanced uptake of compounds. These results serve as a novel explanation to the previously reported synergistic effects between thioridazine and other antituberculosis drugs. This new insight in the working mechanism of this antituberculosis compound could open novel perspectives of future drug-administration regimens in combinational therapy.
Collapse
Affiliation(s)
- Jeroen de Keijzer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre (LUMC) , Leiden, 2300 RC The Netherlands
| | | | | | - Arnoud H de Ru
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre (LUMC) , Leiden, 2300 RC The Netherlands
| | | | - Leonard Amaral
- Travel Medicine of the CMDT, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa , Lisboa, 1349-008 Portugal
| | - Dick van Soolingen
- Departments of Pulmonary Diseases and Medical Microbiology, Radboud University Medical Centre , Nijmegen, 6500 HB The Netherlands
| | - Peter A van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre (LUMC) , Leiden, 2300 RC The Netherlands
| |
Collapse
|
15
|
Abdülrezzak Ü, Erdoğan Z, Silov G, Özdal A, Turhal Ö. Effect of trifluoperazine on Tc-99m sestamibi uptake in patients with advanced nonsmall cell lung cancer. Indian J Nucl Med 2016; 31:103-7. [PMID: 27095857 PMCID: PMC4815380 DOI: 10.4103/0972-3919.178256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate whether there is an effect of trifluoperazine on Tc-99m methoxyisobutylisonitrile (MIBI) uptake in patients with advanced nonsmall cell lung cancer (NCLC). MATERIALS AND METHODS A total of 23 patients with biopsy-proven advanced NCLC who had no previous history of chemo-radiotherapy, underwent baseline dual phase planar, single photon emission computed tomography and whole body Tc-99m MIBI scintigraphy performed at 20 and 120 min. After oral administration of trifluoperazine (5 mg, 2 times a day, for 5 days), dual phase Tc-99m MIBI scintigraphy was repeated. For each patient, and for both studies, regions of interest were drawn over the tumor area (T) and over the normal lung area (L) on the contralateral side in transverse slices where tumor was visualized clearly. Then, early and delayed T/L ratios and washout rate (WR) were calculated. RESULTS Tc-99m MIBI was accumulated in the cancer tissue in all of the patients. Delayed ratio after the oral administration of trifluoperazine (DR2) was significantly higher (P = 0.039) than delayed ratio before trifluoperazine (DR1). We found no significant differences of early ratio before trifluoperazine (ER1) and early ratio after trifluoperazine (ER2), and washout rate before (WR1) and washout rate after trifluoperazine (WR2). CONCLUSION In patients with advanced NCLC, trifluoperazine treatment in addition to chemotherapy might be useful. However, our results need to be confirmed in larger series of patients.
Collapse
Affiliation(s)
- Ümmühan Abdülrezzak
- Department of Nuclear Medicine, Erciyes University School of Medicine, 38010-Kayseri, Turkey
| | - Zeynep Erdoğan
- Department of Nuclear Medicine, Kayseri Training and Research Hospital, 38010-Kayseri, Turkey
| | - Güler Silov
- Department of Nuclear Medicine, Kayseri Training and Research Hospital, 38010-Kayseri, Turkey
| | - Ayşegül Özdal
- Department of Nuclear Medicine, Kayseri Training and Research Hospital, 38010-Kayseri, Turkey
| | - Özgül Turhal
- Department of Nuclear Medicine, Kayseri Training and Research Hospital, 38010-Kayseri, Turkey
| |
Collapse
|
16
|
Binding of phenothiazines into allosteric hydrophobic pocket of human thioredoxin 1. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:279-86. [PMID: 26820562 DOI: 10.1007/s00249-016-1113-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/25/2015] [Accepted: 01/10/2016] [Indexed: 10/22/2022]
Abstract
Thioredoxins are multifunctional oxidoreductase proteins implicated in the antioxidant cellular apparatus and oxidative stress. They are involved in several pathologies and are promising anticancer targets. Identification of noncatalytic binding sites is of great interest for designing new allosteric inhibitors of thioredoxin. In a recent work, we predicted normal mode motions of human thioredoxin 1 and identified two major putative hydrophobic binding sites. In this work we investigated noncovalent interactions of human thioredoxin 1 with three phenotiazinic drugs acting as prooxidant compounds by using molecular docking and circular dichroism spectrometry to probe ligand binding into the previously predicted allosteric hydrophobic pockets. Our in silico and CD spectrometry experiments suggested one preferred allosteric binding site involving helix 3 and adopting the best druggable conformation identified by NMA. The CD spectra showed binding of thioridazine into thioredoxin 1 and suggested partial helix unfolding, which most probably concerns helix 3. Taken together, these data support the strategy to design thioredoxin inhibitors targeting a druggable allosteric binding site.
Collapse
|
17
|
Chang CC, Jou SH, Lin TT, Lai TJ, Liu CS. Mitochondria DNA change and oxidative damage in clinically stable patients with major depressive disorder. PLoS One 2015; 10:e0125855. [PMID: 25946463 PMCID: PMC4422713 DOI: 10.1371/journal.pone.0125855] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/26/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND To compare alterations of mitochondria DNA (mtDNA) copy number, single nucleotide polymorphisms (SNPs), and oxidative damage of mtDNA in clinically stable patients with major depressive disorder (MDD). METHODS Patients met DSM-IV diagnostic criteria for MDD were recruited from the psychiatric outpatient clinic at Changhua Christian Hospital, Taiwan. They were clinically stable and their medications had not changed for at least the preceding two months. Exclusion criteria were substance-induced psychotic disorder, eating disorder, anxiety disorder or illicit substance abuse. Comparison subjects did not have any major psychiatric disorder and they were medically healthy. Peripheral blood leukocytes were analyzed to compare copy number, SNPs and oxidative damage of mtDNA between the two groups. RESULTS 40 MDD patients and 70 comparison subjects were collected. The median age of the subjects was 42 years and 38 years in MDD and comparison groups, respectively. Leukocyte mtDNA copy number of MDD patients was significantly lower than that of the comparison group (p = 0.037). MDD patients had significantly higher mitochondrial oxidative damage than the comparison group (6.44 vs. 3.90, p<0.001). After generalized linear model adjusted for age, sex, smoking, family history, and psychotropic use, mtDNA copy number was still significantly lower in the MDD group (p<0.001). MtDNA oxidative damage was positively correlated with age (p<0.001) and MDD (p<0.001). Antipsychotic use was negatively associated with mtDNA copy number (p = 0.036). LIMITATIONS The study is cross-sectional with no longitudinal follow up. The cohort is clinically stable and generalizability of our result to other cohort should be considered. CONCLUSIONS Our study suggests that oxidative stress and mitochondria may play a role in the pathophysiology of MDD. More large-scale studies are warranted to assess the interplay between oxidative stress, mitochondria dysfunction and MDD.
