1
|
Yu H, Wang J, Zhang K, Cheng G, Mei C, Zan L. Integrated multi-omics analysis reveals variation in intramuscular fat among muscle locations of Qinchuan cattle. BMC Genomics 2023; 24:367. [PMID: 37391702 DOI: 10.1186/s12864-023-09452-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Intramuscular fat (IMF) is closely related to the tenderness, marbling, juiciness, and flavor of meat. We used a combined transcriptome and metabolome analysis to investigate the molecular mechanisms underlying phenotypic variation among Qinchuan cattle. RESULTS The IMF content was relatively high in the meat of Qinchuan cattle bulls and differed among muscle locations, namely the high rib (15.86%), ribeye (14%), striploin (10.44%), and tenderloin (8.67%). CCDC80 and the HOX gene cluster may regulate intramuscular adipose tissue deposition. Moreover, erucic acid (EA) was found to be the main metabolite in Qinchuan beef cattle, with a high concentration in IMF. The deposition of IMF could be regulated by the metabolic pathway for unsaturated fatty acids involving EA and the ACOX3, HACD2, and SCD5 genes. In addition, differentially expressed genes and metabolites were enriched in three major KEGG pathways: purine metabolism, pyrimidine metabolism, and the metabolism of glycine, serine, and threonine. CONCLUSIONS We identified a significant metabolite, EA, with variation in IMF. Its closely related genes, ACOX3, HACD2, and SCD5, co-regulate the metabolism of unsaturated fatty acids, ultimately affecting the accumulation of intramuscular adipose tissue in Qinchuan cattle. Consequently, Qinchuan cattle are an elite cultivar for high-quality beef production and have great potential for breeding.
Collapse
Affiliation(s)
- Hengwei Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ke Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
- National Beef Cattle Improvement Center, Yangling, 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- National Beef Cattle Improvement Center, Yangling, 712100, China.
| |
Collapse
|
2
|
Hydrolyzed chicken meat extract boosts the immunoregulatory effect by regulating M1/M2 Macrophage polarization. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
3
|
Zhao M, Song X, Liu W, Qi F, Zhao T, Xia K, Liu Z, Zheng Y. Whole-cell biotransformation for large scale production of carcinine in Escherichia coli. J Biotechnol 2022; 354:45-52. [PMID: 35716886 DOI: 10.1016/j.jbiotec.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
Carcinine is a natural imidazole-containing peptide derivative. It is widely used in the cosmetics industry as anti-aging supplement with antioxidant, anti-glycation and glycation reversal functions, and it also has a notable pharmacological effect as anti-tumor drug and in protection against retinopathy. However, a technological method for synthesis and production of carcinine has not been established. In this study, a whole-cell transformation system converting β-alanine and histamine to carcinine by the enzymes Ebony and phosphopantetheine transferase (Sfp) has been developed. The results revealed that the catalytic efficiency of the strain containing the fusion protein of Ebony and Sfp (Sfp-glycine-serine-glycine-Ebony, SGE) in Escherichia coli W3110 (WSGE strain) is significantly higher (7.45 mM) than the combinatorial strain of pET28a-ebony and pACYCDuet-sfp in E. coli BL21(DE3) (BSE strain) (2.17 mM). Under the optimal reaction conditions (25 ℃, pH 7.0, 12.5 g/L wet cells, 20 mM β-alanine and 40 mM histamine), the carcinine can be quickly synthesized within 24 h up to a concentration of 22.63 mM. To achieve a continuous and efficient conversion of the precursors, a batch-feeding catalysis was designed. With this system, β-alanine (40 mM) and histamine (40 mM) could be completely transformed to carcinine (40.34 mM) in 36 h with a productivity of 0.204 g/L h reaching a titer of 7.34 g/L. Hence, the batch-feeding whole-cell biocatalysis is a promising technology for the high yield production of carcinine which can promote the industrial production of carcinine.
Collapse
Affiliation(s)
- Man Zhao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiangting Song
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Wei Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Fengjie Qi
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Tingting Zhao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Keke Xia
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhiqiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
4
|
Imbalance between dopamine and serotonin caused by neonatal habenula lesion. Behav Brain Res 2021; 409:113316. [PMID: 33901435 DOI: 10.1016/j.bbr.2021.113316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022]
Abstract
Alterations in dopamine (DA) and serotonin (5-HT) transmission have been implicated in the pathophysiology of attention deficit/hyperactivity disorder (ADHD). We have previously reported that juvenile rats with neonatal habenula lesion (NHL) exhibit an assortment of behavioral alterations resembling ADHD symptoms. In this study, we investigated the impacts of NHL on DA and 5-HT transmission in mesocorticolimbic regions of rats. Male Sprague-Dawley rats with microinjection of ibotenic acid into the habenula at postnatal day (PND) 7 were subjected for a battery of locomotion test, object exploration test and delay discounting test in the juvenile period (PND28-35), followed by DA and 5-HT brain tissue concentration measurements using high-performance liquid chromatography (HPLC). NHL rats exhibited hyperlocomotion, impulsivity, and attention deficits. NHL induced alterations of tissue DA and 5-HT concentrations only in some mesocorticolimbic regions. However, positive correlations, indicating the balance, between DA and 5-HT observed in control (CTR) rats, were more extensively disrupted across mesocorticolimbic regions in NHL rats. Pharmacological manipulations that modulated both DA and 5-HT systems simultaneously with Astragalus membranaceus (AM) and its active compound formononetin (FOR) normalized the NHL-induced DA and 5-HT imbalance in several brain areas, which consequently improved the behavioral alterations. These results suggest that behavioral alterations caused by NHL may be associated with mesocorticolimbic DA/5-HT imbalance. Drug treatments targeting multiple monoamine systems may be useful to improve the NHL-induced changes.
Collapse
|
5
|
Zhou P, Homberg JR, Fang Q, Wang J, Li W, Meng X, Shen J, Luan Y, Liao P, Swaab DF, Shan L, Liu C. Histamine-4 receptor antagonist JNJ7777120 inhibits pro-inflammatory microglia and prevents the progression of Parkinson-like pathology and behaviour in a rat model. Brain Behav Immun 2019; 76:61-73. [PMID: 30408497 DOI: 10.1016/j.bbi.2018.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 12/20/2022] Open
Abstract
The activation of microglial cells is presumed to play a key role in the pathogenesis of Parkinson's disease (PD). The activity of microglia is regulated by the histamine-4 receptor (H4R), thus providing a novel target that may prevent the progression of PD. However, this putative mechanism has so far not been validated. In our previous study, we found that mRNA expression of H4R was upregulated in PD patients. In the present study, we validated this possible mechanism using the rotenone-induced PD rat model, in which mRNA expression levels of H4R-, and microglial markers were significantly increased in the ventral midbrain. Inhibition of H4R in rotenone-induced PD rat model by infusion of the specific H4R antagonist JNJ7777120 into the lateral ventricle resulted in blockade of microglial activation. In addition, pharmacological targeting of H4R in rotenone-lesioned rats resulted in reduced apomorphine-induced rotational behaviour, prevention of dopaminergic neuron degeneration and associated decreases in striatal dopamine levels. These changes were accompanied by a reduction of Lewy body-like neuropathology. Our results provide first proof of the efficacy of an H4R antagonist in a commonly used PD rat model, and proposes the H4R as a promising target to clinically tackle microglial activation and thereby the progression of PD.
Collapse
Affiliation(s)
- Pei Zhou
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning 116044, China; Department of Clinical Laboratory, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei 443003, China
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Qiuyuan Fang
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Jiaqi Wang
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Weizhuo Li
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Xianzong Meng
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Junqing Shen
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Yi Luan
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning 116044, China; Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Peng Liao
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Dick F Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Ling Shan
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.
| | - Chunqing Liu
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning 116044, China.