Collapse
Affiliation(s)
- Cheng-Chen Chang
- The Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Psychiatry, Changhua Christian Hospital, Changhua, Taiwan
| | - Shaw-Hwa Jou
- Department of Psychiatry, Taichung Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Taichung, Taiwan
- Department of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ta-Tsung Lin
- Vascular and Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Te-Jen Lai
- The Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (TJL); (CSL)
| | - Chin-San Liu
- Vascular and Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- * E-mail: (TJL); (CSL)
| |
Collapse
|
18
|
Mao M, Yu T, Hu J, Hu L. Dopamine D2 receptor blocker thioridazine induces cell death in human uterine cervical carcinoma cell line SiHa. J Obstet Gynaecol Res 2015; 41:1240-5. [PMID: 25832589 DOI: 10.1111/jog.12691] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 12/01/2014] [Accepted: 01/04/2015] [Indexed: 11/30/2022]
Abstract
AIM The aim of this study was to explore the correlation of dopamine D2 receptor (DRD2) and the development of uterine cervical cancer, and the effect of thioridazine (an antagonist of DRD2) on the SiHa cell line. MATERIAL AND METHODS The expression of DRD2 in tissues was detected with immunohistochemistry. SiHa cells were exposed to different concentrations of thioridazine for 24 h, and then cell viability was determined. After 20-μM thioridazine treatment for 24 h, the protein level of DRD2 in SiHa cells was analyzed by Western blots, apoptosis was detected with the phosphatidylserine externalization and comet assay, and necrosis was detected by measuring high-mobility group box 1 protein (HMGB1). RESULTS The expression of DRD2 gradually increased from normal to cancer tissues (P < 0.01). In vitro, DRD2 blocker thioridazine treatment resulted in death of SiHa cells with the expression of DRD2 significantly regulated down (P < 0.05), and thioridazine significantly induced SiHa apoptosis (P = 0.016) and necrosis (P < 0.01). CONCLUSION Higher DRD2 expression is closely associated with cervical cancer progression. After blocking DRD2, SiHa cell growth is significantly suppressed, indicating that DRD2 may function as a novel tumor marker and a potential therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Min Mao
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tinghe Yu
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianguo Hu
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Hu
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Pazin M, Pereira LC, Dorta DJ. Toxicity of brominated flame retardants, BDE-47 and BDE-99 stems from impaired mitochondrial bioenergetics. Toxicol Mech Methods 2014; 25:34-41. [PMID: 25299509 DOI: 10.3109/15376516.2014.974233] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are used as flame retardants, and they have been detected in human blood, adipose tissue and breast milk, a consequence of their physicochemical and bioaccumulative properties, as well as their high environmental persistence. Many studies report liver toxicity related to exposure to PBDEs. In the present study, we investigated the toxicity of BDE-47 and BDE-99 at concentrations ranging from 0.1 to 50 µM in isolated rat liver mitochondria. We evaluated how incubation of a mitochondrial suspension with the PBDEs affected the mitochondrial inner membrane, membrane potential, oxygen consumption, calcium release, mitochondrial swelling, and ATP levels to find out whether the tested compound interfered with the bioenergetics of this organelle. Both PBDEs were toxic to mitochondria: BDE-47 and BDE-99 concentrations equal to or higher than 25 and 50 µM, respectively, modified all the parameters used to assess mitochondrial bioenergetics, which culminated in ATP depletion. These effects stemmed from the ability of both PBDEs to cause Membrane Permeability Transition (MPT) in mitochondria, which impaired mitochondrial bioenergetics. In particular, BDE-47, which has fewer bromine atoms in the molecule, can easily overcome biological membranes what would be responsible for the major negative effects exerted by this congener when compared with BDE-99.
Collapse
Affiliation(s)
- Murilo Pazin
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto, São Paulo , Brazil and
| | | | | |
Collapse
|
20
|
Chang CC, Jou SH, Lin TT, Liu CS. Mitochondrial DNA variation and increased oxidative damage in euthymic patients with bipolar disorder. Psychiatry Clin Neurosci 2014; 68:551-7. [PMID: 24447331 DOI: 10.1111/pcn.12163] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 01/03/2014] [Accepted: 01/15/2014] [Indexed: 12/13/2022]
Abstract
AIM The aim of this study was to compare alterations of mitochondrial DNA (mtDNA) copy number, single nucleotide polymorphisms, and oxidative damage of mtDNA in clinically stable patients with bipolar I disorder (BD). METHODS Patients meeting DSM-IV diagnostic criteria for BD were recruited from the psychiatric outpatient clinic at Changhua Christian Hospital, Taiwan. They were clinically stable and their medications had not changed for at least the preceding 2 months. Exclusion criteria were substance-induced psychotic disorder, eating disorder, anxiety disorder or illicit substance abuse. Comparison subjects did not have any history of major psychiatric disorders and they were non-smokers. By analyzing peripheral blood leukocytes, copy number, single nucleotide polymorphisms and oxidative damage of mtDNA were compared between the two groups. RESULTS The median age of the subjects was 38 years and 41.5 years in the comparison and BD groups, respectively. The leukocyte mtDNA copy number of the BD group was significantly lower than that of the comparison group (P < 0.001). BD patients had significantly higher mitochondrial oxidative damage than the comparison group (6.1 vs 3.9, P < 0.001). After generalized linear model adjusting with age, sex, smoking, family history, and psychotropic use, mtDNA copy number was still significantly lower in the BD group (P < 0.001). MtDNA oxidative damage was positively correlated with age (P = 0.034), although mtDNA oxidative damage was similar between these two groups. CONCLUSION Possible involvement of oxidative stress and mitochondria in the pathophysiology of BD needs more large-scale studies. It is important that psychiatrists retain a high level of suspicion for mitochondrial dysfunction in patients with bipolar disorder.
Collapse
Affiliation(s)
- Cheng-Chen Chang
- Department of Psychiatry, Changhua Christian Hospital, Changhua, Taiwan; The Institute of Medicine, Chungshan Medical University, Taichung, Taiwan
| | | | | | | |
Collapse
|
21
|
Santos EO, Kabeya LM, Figueiredo-Rinhel AS, Marchi LF, Andrade MF, Piatesi F, Paoliello-Paschoalato AB, Azzolini AEC, Lucisano-Valim YM. Flavonols modulate the effector functions of healthy individuals' immune complex-stimulated neutrophils: A therapeutic perspective for rheumatoid arthritis. Int Immunopharmacol 2014; 21:102-11. [DOI: 10.1016/j.intimp.2014.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/04/2014] [Accepted: 04/12/2014] [Indexed: 12/25/2022]
|
22
|
Min KJ, Seo BR, Bae YC, Yoo YH, Kwon TK. Antipsychotic agent thioridazine sensitizes renal carcinoma Caki cells to TRAIL-induced apoptosis through reactive oxygen species-mediated inhibition of Akt signaling and downregulation of Mcl-1 and c-FLIP(L). Cell Death Dis 2014; 5:e1063. [PMID: 24556678 PMCID: PMC3944252 DOI: 10.1038/cddis.2014.35] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 12/18/2022]
Abstract
Thioridazine has been known as an antipsychotic agent, but it also has anticancer activity. However, the effect of thioridazine on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitization has not yet been studied. Here, we investigated the ability of thioridazine to sensitize TRAIL-mediated apoptosis. Combined treatment with thioridazine and TRAIL markedly induced apoptosis in various human carcinoma cells, including renal carcinoma (Caki, ACHN, and A498), breast carcinoma (MDA-MB231), and glioma (U251MG) cells, but not in normal mouse kidney cells (TMCK-1) and human normal mesangial cells. We found that thioridazine downregulated c-FLIP(L) and Mcl-1 expression at the post-translational level via an increase in proteasome activity. The overexpression of c-FLIP(L) and Mcl-1 overcame thioridazine plus TRAIL-induced apoptosis. We further observed that thioridazine inhibited the Akt signaling pathway. In contrast, although other phosphatidylinositol-3-kinase/Akt inhibitors (LY294002 and wortmannin) sensitized TRAIL-mediated apoptosis, c-FLIP(L) and Mcl-1 expressions were not altered. Furthermore, thioridazine increased the production of reactive oxygen species (ROS) in Caki cells, and ROS scavengers (N-acetylcysteine, glutathione ethyl ester, and trolox) inhibited thioridazine plus TRAIL-induced apoptosis, as well as Akt inhibition and the downregulation of c-FLIP(L) and Mcl-1. Collectively, our study demonstrates that thioridazine enhances TRAIL-mediated apoptosis via the ROS-mediated inhibition of Akt signaling and the downregulation of c-FLIP(L) and Mcl-1 at the post-translational level.