| |
Collapse
|
6
|
Histamine H3 receptor antagonists ameliorate attention deficit/hyperactivity disorder-like behavioral changes caused by neonatal habenula lesion. Behav Pharmacol 2018; 29:71-78. [DOI: 10.1097/fbp.0000000000000343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Chaturvedi R, Luan Z, Guo P, Li HS. Drosophila Vision Depends on Carcinine Uptake by an Organic Cation Transporter. Cell Rep 2016; 14:2076-2083. [PMID: 26923590 DOI: 10.1016/j.celrep.2016.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/18/2015] [Accepted: 01/26/2016] [Indexed: 01/24/2023] Open
Abstract
Recycling of neurotransmitters is essential for sustained neuronal signaling, yet recycling pathways for various transmitters, including histamine, remain poorly understood. In the first visual ganglion (lamina) of Drosophila, photoreceptor-released histamine is taken up into perisynaptic glia, converted to carcinine, and delivered back to the photoreceptor for histamine regeneration. Here, we identify an organic cation transporter, CarT (carcinine transporter), that transports carcinine into photoreceptors during histamine recycling. CarT mediated in vitro uptake of carcinine. Deletion of the CarT gene caused an accumulation of carcinine in laminar glia accompanied by a reduction in histamine, resulting in abolished photoreceptor signal transmission and blindness in behavioral assays. These defects were rescued by expression of CarT cDNA in photoreceptors, and they were reproduced by photoreceptor-specific CarT knockdown. Our findings suggest a common role for the conserved family of CarT-like transporters in maintaining histamine homeostasis in both mammalian and fly brains.
Collapse
Affiliation(s)
- Ratna Chaturvedi
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Zhuo Luan
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Peiyi Guo
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hong-Sheng Li
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
8
|
Jia F, Du L, Hao Y, Liu S, Li N, Jiang H. Thioperamide treats neonatal hypoxic-ischemic encephalopathy by postsynaptic H1 receptors. Neural Regen Res 2013; 8:1814-22. [PMID: 25206478 PMCID: PMC4145950 DOI: 10.3969/j.issn.1673-5374.2013.19.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/25/2013] [Indexed: 11/22/2022] Open
Abstract
Thioperamide, a selective histamine H3 receptor antagonist, can increase histamine content in the brain, improve brain edema, and exert a neuroprotective effect. This study aimed to examine the mechanism of action of thioperamide during brain edema in a rat model of neonatal hypoxic-ischemic encephalopathy. Our results showed that thioperamide significantly decreased brain water content and malondialdehyde levels, while significantly increased histamine levels and superoxide dismutase activity in the hippocampus. This evidence demonstrates that thioperamide could prevent oxidative damage and attenuate brain edema following neonatal hypoxic-ischemic encephalolopathy. We further observed that changes in the above indexes occurred after combined treatment of thioperamide with the H1 receptor antagonist, pyrilamine, and the H2 receptor antagonist, tidine. Experimental findings indicated that pyrilamine reversed the effects of thioperamide; however, cimetidine had no significant influence on the effects of thioperamide. Our present findings suggest that thioperamide can increase brain histamine content and attenuate brain edema and oxidative damage by acting in combination with postsynaptic H1 receptors in a rat model of neonatal ic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Feiyong Jia
- Division of Pediatric Neurorehabilitation, Department of Pediatrics, Second Part of First Hospital of Jilin University, Changchun 130031, Jilin Province, China
| | - Lin Du
- Division of Pediatric Neurorehabilitation, Department of Pediatrics, Second Part of First Hospital of Jilin University, Changchun 130031, Jilin Province, China
| | - Yunpeng Hao
- Division of Pediatric Neurorehabilitation, Department of Pediatrics, Second Part of First Hospital of Jilin University, Changchun 130031, Jilin Province, China
| | - Shicheng Liu
- Division of Pediatric Neurorehabilitation, Department of Pediatrics, Second Part of First Hospital of Jilin University, Changchun 130031, Jilin Province, China
| | - Ning Li
- Division of Pediatric Neurorehabilitation, Department of Pediatrics, Second Part of First Hospital of Jilin University, Changchun 130031, Jilin Province, China
| | - Huiyi Jiang
- Division of Pediatric Neurorehabilitation, Department of Pediatrics, Second Part of First Hospital of Jilin University, Changchun 130031, Jilin Province, China,
Corresponding author: Huiyi Jiang, Attending physician, Division of Pediatric Neurorehabilitation, Department of Pediatrics, Second Part of First Hospital of Jilin University, Changchun 130031, Jilin Province, China, . (N20110714001)
| |
Collapse
|
9
|