Collapse
Affiliation(s)
- K-j Min
- Department of Immunology, School of Medicine, Keimyung University, Daegu 704-701, South Korea
| | - B R Seo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 704-701, South Korea
| | - Y C Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea
| | - Y H Yoo
- Department of Anatomy and Cell Biology and Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan 602-714, South Korea
| | - T K Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 704-701, South Korea
| |
Collapse
|
23
|
Figueiredo SA, Vilela FMP, Silva CAD, Cunha TM, dos Santos MH, Fonseca MJV. In vitro and in vivo photoprotective/photochemopreventive potential of Garcinia brasiliensis epicarp extract. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 131:65-73. [DOI: 10.1016/j.jphotobiol.2014.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/04/2013] [Accepted: 01/07/2014] [Indexed: 12/22/2022]
|
24
|
Zhang B, Shimada Y, Kuroyanagi J, Umemoto N, Nishimura Y, Tanaka T. Quantitative phenotyping-based in vivo chemical screening in a zebrafish model of leukemia stem cell xenotransplantation. PLoS One 2014; 9:e85439. [PMID: 24454867 PMCID: PMC3893211 DOI: 10.1371/journal.pone.0085439] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/27/2013] [Indexed: 12/21/2022] Open
Abstract
Zebrafish-based chemical screening has recently emerged as a rapid and efficient method to identify important compounds that modulate specific biological processes and to test the therapeutic efficacy in disease models, including cancer. In leukemia, the ablation of leukemia stem cells (LSCs) is necessary to permanently eradicate the leukemia cell population. However, because of the very small number of LSCs in leukemia cell populations, their use in xenotransplantation studies (in vivo) and the difficulties in functionally and pathophysiologically replicating clinical conditions in cell culture experiments (in vitro), the progress of drug discovery for LSC inhibitors has been painfully slow. In this study, we developed a novel phenotype-based in vivo screening method using LSCs xenotransplanted into zebrafish. Aldehyde dehydrogenase-positive (ALDH+) cells were purified from chronic myelogenous leukemia K562 cells tagged with a fluorescent protein (Kusabira-orange) and then implanted in young zebrafish at 48 hours post-fertilization. Twenty-four hours after transplantation, the animals were treated with one of eight different therapeutic agents (imatinib, dasatinib, parthenolide, TDZD-8, arsenic trioxide, niclosamide, salinomycin, and thioridazine). Cancer cell proliferation, and cell migration were determined by high-content imaging. Of the eight compounds that were tested, all except imatinib and dasatinib selectively inhibited ALDH+ cell proliferation in zebrafish. In addition, these anti-LSC agents suppressed tumor cell migration in LSC-xenotransplants. Our approach offers a simple, rapid, and reliable in vivo screening system that facilitates the phenotype-driven discovery of drugs effective in suppressing LSCs.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
| | - Yasuhito Shimada
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
- Mie University Medical Zebrafish Research Center, Edobashi, Tsu, Mie, Japan
- Department of Bioinformatics, Mie University Life Science Research Center, Edobashi, Tsu, Mie, Japan
- Department of Omics Medicine, Mie University Industrial Technology Innovation, Edobashi, Tsu, Mie, Japan
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
| | - Junya Kuroyanagi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
| | - Noriko Umemoto
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
| | - Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
- Mie University Medical Zebrafish Research Center, Edobashi, Tsu, Mie, Japan
- Department of Bioinformatics, Mie University Life Science Research Center, Edobashi, Tsu, Mie, Japan
- Department of Omics Medicine, Mie University Industrial Technology Innovation, Edobashi, Tsu, Mie, Japan
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
- Mie University Medical Zebrafish Research Center, Edobashi, Tsu, Mie, Japan
- Department of Bioinformatics, Mie University Life Science Research Center, Edobashi, Tsu, Mie, Japan
- Department of Omics Medicine, Mie University Industrial Technology Innovation, Edobashi, Tsu, Mie, Japan
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
- * E-mail:
| |
Collapse
|
25
|
Pereira LC, Miranda LFC, de Souza AO, Dorta DJ. BDE-154 induces mitochondrial permeability transition and impairs mitochondrial bioenergetics. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:24-36. [PMID: 24555644 DOI: 10.1080/15287394.2014.861337] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Brominated flame retardants are used in various consumer goods to make these materials difficult to burn. Polybrominated diphenyl ethers (PBDE), which are representative of this class of retardants, consist of two benzene rings linked by an oxygen atom, and contain between 1 and 10 bromine atoms in their chemical structure, with the possibility of up to 209 different congeners. Among these congeners, BDE-154 (hexa-BDE) is persistent in the environment and easy to detect in the biota, but no apparent information regarding the mechanism underlying action and toxicity is available. Mitochondria, as the main energy-producing organelles, play an important role in the maintenance of various cellular functions. Therefore, mitochondria were used in the present study as an experimental model to determine the effects of BDE-154 congener at concentrations ranging from 0.1 μM to 50 μM. Our results demonstrated that BDE-154 interacts with the mitochondrial membrane, preferably by inserting into the hydrophobic core of the mitochondrial membrane, which partially inhibits respiration, dissipates Δψ, and permeabilizes the inner mitochondrial membrane to deplete ATP. These effects are more pronounced at concentrations equal to or higher than 10 μM. Results also showed that BDE-154 did not induce reactive oxygen species (ROS) accumulation within the mitochondria, indicating the absence of oxidative stress. Therefore, BDE-154 impairs mitochondrial bioenergetics and permeabilizes the mitochondrial membrane, potentially leading to cell death but not via mechanisms involving oxidative stress.
Collapse
Affiliation(s)
- Lílian Cristina Pereira
- a Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas , Toxicológicas e Bromatológicas, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| | | | | | | |
Collapse
|
26
|
Kang S, Dong SM, Kim BR, Park MS, Trink B, Byun HJ, Rho SB. Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells. Apoptosis 2013; 17:989-97. [PMID: 22460505 PMCID: PMC3413814 DOI: 10.1007/s10495-012-0717-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, thioridazine (10-[2-(1-methyl-2-piperidyl) ethyl]-2-methylthiophenothiazine), a well-known anti-psychotic agent was found to have anti-cancer activity in cancer cells. However, the molecular mechanism of the agent in cellular signal pathways has not been well defined. Thioridazine significantly increased early- and late-stage apoptotic fraction in cervical and endometrial cancer cells, suggesting that suppression of cell growth by thioridazine was due to the induction of apoptosis. Cell cycle analysis indicated thioridazine induced the down-regulation of cyclin D1, cyclin A and CDK4, and the induction of p21 and p27, a cyclin-dependent kinase inhibitor. Additionally, we compared the influence of thioridazine with cisplatin used as a control, and similar patterns between the two drugs were observed in cervical and endometrial cancer cell lines. Furthermore, as expected, thioridazine successfully inhibited phosphorylation of Akt, phosphorylation of 4E-BP1 and phosphorylation of p70S6K, which is one of the best characterized targets of the mTOR complex cascade. These results suggest that thioridazine effectively suppresses tumor growth activity by targeting the PI3K/Akt/mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Sokbom Kang
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 Republic of Korea
- Division of Gynecologic Cancer Research, Research Institute and Hospital, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 Republic of Korea
| | - Seung Myung Dong
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 Republic of Korea
| | - Boh-Ram Kim
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 Republic of Korea
| | - Mi Sun Park
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 Republic of Korea
| | - Barry Trink
- Division of Head and Neck Cancer Research, Department of Otolaryngology and Head & Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA
| | - Hyun-Jung Byun
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 Republic of Korea
| | - Seung Bae Rho
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 Republic of Korea
| |
Collapse
|
27
|
Kabeya LM, Fuzissaki CN, Andrade MF, Azzolini AECS, Taleb-Contini SH, Vermelho RB, Lopes JLC, Lucisano-Valim YM. 4-methylcoumarin derivatives inhibit human neutrophil oxidative metabolism and elastase activity. J Med Food 2013; 16:692-700. [PMID: 23905650 DOI: 10.1089/jmf.2012.0184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Increased neutrophil activation significantly contributes to the tissue damage in inflammatory illnesses; this phenomenon has motivated the search for new compounds to modulate their effector functions. Coumarins are natural products that are widely consumed in the human diet. We have evaluated the antioxidant and immunomodulator potential of five 4-methylcoumarin derivatives. We found that the 4-methylcoumarin derivatives inhibited the generation of reactive oxygen species by human neutrophils triggered by serum-opsonized zymosan or phorbol-12-myristate-13-acetate; this inhibition occurred in a concentration-dependent manner, as revealed by lucigenin- and luminol-enhanced chemiluminescence assays. Cytotoxicity did not mediate this inhibitory effect. The 7,8-dihydroxy-4-methylcoumarin suppressed the neutrophil oxidative metabolism more effectively than the 6,7- and 5,7-dihydroxy-4-methylcoumarins, but the 5,7- and 7,8-diacetoxy-4-methylcoumarins were less effective than their hydroxylated counterparts. An analysis of the biochemical pathways suggested that the 6,7- and 7,8-dihydroxy-4-methylcoumarins inhibit the protein kinase C-mediated signaling pathway, but 5,7-dihydroxy-4-methylcoumarin, as well as 5,7- and 7,8-diacetoxy-4-methylcoumarins do not significantly interfere in this pathway of the activation of the human neutrophil oxidative metabolism. The 4-methylcoumarin derivatives bearing the catechol group suppressed the elastase and myeloperoxidase activity and reduced the 1,1-diphenyl-2-picrylhydrazyl free radical the most strongly. Interestingly, the 5,7-dihydroxy-4-methylcoumarin scavenged hypochlorous acid more effectively than the o-dihydroxy-substituted 4-methylcoumarin derivatives, and the diacetoxylated 4-methylcoumarin derivatives scavenged hypochlorous acid as effectively as the 7,8-dihydroxy-4-methylcoumarin. The significant influence of small structural modifications in the inhibitory potential of 4-methylcoumarin derivatives on the effector functions of neutrophil makes them interesting candidates to develop new drugs for the treatment of inflammatory diseases mediated by increased neutrophil activation.