Bhowmik M, Khanam R, Vohora D. Histamine H3 receptor antagonists in relation to epilepsy and neurodegeneration: a systemic consideration of recent progress and perspectives. Br J Pharmacol 2012; 167:1398-414. [PMID: 22758607 PMCID: PMC3514756 DOI: 10.1111/j.1476-5381.2012.02093.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/03/2012] [Accepted: 06/12/2012] [Indexed: 12/22/2022] Open
Abstract
The central histaminergic actions are mediated by H(1) , H(2) , H(3) and H(4) receptors. The histamine H(3) receptor regulates the release of histamine and a number of other neurotransmitters and thereby plays a role in cognitive and homeostatic processes. Elevated histamine levels suppress seizure activities and appear to confer neuroprotection. The H(3) receptors have a number of enigmatic features like constitutive activity, interspecies variation, distinct ligand binding affinities and differential distribution of prototypic splice variants in the CNS. Furthermore, this Gi/Go-protein-coupled receptor modulates several intracellular signalling pathways whose involvement in epilepsy and neurotoxicity are yet to be ascertained and hence represent an attractive target in the search for new anti-epileptogenic drugs. So far, H(3) receptor antagonists/inverse agonists have garnered a great deal of interest in view of their promising therapeutic properties in various CNS disorders including epilepsy and related neurotoxicity. However, a number of experiments have yielded opposing effects. This article reviews recent works that have provided evidence for diverse mechanisms of antiepileptic and neuroprotective effects that were observed in various experimental models both in vitro and in vivo. The likely reasons for the apparent disparities arising from the literature are also discussed with the aim of establishing a more reliable basis for the future use of H(3) receptor antagonists, thus improving their utility in epilepsy and associated neurotoxicity.
Collapse
Affiliation(s)
- M Bhowmik
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | | | | |
Collapse
|
10
|
Vistoli G, Carini M, Aldini G. Transforming dietary peptides in promising lead compounds: the case of bioavailable carnosine analogs. Amino Acids 2012; 43:111-26. [PMID: 22286834 DOI: 10.1007/s00726-012-1224-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/12/2012] [Indexed: 01/12/2023]
Abstract
The ability of carnosine to prevent advanced glycoxidation end products (AGEs) and advanced lipoxidation end products (ALEs) formation, on the one hand, and the convincing evidence that these compounds act as pathogenetic factors, on the other hand, strongly support carnosine as a promising therapeutic agent for oxidative-based diseases. The mechanism/s by which carnosine inhibits AGEs and ALEs is still under investigation but an emerging hypothesis is that carnosine acts by deactivating the AGEs and ALEs precursors and in particular the reactive carbonyl species (RCS) generated by both lipid and sugar oxidation. The ability of carnosine to inhibit AGEs and ALEs formation and the corresponding biological effects has been demonstrated in several in vitro studies and in some animal models. However, such effects are in line of principle, limited in humans, due to the effect of serum carnosinase (absent in rodents), which catalyzes the carnosine hydrolysis to its constitutive amino acids. Such a limitation has prompted a great interest in the design of carnosine derivatives, which maintaining (or improving) the reactivity with RCS, are more resistant to carnosinase. The present paper intends to critically review the most recent studies oriented to obtaining carnosine derivatives, optimized in terms of reactivity with RCS, selectivity (no reaction with physiological aldehydes) and the pharmacokinetic profile (mainly through an enhanced resistance to carnosinase hydrolysis). The review also includes a brief description of AGEs and ALEs as drug targets and the evidence so far reported regarding the ability of carnosine as inhibitor of AGEs and ALEs formation and the proposed reaction mechanisms.
Collapse
Affiliation(s)
- Giulio Vistoli
- Department of Pharmaceutical Sciences Pietro Pratesi, Università degli Studi di Milano, via Mangiagalli 25, 20133 Milan, Italy
| | | | | |
Collapse
|
11
|
Abstract
The special flavor and health effects of chicken essence are being widely accepted by people. Scientific researches are revealing its truth as a tonic food in traditional health preservation. Chicken essence has been found to possess many bioactivities including relief of stress and fatigue, amelioration of anxiety, promotion of metabolisms and post-partum lactation, improvement on hyperglycemia and hypertension, enhancement of immune, and so on. These activities of chicken essence are suggested to be related with its active components, including proteins, dipeptides (such as carnosine and anserine), polypeptides, minerals, trace elements, and multiple amino acids, and so on. Underlying mechanisms responsible for the bioactivities of chicken essence are mainly related with anti-stress, anti-oxidant, and neural regulation effects. However, the mechanisms are complicated and may be mediated via the combined actions of many active components, more than the action of 1 or 2 components alone.