Collapse
Affiliation(s)
- Luciana M Kabeya
- Department of Physics and Chemistry, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Pereira LC, de Souza AO, Dorta DJ. Polybrominated diphenyl ether congener (BDE-100) induces mitochondrial impairment. Basic Clin Pharmacol Toxicol 2013; 112:418-24. [PMID: 23302053 DOI: 10.1111/bcpt.12046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/20/2012] [Indexed: 01/05/2023]
Abstract
Brominated flame retardants are used in various consumer products to increase their resistance to fire and/or high temperatures. Polybrominated diphenyl ethers (PBDEs) are representatives of this class and among the most widely used congeners, and BDE-100 is produced on a large scale. There is a lack of toxicological data about these compounds, which has recently become a matter of concern to the scientific community. The mitochondria are recognized as the main energy-producing organelles, as well as playing a vital role in the maintenance of many cell functions. Therefore, mitochondria were used in the present work as an experimental model to evaluate the effects of the BDE-100 congeners at concentrations ranging from 0.1 μM to 50 μM. The results showed that high concentrations of BDE-100 were able to induce mitochondrial alterations. It was observed that the substance had an affinity for the hydrophilic portion of the mitochondrial membrane, as monitored by ANS, inhibiting the glutamate + malate-stimulated mitochondrial respiration and also inducing dissipation of the mitochondrial membrane potential, deregulation of calcium homoeostasis and mitochondrial swelling, the latter being insensitive to cyclosporin A (CsA) but partially inhibited by Ruthenium Red and N-ethyl maleimide. In addition, a significant reduction in mitochondrial ATP content was found, but on the other hand, no oxidative stress was observed after exposure of the mitochondria to BDE-100. These results show the key role of mitochondria in the cytotoxicity induced by BDE-100.
Collapse
Affiliation(s)
- Lílian Cristina Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
29
|
Redox proteomics and drug development. J Proteomics 2011; 74:2575-95. [DOI: 10.1016/j.jprot.2011.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/22/2010] [Accepted: 01/09/2011] [Indexed: 01/06/2023]
|
30
|
|
31
|
Liu S, Han Y, Zhang T, Yang Z. Protective effect of trifluoperazine on hydrogen peroxide-induced apoptosis in PC12 cells. Brain Res Bull 2010; 84:183-8. [PMID: 21172409 DOI: 10.1016/j.brainresbull.2010.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/02/2010] [Accepted: 12/12/2010] [Indexed: 01/25/2023]
Abstract
This study investigated effects of trifluoperazine (TFP) against the cytotoxicity induced by H₂O₂ in PC12 cells and the mechanisms thereof. Different concentrations of H₂O₂ (100-500 μM) induced a significant decrease in cell viability accompanied by increased oxidative stress and cell apoptosis. Pretreatment with TFP inhibited H₂O₂-induced cell viability loss. The flow cytometric assay showed that TFP can inhibit intracellular reactive oxygen species (ROS) generation and reduce the cell apoptosis. The electrophysiological recordings indicated that when treated with H₂O₂, the calcium current was significantly increased. Pretreatment with TFP increased mitochondrial membrane potential (MMP) in cells of oxidative injury. These results suggested that TFP can reduce apoptosis by inhibiting ROS generation and preventing loss of MMP in cells. Meanwhile, the protective effect of TFP on the cell apoptosis may be related to the calcium overload. TFP may inhibit the calcium overload process to achieve the protection against apoptosis.
Collapse
Affiliation(s)
- Shichang Liu
- School of Medicine, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| | | | | | | |
Collapse
|
32
|
Rho SB, Kim BR, Kang S. A gene signature-based approach identifies thioridazine as an inhibitor of phosphatidylinositol-3'-kinase (PI3K)/AKT pathway in ovarian cancer cells. Gynecol Oncol 2010; 120:121-7. [PMID: 21035837 DOI: 10.1016/j.ygyno.2010.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 09/28/2010] [Accepted: 10/01/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Thioridazine, a derivative of phenothiazine, has been reported to have antiproliferative activity on tumor cells. However, the mechanism has not been well defined. METHODS Using in-silico gene signature based approach, we have demonstrated that thioridazine could inhibit phosphatidylinositol-3'-kinase (PI3K)/Akt pathway, and thus exert cytotoxicity in ovarian cancer cells. RESULTS The Connectivity Map indicated that thioridazine induces gene signature similar to that of Akt inhibition. Moreover, preexisting inhibitors of PI3K/Akt pathway were also found to reveal similar signature. In SKOV-3 cells, immunoblot using p85 antibody showed that thioridazine could inhibit PI3K signal. In addition, thioridazine was found to inhibit p-Akt (Ser 473) in a dose-dependent manner. Furthermore, thioridazine was found to decrease cell viability and induce apoptosis. Exposure to thioridazine induced G(0)/G(1) arrest and down-regulated the cell cycle regulator, Cyclin D1 and CDK4, and up-regulated p21, p16, and p-CDC25A. Finally, additive cytotoxicity was observed when cisplatin and thioridazine were treated simultaneously. CONCLUSIONS The current study indicated that in-silico approach, such as Connectivity Map, is a potentially useful method to identify the unknown cellular function among the drugs already in use in clinic. Owing to the property of Akt inhibition and additive cytotoxicity observed with the platinum compound, further research should be focused on this drug.
Collapse
Affiliation(s)
- Seung Bae Rho
- Division of Gynecologic Cancer Research, Research Institute and Hospital, National Cancer Center, Goyang 410-769, Republic of Korea
| | | | | |
Collapse
|
33
|
On the mechanisms of phenothiazine-induced mitochondrial permeability transition: Thiol oxidation, strict Ca2+ dependence, and cyt c release. Biochem Pharmacol 2010; 80:1284-95. [DOI: 10.1016/j.bcp.2010.06.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 06/29/2010] [Accepted: 06/30/2010] [Indexed: 01/14/2023]
|
34
|
Borges MBD, Dos Santos CG, Yokomizo CH, Sood R, Vitovic P, Kinnunen PKJ, Rodrigues T, Nantes IL. Characterization of hydrophobic interaction and antioxidant properties of the phenothiazine nucleus in mitochondrial and model membranes. Free Radic Res 2010; 44:1054-63. [DOI: 10.3109/10715762.2010.498826] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Jensen KHR, Rekling JC. Development of a no-wash assay for mitochondrial membrane potential using the styryl dye DASPEI. ACTA ACUST UNITED AC 2010; 15:1071-81. [PMID: 20713988 DOI: 10.1177/1087057110376834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mitochondrial dysfunction is a hallmark of several diseases and may also result from drugs with unwanted side effects on mitochondrial biochemistry. The mitochondrial membrane potential is a good indicator of mitochondrial function. Here, the authors have developed a no-wash mitochondrial membrane potential assay using 2-(4-(dimethylamino)styryl)-N-ethylpyridinium iodide (DASPEI), a rarely used mitochondrial potentiometric probe, in a 96-well format using a fluorescent plate reader. The assay was validated using 2 protonophores (CCCP, DNP), which are known uncouplers, and the neuroleptic thioridazine, which is a suspected mitochondrial toxicant. CCCP and DNP have short-term depolarizing effects, and thioridazine has long-term hyperpolarizing effects on the mitochondrial membrane potential of Chinese hamster ovary (CHO) cells. The assay also detected changes of the mitochondrial membrane potential in CHO cells exposed to cobalt (mimicking hypoxia) and in PC12 cells exposed to amyloid β, demonstrating that the assay can be used in cellular models of hypoxia and Alzheimer's disease. The assay needs no washing steps, has a Z' value >0.5, can be used on standard fluorometers, has good post liquid-handling stability, and thus is suitable for large-scale screening efforts. In summary, the DASPEI assay is simple and rapid and may be of use in toxicological testing, drug target discovery, and mechanistic models of diseases involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kristian H R Jensen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
36
|
Fonseca YM, Catini CD, Vicentini FTMC, Nomizo A, Gerlach RF, Fonseca MJV. Protective effect of Calendula officinalis extract against UVB-induced oxidative stress in skin: evaluation of reduced glutathione levels and matrix metalloproteinase secretion. JOURNAL OF ETHNOPHARMACOLOGY 2010; 127:596-601. [PMID: 20026397 DOI: 10.1016/j.jep.2009.12.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/09/2009] [Accepted: 12/13/2009] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND PURPOSE Calendula officinalis flowers have long been employed time in folk therapy, and more than 35 properties have been attributed to decoctions and tinctures from the flowers. The main uses are as remedies for burns (including sunburns), bruises and cutaneous and internal inflammatory diseases of several origins. The recommended doses are a function both of the type and severity of the condition to be treated and the individual condition of each patient. Therefore, the present study investigated the potential use of Calendula officinalis extract to prevent UV irradiation-induced oxidative stress in skin. METHODS Firstly, the physico-chemical composition of marigold extract (ME) (hydroalcoholic extract) was assessed and the in vitro antioxidant efficacy was determined using different methodologies. Secondly, the cytotoxicity was evaluated in L929 and HepG2 cells with the MTT assay. Finally, the in vivo protective effect of ME against UVB-induced oxidative stress in the skin of hairless mice was evaluated by determining reduced glutathione (GSH) levels and monitoring the secretion/activity of metalloproteinases. RESULTS AND CONCLUSIONS The polyphenol, flavonoid, rutin and narcissin contents found in ME were 28.6 mg/g, 18.8 mg/g, 1.6 mg/g and 12.2mg/g, respectively and evaluation of the in vitro antioxidant activity demonstrated a dose-dependent effect of ME against different radicals. Cytoxicity experiments demonstrated that ME was not cytotoxic for L929 and HepG2 cells at concentrations less than or equal to of 15 mg/mL. However, concentrations greater than or equal to 30 mg/mL, toxic effects were observed. Finally, oral treatment of hairless mice with 150 and 300 mg/kg of ME maintained GSH levels close to non-irradiated control mice. In addition, this extract affects the activity/secretion of matrix metalloproteinases 2 and 9 (MMP-2 and -9) stimulated by exposure to UVB irradiation. However, additional studies are required to have a complete understanding of the protective effects of ME for skin.
Collapse
Affiliation(s)
- Yris Maria Fonseca
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
37
|
Antineoplastic and cytogenetic effects of chlorpromazine on human lymphocytes in vitro and on Ehrlich ascites tumor cells in vivo. Anticancer Drugs 2009; 20:746-51. [PMID: 19584706 DOI: 10.1097/cad.0b013e32832f567b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The inhibitory effect of phenothiazines in tumor growth and cancer cell proliferation in vitro and in vivo has been established. These reports motivated us to investigate the genotoxic, cytotoxic, and cytostatic potential of chlorpromazine, alone or in combination with mitomycin C, in vitro and in vivo. Sister chromatid exchange levels were assessed providing a quantitative index of genotoxicity. In-vitro studies were performed on human lymphocyte cultures and in-vivo studies involved Ehrilch ascites tumor (EAT) cells. An antitumour study was also conducted on the survival time and the ascitic volume in EAT-bearing Balb/C mice. The combination of chlorpromazine plus caffeine and mitomycin C exerted cytostatic and cytotoxic actions in human lymphocytes. The combination of chlorpromazine plus mitomycin C exerted cytostatic and cytotoxic actions in EAT cells, significantly increased the survival span of the mice inoculated with EAT cells, and suppressed the expected tumor growth increase. The findings of this basic study illustrate that high chlorpromazine concentrations increase chemotherapeutic effectiveness of mitomycin C. Chlorpromazine concentrations within the observed human plasma concentration range need to be tested along with antineoplastic agents in vitro for its synergistic action so as to evaluate a potential clinical application. Further investigation including other phenothiazines, biological systems, and cancer models is required.
Collapse
|
38
|
Choi KH, Higgs BW, Weis S, Song J, Llenos IC, Dulay JR, Yolken RH, Webster MJ. Effects of typical and atypical antipsychotic drugs on gene expression profiles in the liver of schizophrenia subjects. BMC Psychiatry 2009; 9:57. [PMID: 19758435 PMCID: PMC2749837 DOI: 10.1186/1471-244x-9-57] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 09/16/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although much progress has been made on antipsychotic drug development, precise mechanisms behind the action of typical and atypical antipsychotics are poorly understood. METHODS We performed genome-wide expression profiling to study effects of typical antipsychotics and atypical antipsychotics in the postmortem liver of schizophrenia patients using microarrays (Affymetrix U133 plus2.0). We classified the subjects into typical antipsychotics (n = 24) or atypical antipsychotics (n = 26) based on their medication history, and compared gene expression profiles with unaffected controls (n = 34). We further analyzed individual antipsychotic effects on gene expression by sub-classifying the subjects into four major antipsychotic groups including haloperidol, phenothiazines, olanzapine and risperidone. RESULTS Typical antipsychotics affected genes associated with nuclear protein, stress responses and phosphorylation, whereas atypical antipsychotics affected genes associated with golgi/endoplasmic reticulum and cytoplasm transport. Comparison between typical antipsychotics and atypical antipsychotics further identified genes associated with lipid metabolism and mitochondrial function. Analyses on individual antipsychotics revealed a set of genes (151 transcripts, FDR adjusted p < 0.05) that are differentially regulated by four antipsychotics, particularly by phenothiazines, in the liver of schizophrenia patients. CONCLUSION Typical antipsychotics and atypical antipsychotics affect different genes and biological function in the liver. Typical antipsychotic phenothiazines exert robust effects on gene expression in the liver that may lead to liver toxicity. The genes found in the current study may benefit antipsychotic drug development with better therapeutic and side effect profiles.