Collapse
Affiliation(s)
- Y F Li
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou, China
| | | | | | | |
Collapse
|
12
|
Babizhayev MA, Khoroshilova-Maslova IP, Kasus-Jacobi A. Novel intraocular and systemic absorption drug delivery and efficacy of N-acetylcarnosine lubricant eye drops or carcinine biologics in pharmaceutical usage and therapeutic vision care. Fundam Clin Pharmacol 2011; 26:644-78. [DOI: 10.1111/j.1472-8206.2011.00963.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Jośko J, Drab J, Jochem J, Nowak P, Szkilnik R, Korossy-Mruk E, Boroń D, Kostrzewa RM, Brus H, Brus R. Ontogenetic Serotoninergic Lesioning Alters Histaminergic Activity in Rats in Adulthood. Neurotox Res 2010; 20:103-8. [DOI: 10.1007/s12640-010-9217-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
|
14
|
Süer C, Dolu N, Artis S, Aydogan S. Effects of carnosine on long-term plasticity of medial perforant pathway/dentate gyrus synapses in urethane-anesthetized rats: an in vivo model. Exp Brain Res 2009; 197:135-42. [DOI: 10.1007/s00221-009-1899-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 06/08/2009] [Indexed: 11/28/2022]
|
15
|
Nowak P, Noras Ł, Jochem J, Szkilnik R, Brus H, Körőssy E, Drab J, Kostrzewa RM, Brus R. Histaminergic Activity in a Rodent Model of Parkinson’s Disease. Neurotox Res 2009; 15:246-51. [DOI: 10.1007/s12640-009-9025-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 09/11/2008] [Accepted: 09/11/2008] [Indexed: 11/30/2022]
|
16
|
Tamai K, Toyoshima M, Tanaka N, Yamamoto N, Owada Y, Kiyonari H, Murata K, Ueno Y, Ono M, Shimosegawa T, Yaegashi N, Watanabe M, Sugamura K. Loss of hrs in the central nervous system causes accumulation of ubiquitinated proteins and neurodegeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1806-17. [PMID: 19008375 DOI: 10.2353/ajpath.2008.080684] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) proteins form multimolecular complexes that control multivesicular body formation, endosomal sorting, and transport ubiquitinated membrane proteins (including cell-surface receptors) to the endosomes for degradation. There is accumulating evidence that endosomal dysfunction is linked to neural cell degeneration in vitro, but little is known about the relationship between neural disorders and ESCRT proteins in vivo. Here we specifically deleted the hrs gene, ESCRT-0, in the neurons of mice by crossing loxP-flanked hrs mice with transgenic mice expressing the synapsin-I Cre protein (SynI-cre). Histological analyses revealed that both apoptosis and a loss of hippocampal CA3 pyramidal neurons occurred in the hrs(flox/flox);SynI-cre mice. Notably, the hrs(flox/flox);SynI-cre mice accumulated ubiquitinated proteins, such as glutamate receptors and an autophagy-regulating protein, p62. These molecules are particularly prominent in the hippocampal CA3 neurons and cerebral cortex with advancing age. Accordingly, we found that both locomotor activity and learning ability were severely reduced in the hrs(flox/flox);SynI-cre mice. These data suggest that Hrs plays an important role in neural cell survival in vivo and provide an animal model for neurodegenerative diseases that are known to be commonly affected by the generation of proteinaceous aggregates.