Collapse
Affiliation(s)
- Kwang H Choi
- Stanley Laboratory of Brain Research, Rockville, MD 20850, USA.
| | | | - Serge Weis
- Stanley Laboratory of Brain Research, Rockville, MD 20850, USA,Departments of Psychiatry and Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Jonathan Song
- Stanley Laboratory of Brain Research, Rockville, MD 20850, USA
| | - Ida C Llenos
- Stanley Laboratory of Brain Research, Rockville, MD 20850, USA,Departments of Psychiatry and Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Jeannette R Dulay
- Stanley Laboratory of Brain Research, Rockville, MD 20850, USA,Departments of Psychiatry and Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Robert H Yolken
- Stanley Laboratory of Developmental Neurovirology, Johns Hopkins University, School of Medicine, 600 North Wolfe Street, Blalock 1105, Baltimore, MD 21287, USA
| | - Maree J Webster
- Stanley Laboratory of Brain Research, Rockville, MD 20850, USA
| |
Collapse
|
39
|
Rosa EF, Ribeiro RF, Pereira FMT, Freymüller E, Aboulafia J, Nouailhetas VLA. Vitamin C and E supplementation prevents mitochondrial damage of ileum myocytes caused by intense and exhaustive exercise training. J Appl Physiol (1985) 2009; 107:1532-8. [PMID: 19696358 DOI: 10.1152/japplphysiol.91166.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intense and exhaustive exercise (IEE) is associated with oxidative stress in skeletal muscle, and we recently reported that intestine is sensitive to IEE. In the present study, we investigated the possible relationship between the effects of IEE on morphology and oxidative markers in the ileum and isolated mitochondria. C57BL/6 mice were ascribed either to a control group comprising two subgroups, one sedentary and another exercised for 10 days (E10), or to a corresponding supplemented control group again comprising two subgroups, one sedentary and another exercised for 10 days (E10-V). The IEE program consisted of a single daily treadmill running session at 85% of V(max), until animal exhaustion. Vitamins C (10 mg/kg) and E (10 mg/kg) were concurrently intraperitoneally administered 2 h before the exercise sessions. IEE was shown to cause 1) impairment of ileum internal membrane mitochondria verified by ultramicrography analysis; 2) increase in ileum carbonyl content (117%) and reduction in antioxidant capacity (36%); 3) increase in mitochondria carbonyl content (38%), increase in the percentage of ruptured mitochondria (25.3%), increase in superoxide dismutase activity (186%), and reduction in citrate synthase activity (40.4%) compared with control animals. Observations in the vitamin-supplemented exercised animals (E10-V) were 1) healthy appearance of myocyte mitochondria; 2) decrease in ileum carbonyl content (66%) and increase in antioxidant capacity (53%); 3) decrease in mitochondria carbonyl content (43%), decrease in the percentage of ruptured mitochondria (30%), slight increase in superoxide dismutase activity (7%), and significant increase in citrate synthase activity (121%) compared with E10 animals. Therefore, the present results strongly corroborate the hypothesis that IEE leads to marked disturbances in intestinal mitochondria, mainly in redox status, and affects whole intestinal redox status.
Collapse
Affiliation(s)
- Eloi F Rosa
- Dept. of Biophysics, Universidade Federal de São Paulo-Campus São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
40
|
Souza CRF, Georgetti SR, Salvador MJ, Fonseca MJV, Oliveira WP. Antioxidant activity and physical-chemical properties of spray and spouted bed dried extracts of Bauhinia forficata. BRAZ J PHARM SCI 2009. [DOI: 10.1590/s1984-82502009000200004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two distinct drying methods (spouted bed and spray drying) were used for production of dried extracts of Bauhinia forficata Link (Leguminosae, Caesalpinoideae). High-quality powder products in terms of physical and chemical properties were obtained. HPLC fingerprints revealed that the chromatographic profiles of flavonoid compounds present in the dried extract did not change significantly, due to drying. In general, the spouted bed drying caused a degradation of total flavonoids than was lower than that of the spray drying. Antioxidant properties of the dried extract, examined by their radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) and inhibition of lipid peroxidation induced by Fe+2 assays (LPO), confirmed their antioxidant potential. The slight reduction in scavenging activity of the dried extracts may be associated with the occurrence of oxidative reactions, decomposition or losses of thermolabile compounds, induced by the heat.
Collapse
|
41
|
Li SQ, Zhang Y, Tang DB. Possible mechanisms of Cyclosporin A ameliorated the ischemic microenvironment and inhibited mitochondria stress in tree shrews' hippocampus. ACTA ACUST UNITED AC 2009; 16:279-84. [PMID: 19303263 DOI: 10.1016/j.pathophys.2009.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The ischemic brain damage is always accompanied by the significant accumulation of glutamate and calcium ions (Ca(2+)). Our objectives were to observe the effects of glutamate and Ca(2+) overloading in tree shrew's hippocampal microenvironment on mitochondrial stress resulting in cytochrome C release and caspase apoptotic gene activation, and to explore the possible mechanism of Cyclosporin A (CsA) inhibiting mitochondrial stress. METHODS The thrombotic focal cerebral ischemia was induced by photochemical reaction in tree shrews. The extracellular contents of amino acidic neurotransmitters and Ca(2+) were determined, respectively, with high performance liquid chromatography (HPLC) and atomic absorption spectrophotometry at 4, 24 and 72h after cerebral ischemia. The glutamate-calcium chloride solutions were microperfused into hippocampus by a kind of single-pumped push-pull perfusion (SPPP) system under three-dimensional orientation instrument in tree shrews. At 24h, the expression of cytochrome C was observed in perfused lateral hippocampus by immunochemistry. Also, the hippocampus was removed, then mitochondria and cytoplasmic fragment were divided by low temperature centrifugation and the distribution of cytochrome C was assessed through Western blot. Real time fluorescence polymerase chain reaction was used to evaluate the relative amounts of caspase-3 and caspase-9 mRNA. In the treated group, CsA (40mg/kg) was intravenously injected at 6h after the microperfuse or cerebral ischemia. The glutamate-calcium solutions were perfused into the hippocampus and inspected the above-mentioned items at 24h. Data were compared between the two groups (ischemia group vs. sham group, or ischemia group vs. CsA group). RESULTS Thrombotic cerebral ischemia led to significant increase in extracellular glutamate and Ca(2+) level of hippocampus (P<0.01). The cerebral ischemia group and the microperfusion group, which cytochrome C immunoreactivity increased and Western blot analysis demonstrated that the cytochrome C content in the mitochondria of hippocampal cells decreased (P<0.01), but the cytochrome C in the cytosol increased (P<0.01). When CsA was intravenously injected at 6h after the microperfusion or cerebral ischemia, the cytochrome C expression weakened and its release was diminished to a lesser extent. By real time PCR, in relation to the control group, the caspase-3 and caspase-9 mRNA was higher in the glutamate-calcium chloride solution perfused group. CsA treatment cut down the contents of caspase-3 mRNA and caspase-9 mRNA (P<0.01). CONCLUSIONS It is a primary factor that glutamate and Ca(2+) accumulate in hippocampal microenvironment, which results in proapoptotic protein cytochrome C release from mitochondria into cytoplasm and caspase cascade activation, and finally mitochondria stress and neuronal secondary injury appear. The neuroprotection of CsA is in relation to inhibiting glutamate receptor overactivation and reducing the Ca(2+) influx, which can decrease cytochrome C release and caspase mRNA transition.