Collapse
Affiliation(s)
- Keiichi Tamai
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhao C, Sun M, Bennani YL, Gopalakrishnan SM, Witte DG, Miller TR, Krueger KM, Browman KE, Thiffault C, Wetter J, Marsh KC, Hancock AA, Esbenshade TA, Cowart MD. The Alkaloid Conessine and Analogues as Potent Histamine H3 Receptor Antagonists. J Med Chem 2008; 51:5423-30. [DOI: 10.1021/jm8003625] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chen Zhao
- Department of Neuroscience Research, Global Pharmaceutical Research Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-6123
| | - Minghua Sun
- Department of Neuroscience Research, Global Pharmaceutical Research Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-6123
| | - Youssef L. Bennani
- Department of Neuroscience Research, Global Pharmaceutical Research Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-6123
| | - Sujatha M. Gopalakrishnan
- Department of Neuroscience Research, Global Pharmaceutical Research Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-6123
| | - David G. Witte
- Department of Neuroscience Research, Global Pharmaceutical Research Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-6123
| | - Thomas R. Miller
- Department of Neuroscience Research, Global Pharmaceutical Research Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-6123
| | - Kathleen M. Krueger
- Department of Neuroscience Research, Global Pharmaceutical Research Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-6123
| | - Kaitlin E. Browman
- Department of Neuroscience Research, Global Pharmaceutical Research Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-6123
| | - Christine Thiffault
- Department of Neuroscience Research, Global Pharmaceutical Research Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-6123
| | - Jill Wetter
- Department of Neuroscience Research, Global Pharmaceutical Research Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-6123
| | - Kennan C. Marsh
- Department of Neuroscience Research, Global Pharmaceutical Research Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-6123
| | - Arthur A. Hancock
- Department of Neuroscience Research, Global Pharmaceutical Research Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-6123
| | - Timothy A. Esbenshade
- Department of Neuroscience Research, Global Pharmaceutical Research Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-6123
| | - Marlon D. Cowart
- Department of Neuroscience Research, Global Pharmaceutical Research Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-6123
| |
Collapse
|
18
|
Gavin BA, Arruda SE, Dolph PJ. The role of carcinine in signaling at the Drosophila photoreceptor synapse. PLoS Genet 2008; 3:e206. [PMID: 18069895 PMCID: PMC2134947 DOI: 10.1371/journal.pgen.0030206] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 10/05/2007] [Indexed: 12/02/2022] Open
Abstract
The Drosophila melanogaster photoreceptor cell has long served as a model system for researchers focusing on how animal sensory neurons receive information from their surroundings and translate this information into chemical and electrical messages. Electroretinograph (ERG) analysis of Drosophila mutants has helped to elucidate some of the genes involved in the visual transduction pathway downstream of the photoreceptor cell, and it is now clear that photoreceptor cell signaling is dependent upon the proper release and recycling of the neurotransmitter histamine. While the neurotransmitter transporters responsible for clearing histamine, and its metabolite carcinine, from the synaptic cleft have remained unknown, a strong candidate for a transporter of either substrate is the uncharacterized inebriated protein. The inebriated gene (ine) encodes a putative neurotransmitter transporter that has been localized to photoreceptor cells in Drosophila and mutations in ine result in an abnormal ERG phenotype in Drosophila. Loss-of-function mutations in ebony, a gene required for the synthesis of carcinine in Drosophila, suppress components of the mutant ine ERG phenotype, while loss-of-function mutations in tan, a gene necessary for the hydrolysis of carcinine in Drosophila, have no effect on the ERG phenotype in ine mutants. We also show that by feeding wild-type flies carcinine, we can duplicate components of mutant ine ERGs. Finally, we demonstrate that treatment with H3 receptor agonists or inverse agonists rescue several components of the mutant ine ERG phenotype. Here, we provide pharmacological and genetic epistatic evidence that ine encodes a carcinine neurotransmitter transporter. We also speculate that the oscillations observed in mutant ine ERG traces are the result of the aberrant activity of a putative H3 receptor. During signaling in the nervous system, individual nerve cells transfer information to one another by a complex process called synaptic transmission. This communication involves the release of a specific neurotransmitter into the synaptic cleft, which then triggers signaling in the downstream neuron by binding to and activating specific cell surface receptors. In order to terminate the neuronal signal, the neurotransmitter must be rapidly removed from the synaptic cleft. This is done by two mechanisms: the neurotransmitter can be degraded or modified, or the transmitter can be taken up by the presynaptic neuron and packaged into vesicles for reuse. In the compound eye of the fruitfly D. melanogaster, the photoreceptor cell responds to light and releases histamine into the synaptic cleft. This signal is terminated by the removal of histamine from the synapse and the enzymatic conversion of histamine to carcinine. We have shown that it is not sufficient just to modify the histamine neurotransmitter, but it is also important to remove carcinine from the photoreceptor synapse. The failure to adequately remove carcinine results in defects in the visual transduction process. Moreover, the work suggests that carcinine itself modulates vision by regulating histamine release into the synapse.