Collapse
Affiliation(s)
- Shu-Qing Li
- Department of Pathophysiology, Kunming Medical College, Kunming 650031, China
| | | | | |
Collapse
|
42
|
Georgetti SR, Vicentini FTMC, Yokoyama CY, Borin MF, Spadaro ACC, Fonseca MJV. Enhanced in vitro and in vivo antioxidant activity and mobilization of free phenolic compounds of soybean flour fermented with different beta-glucosidase-producing fungi. J Appl Microbiol 2009; 106:459-66. [PMID: 19200313 DOI: 10.1111/j.1365-2672.2008.03978.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIMS To evaluate the soybean polyphenol glucosides bioconversion to aglycone forms by different beta-glucosidases-producing filamentous fungi to enhance their antioxidant activity. METHODS AND RESULTS Soybean defatted flour was submitted to solid-state fermentation with Aspergillus niger, Aspergillus niveus and Aspergillus awamori. The fungi studied produced approximately the same beta-glucosidase activity units amount when p-nitrophenyl-beta-d-glucopyranoside was used as substrate for the assay. However, electrophoretic analysis, using 4-methylumbellipheryl-beta-d-glucopyranoside as substrate, showed that beta-glucosidase produced by A. niveus was more active. Fermented methanolic extracts showed an increase in polyphenol and genistein contents and antioxidant activities. The highest genistein content was found in soybean fermented by A. niveus. Methanolic extracts of the soybean fermented by the different fungi showed a similar capacity of scavenging H(2)O(2) generated in vivo by the tumour promoter 12-O-tetradecanoyl phorbol-13-acetate. CONCLUSIONS A. niveus synthesized a beta-glucosidase with higher specificity to hydrolyse genistin beta-glycosidic bond than those produced by A. awamori and A. niger. SIGNIFICANCE AND IMPACT OF THE STUDY The utilization of these beta-glucosidases-producing fungi in soybean fermentation processes resulted in the obtaining of methanolic extracts with different antioxidant potentials that could be used either therapeutically or as an antioxidant in nonphysiological oxidative stress conditions, as the one induced in skin by UV radiation.
Collapse
Affiliation(s)
- S R Georgetti
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo-USP, Brazil
| | | | | | | | | | | |
Collapse
|
43
|
Palladacycles catalyse the oxidation of critical thiols of the mitochondrial membrane proteins and lead to mitochondrial permeabilization and cytochrome c release associated with apoptosis. Biochem J 2008; 417:247-56. [DOI: 10.1042/bj20080972] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Permeabilization of the mitochondrial membrane has been extensively associated with necrotic and apoptotic cell death. Similarly to what had been previously observed for B16F10-Nex2 murine melanoma cells, PdC (palladacycle compounds) obtained from the reaction of dmpa (N,N-dimethyl-1-phenethylamine) with the dppe [1,2-ethanebis(diphenylphosphine)] were able to induce apoptosis in HTC (hepatoma, tissue culture) cells, presenting anticancer activity in vitro. To elucidate cell site-specific actions of dmpa:dppe that could respond to the induction of apoptosis in cancer cells in the present study, we investigated the effects of PdC on isolated RLM (rat liver mitochondria). Our results showed that these palladacycles are able to induce a Ca2+-independent mitochondrial swelling that was not inhibited by ADP, Mg2+ and antioxidants. However, the PdC-induced mitochondrial permeabilization was partially prevented by pre-incubation with CsA (cyclosporin A), NEM (N-ethylmaleimide) and bongkreic acid and totally prevented by DTT (dithiothreitol). A decrease in the content of reduced thiol groups of the mitochondrial membrane proteins was also observed, as well as the presence of membrane protein aggregates in SDS/PAGE without lipid and GSH oxidation. FTIR (Fourier-transform IR) analysis of PdC-treated RLM demonstrated the formation of disulfide bonds between critical thiols in mitochondrial membrane proteins. Associated with the mitochondrial permeabilization, PdC also induced the release of cytochrome c, which is sensitive to inhibition by DTT. Besides the contribution to clarify the pro-apoptotic mechanism of PdC, this study shows that the catalysis of specific protein thiol cross-linkage is enough to induce mitochondrial permeabilization and cytochrome c release.
Collapse
|
44
|
Georgetti SR, Casagrande R, Souza CRF, Oliveira WP, Fonseca MJV. Spray drying of the soybean extract: Effects on chemical properties and antioxidant activity. Lebensm Wiss Technol 2008. [DOI: 10.1016/j.lwt.2007.09.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Moshal KS, Tipparaju SM, Vacek TP, Kumar M, Singh M, Frank IE, Patibandla PK, Tyagi N, Rai J, Metreveli N, Rodriguez WE, Tseng MT, Tyagi SC. Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. Am J Physiol Heart Circ Physiol 2008; 295:H890-7. [PMID: 18567713 DOI: 10.1152/ajpheart.00099.2008] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cardiomyocyte N-methyl-d-aspartate receptor-1 (NMDA-R1) activation induces mitochondrial dysfunction. Matrix metalloproteinase protease (MMP) induction is a negative regulator of mitochondrial function. Elevated levels of homocysteine [hyperhomocysteinemia (HHCY)] activate latent MMPs and causes myocardial contractile abnormalities. HHCY is associated with mitochondrial dysfunction. We tested the hypothesis that HHCY activates myocyte mitochondrial MMP (mtMMP), induces mitochondrial permeability transition (MPT), and causes contractile dysfunction by agonizing NMDA-R1. The C57BL/6J mice were administered homocystinemia (1.8 g/l) in drinking water to induce HHCY. NMDA-R1 expression was detected by Western blot and confocal microscopy. Localization of MMP-9 in the mitochondria was determined using confocal microscopy. Ultrastructural analysis of the isolated myocyte was determined by electron microscopy. Mitochondrial permeability was measured by a decrease in light absorbance at 540 nm using the spectrophotometer. The effect of MK-801 (NMDA-R1 inhibitor), GM-6001 (MMP inhibitor), and cyclosporine A (MPT inhibitor) on myocyte contractility and calcium transients was evaluated using the IonOptix video edge track detection system and fura 2-AM. Our results demonstrate that HHCY activated the mtMMP-9 and caused MPT by agonizing NMDA-R1. A significant decrease in percent cell shortening, maximal rate of contraction (-dL/dt), and maximal rate of relaxation (+dL/dt) was observed in HHCY. The decay of calcium transient amplitude was faster in the wild type compared with HHCY. Furthermore, the HHCY-induced decrease in percent cell shortening, -dL/dt, and +dL/dt was attenuated in the mice treated with MK-801, GM-6001, and cyclosporin A. We conclude that HHCY activates mtMMP-9 and induces MPT, leading to myocyte mechanical dysfunction by agonizing NMDA-R1.
Collapse
Affiliation(s)
- Karni S Moshal
- Department of Physiology and Biophysics, Potentia Pharmaceuticals, Louisville, KY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Georgetti SR, Casagrande R, Verri WA, Lopez RFV, Fonseca MJV. Evaluation of in vivo efficacy of topical formulations containing soybean extract. Int J Pharm 2008; 352:189-96. [PMID: 18079076 DOI: 10.1016/j.ijpharm.2007.10.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 09/24/2007] [Accepted: 10/24/2007] [Indexed: 01/08/2023]
Abstract
In the present study it was evaluated the: (i) functional stability of the soybean extract as a raw material and dispersed in two different topical formulations, (ii) skin retention using modified Franz diffusion cells, and (iii) in vivo activity of these formulations to inhibit 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced hydrogen peroxide (H(2)O(2)) and malondialdehyde (MDA) increases in the skin of hairless mice. The physico-chemical stability was evaluated by pH, globule size and centrifugation test. Furthermore, functional stability was also evaluated by antilipoperoxidative activity. The two topical formulations were stored at 4 degrees C, 30 degrees C/60% RH and 40 degrees C/70% RH for 6 months. The evaluation of the antiperoxidative stability of soybean extract itself and incorporated in formulations did not demonstrate loss of activity by storage at 4 degrees C/6 months. During 6 months of the study in different storage conditions the formulations 1 and 2 added or not with soybean extract were stable to physico-chemical tests. The effect of antioxidant compounds detected by the inhibition of MDA formation was time-dependent for formulation 2 as detected in the skin retention study. Pretreatment with formulation 1 or 2 significantly diminished TPA-induced H(2)O(2) and MDA generation. In conclusion, the present results suggest for the first time that formulations containing soybean extract may be a topical source of antioxidant compounds that decrease oxidative damages of the skin.