Collapse
Affiliation(s)
- Brendan A Gavin
- Department of Biology, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Susan E Arruda
- Department of Biology, Franklin Pierce College, Rindge, New Hampshire, United States of America
| | - Patrick J Dolph
- Department of Biology, Dartmouth College, Hanover, New Hampshire, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Torreggiani A, Reggiani M, Manco I, Tinti A. Vibrational investigation on the copper(II) binding mode of carcinine and its pH dependence. J Mol Struct 2007. [DOI: 10.1016/j.molstruc.2006.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Li Q, Jin CL, Xu LS, Zhu-Ge ZB, Yang LX, Liu LY, Chen Z. Histidine enhances carbamazepine action against seizures and improves spatial memory deficits induced by chronic transauricular kindling in rats. Acta Pharmacol Sin 2005; 26:1297-302. [PMID: 16225750 DOI: 10.1111/j.1745-7254.2005.00220.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
AIM To investigate whether histidine can enhance the anticonvulsant efficacy of carbamazepine (CBZ) and simultaneously improve the spatial memory impairment induced by transauricular kindled seizures in Sprague-Dawley rats. METHODS Chronic transauricular kindling was induced by repeated application of initially subconvulsive electrical stimulation through ear-clip electrodes once every 24 h until the occurrence of 3 consecutive clonic-tonic seizures. An 8-arm radial maze (4 arms baited) was used to measure spatial memory, and histamine and gamma-amino-butyric acid levels were measured by high performance liquid chromatography (HPLC). RESULTS Chronic transauricular kindling produced a significant impairment of spatial memory and a marked decrease in histamine content in the hypothalamus, the brainstem, and the hippocampus. Injection of histidine (1000 mg/kg or 1500 mg/kg, ip) significantly inhibited transauricular kindled seizures. Injection of histidine at lower doses (200 mg/kg or 500 mg/kg, ip) had no appreciable anticonvulsant effect when administered alone, whereas it significantly potentiated the protective effects of CBZ against kindled seizures. CBZ had no ameliorative effect on memory deficit, but, in contrast, histidine (200 mg/kg or 500 mg/kg, ip) alone or co-administered with CBZ significantly ameliorated the memory deficits induced by the seizures. CONCLUSION Chronic transauricular kindling is a very useful animal model for evaluating memory deficits associated with epilepsy, and histidine has both a potentiate effect on the anticonvulsant efficacy of CBZ and an ameliorative effect on the spatial memory deficits induced in this model. Histidine at a specific dosage range might serve as a beneficial adjuvant for the clinical treatment of epilepsy, especially when accompanied by impaired spatial memory.
Collapse
Affiliation(s)
- Qing Li
- Department of Pharmacology, Zhejiang University, Hangzhou 310031, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Jin CL, Sakurai E, Kiso Y, Luo JH, Yanai K, Chen Z. Influence of low dietary histamine on seizure development of chemical kindling induced by pentylenetetrazol in rats. Acta Pharmacol Sin 2005; 26:423-7. [PMID: 15780190 DOI: 10.1111/j.1745-7254.2005.00097.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIM To determine the role of dietary low histamine on the seizure development of pentylenetetrazol (PTZ)-induced kindling in rats. METHODS After 14 d of feeding on a low histamine diet (LH, containing 0.145 mumol/g of histamine), the rats were chemically kindled by repeated intraperitoneal injection of a subconvulsant dose of PTZ (35 mg/kg) once every 48 h, and seizure activity of kindling was recorded for 30 min. Histamine in brain samples was analyzed using a high performance liquid chromatography system with a fluorescence spectrofluorometer. RESULTS The LH diet induced an increase in seizure response (seizure susceptibility) to the first trial of PTZ, and resulted in facilitation of subsequent PTZ kindling process (seizure development). The histamine levels in the cortex, hippocampus, and hypothalamus of LH-treated rats decreased significantly and these changes correlated well with seizure behavior (r = 0.875, 0.651, and 0.796, respectively). In addition, chronic kindled seizures resulted in a significant increase of the histamine content in the cortex and hypothalamus in the LH-fed groups. CONCLUSION These findings indicate that the histamine in daily food could influence the brain histaminergic function, and play an important role in regulating seizure susceptibility.
Collapse
Affiliation(s)
- Chun-lei Jin
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310031, China
| | | | | | | | | | | |
Collapse
|