Collapse
Affiliation(s)
- Sandra R Georgetti
- Department of Pharmaceutical Science, Faculty of Pharmaceutical Sciences of Ribeirao Preto - USP, Avenue Do Café s/n, CEP 14040-903, Ribeirao Preto, SP, Brazil.
| | | | | | | | | |
Collapse
|
47
|
Shao L, Martin MV, Watson SJ, Schatzberg A, Akil H, Myers RM, Jones EG, Bunney WE, Vawter MP. Mitochondrial involvement in psychiatric disorders. Ann Med 2008; 40:281-95. [PMID: 18428021 PMCID: PMC3098560 DOI: 10.1080/07853890801923753] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent findings of mitochondrial abnormalities in brains from subjects with neurological disorders have led to a renewed search for mitochondrial abnormalities in psychiatric disorders. A growing body of evidence suggests that there is mitochondrial dysfunction in schizophrenia, bipolar disorder, and major depressive disorder, including evidence from electron microscopy, imaging, gene expression, genotyping, and sequencing studies. Specific evidence of dysfunction such as increased common deletion and decreased gene expression in mitochondria in psychiatric illnesses suggests that direct examination of mitochondrial DNA from postmortem brain cells may provide further details of mitochondrial alterations in psychiatric disorders.
Collapse
Affiliation(s)
- Ling Shao
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pessoto FS, Faria PA, Cunha RLOR, Comasseto JV, Rodrigues T, Nantes IL. Organotellurane-promoted mitochondrial permeability transition concomitant with membrane lipid protection against oxidation. Chem Res Toxicol 2007; 20:1453-61. [PMID: 17896819 DOI: 10.1021/tx700092r] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organotelluranes exhibit potent antioxidant properties as well as the ability to react with protein thiol groups and, thereby, they are good models to study the mechanism of the mitochondrial permeability transition (MPT). We evaluated the effects of the concentration of organotelluranes, namely RT-03 and RT-04, on rat liver mitochondria. At the concentration range of 0.25-1.0 microM, organotelluranes did not cause any mitochondrial dysfunction. At the concentration range of 5-10 microM, RT-03 and RT-04 caused the Ca2+-dependent opening of the (MPT) pore, regulated by Cyclosporin A. At the concentration range of 15-30 microM the swelling was not inhibited by Cyclosporin A and in the absence of Ca2+, a significant decrease of respiratory control ratio was observed due to concomitant phosphorylation impairment and uncoupling, transmembrane potential disruption, depletion of mitochondrial reduced thiol groups, and alterations in the bilayer fluidity. Above 100 microM, the organotelluranes caused complete inhibition of respiratory chain. Over the whole studied concentration range, RT-03 and RT-04 did not induce mitochondrial oxidative stress assessed by using the reactive oxygen and nitrogen species indicator 2',7'-dichlorodihydrofluorescein diacetate. Further, the organotelluranes also exhibited protective effect against t-butyl hydroperoxide-induced oxidative stress as well as against Fe2+/citrate-induced peroxidation of mitochondrial membranes and PCPECL liposomes. These results point out that MPT pore opening can involve damage exclusively to mitochondrial membrane proteins. The exclusive antioxidant activity observed at nanomolar range is also an interesting new finding described in this work.
Collapse
Affiliation(s)
- Felipe S Pessoto
- Departamento de Biologia Molecular, Universidade Federal de São Paulo, UNIFESP, Brazil
| | | | | | | | | | | |
Collapse
|
49
|
Serrander L, Cartier L, Bedard K, Banfi B, Lardy B, Plastre O, Sienkiewicz A, Fórró L, Schlegel W, Krause KH. NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J 2007; 406:105-14. [PMID: 17501721 PMCID: PMC1948990 DOI: 10.1042/bj20061903] [Citation(s) in RCA: 511] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NOX4 is an enigmatic member of the NOX (NADPH oxidase) family of ROS (reactive oxygen species)-generating NADPH oxidases. NOX4 has a wide tissue distribution, but the physiological function and activation mechanisms are largely unknown, and its pharmacology is poorly understood. We have generated cell lines expressing NOX4 upon tetracycline induction. Tetracycline induced a rapid increase in NOX4 mRNA (1 h) followed closely (2 h) by a release of ROS. Upon tetracycline withdrawal, NOX4 mRNA levels and ROS release decreased rapidly (<24 h). In membrane preparations, NOX4 activity was selective for NADPH over NADH and did not require the addition of cytosol. The pharmacological profile of NOX4 was distinct from other NOX isoforms: DPI (diphenyleneiodonium chloride) and thioridazine inhibited the enzyme efficiently, whereas apocynin and gliotoxin did not (IC(50)>100 muM). The pattern of NOX4-dependent ROS generation was unique: (i) ROS release upon NOX4 induction was spontaneous without need for a stimulus, and (ii) the type of ROS released from NOX4-expressing cells was H(2)O(2), whereas superoxide (O(2)(-)) was almost undetectable. Probes that allow detection of intracellular O(2)(-) generation yielded differential results: DHE (dihydroethidium) fluorescence and ACP (1-acetoxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine) ESR measurements did not detect any NOX4 signal, whereas a robust signal was observed with NBT. Thus NOX4 probably generates O(2)(-) within an intracellular compartment that is accessible to NBT (Nitro Blue Tetrazolium), but not to DHE or ACP. In conclusion, NOX4 has a distinct pharmacology and pattern of ROS generation. The close correlation between NOX4 mRNA and ROS generation might hint towards a function as an inducible NOX isoform.
Collapse
Affiliation(s)
- Lena Serrander
- Foundation for Medical Research, University of Geneva, 64 av de la Roseraie, 1205, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Casagrande R, Georgetti SR, Verri WA, Borin MF, Lopez RFV, Fonseca MJV. In vitro evaluation of quercetin cutaneous absorption from topical formulations and its functional stability by antioxidant activity. Int J Pharm 2007; 328:183-90. [PMID: 16959452 DOI: 10.1016/j.ijpharm.2006.08.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 08/01/2006] [Accepted: 08/09/2006] [Indexed: 11/19/2022]
Abstract
Recently, it was demonstrated that two different formulations containing quercetin inhibit the UVB-induced cutaneous oxidative stress and inflammation. Therefore, in the present study it was evaluated the functional stability of those formulations by the antioxidant activity, the release of quercetin from the formulations, and its skin retention using modified Franz diffusion cells. Both formulations tested ((1) non-ionic emulsion with high lipid content and (2) anionic emulsion with low lipid content) remained functionally (hydrogen-donating ability) stable during 180 days. Furthermore, quercetin was released from both formulations as determined using nitrocellulose membrane. In vitro antioxidant activity of retained quercetin into the skin was observed for both formulations as detected by the inhibition of malondialdehyde formation. The effect of quercetin retention was time-dependent for formulation 1. Concluding, this study demonstrates that quercetin remains functionally stable in formulations, and measuring the antioxidant activity is an efficient approach to evaluate quercetin skin retention with minimal interference of the tissue products. Furthermore, the present results on skin retention explain the previous study on quercetin in vivo activities, and together, these data suggest that formulations containing quercetin may be used as topical active products to control UVB-mediated oxidative damage of the skin.
Collapse
Affiliation(s)
- Rúbia Casagrande
- Department of Pharmaceutical Science, Faculty of Pharmaceutical Sciences of Ribeirao Preto-USP, Avenida do Café s/n, CEP 14040-903 Ribeirao Preto, SP, Brazil.
| | | | | | | | | | | |
Collapse
|