1
|
Lotter J, Möller M, Dean O, Berk M, Harvey BH. Studies on Haloperidol and Adjunctive α-Mangostin or Raw Garcinia mangostana Linn Pericarp on Bio-Behavioral Markers in an Immune-Inflammatory Model of Schizophrenia in Male Rats. Front Psychiatry 2020; 11:121. [PMID: 32296347 PMCID: PMC7136492 DOI: 10.3389/fpsyt.2020.00121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia is a severe brain disorder that is associated with neurodevelopmental insults, such as prenatal inflammation, that introduce redox-immune-inflammatory alterations and risk for psychotic symptoms later in life. Nutraceuticals may offer useful adjunctive benefits. The aim of this study was to examine the therapeutic effects of Garcinia mangostana Linn (GML) and one of its active constituents, α-mangostin (AM), alone and as adjunctive treatment with haloperidol (HAL) on schizophrenia related bio-behavioral alterations in a maternal immune-activation (MIA) model. Sprague-Dawley dams were exposed to lipopolysaccharide (LPS) (n = 18) or vehicle (n = 3) on gestational days 15 and 16. Male offspring (n = 72) were treated from PND 52-66 with either vehicle, HAL (2 mg/kg), GML (50 mg/kg), HAL + GML, AM (20 mg/kg), or HAL + AM. Control dams and control offspring were treated with vehicle. In order to cover the mood-psychosis continuum, prepulse inhibition (PPI) of startle, open field test (locomotor activity), and the forced swim test (depressive-like behavior) were assessed on PND's 64-65, followed by assay of frontal-cortical lipid peroxidation and plasma pro-inflammatory cytokines, viz. interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α). MIA-induced deficits in sensorimotor gating were reversed by HAL and HAL + GML, but not GML and AM alone. MIA-induced depressive-like behavior was reversed by AM and GML alone and both in combination with HAL, with the combinations more effective than HAL. MIA-induced cortical lipid peroxidation was reversed by HAL and AM, with elevated IL-6 levels restored by GML, AM, HAL, and HAL + GML. Elevated TNF-α was only reversed by GML and HAL + GML. Concluding, prenatal LPS-induced psychotic- and depressive-like bio-behavioral alterations in offspring are variably responsive to HAL, GML, and AM, with depressive (but not psychosis-like) manifestations responding to GML, AM, and combinations with HAL. AM may be a more effective antioxidant than GML in vivo, although this does not imply an improved therapeutic response, for which trials are required.
Collapse
Affiliation(s)
- Jana Lotter
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Marisa Möller
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Olivia Dean
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Michael Berk
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Department of Psychiatry, The Centre of Excellence in Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Brian H. Harvey
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Gogos A, Kusljic S, Thwaites SJ, van den Buuse M. Sex differences in psychotomimetic-induced behaviours in rats. Behav Brain Res 2017; 322:157-166. [PMID: 28111261 DOI: 10.1016/j.bbr.2017.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/16/2016] [Accepted: 01/16/2017] [Indexed: 11/19/2022]
Abstract
Animal model studies using equal numbers of males and females are sparse in psychiatry research. Given the marked sex differences observed in psychiatric disorders, such as schizophrenia, using both males and females in research studies is an important requirement. Thus the aim of this study was to examine sex differences in psychotomimetic-induced behavioural deficits relevant to psychosis. We therefore compared the acute effect of amphetamine or phencyclidine on locomotor activity and prepulse inhibition in adult male and female Sprague-Dawley rats. The results of this study were that: (1) amphetamine-induced distance travelled was greater in female rats than in male rats, (2) phencyclidine-induced locomotor hyperactivity was similar in male and female rats; (3) there were no sex differences in amphetamine- or phencyclidine-induced disruption of prepulse inhibition; (4) male rats had an increased startle response after amphetamine. These findings suggest that sensitivity to amphetamine, but not phencyclidine, differs between male and female rats, and that this sex difference is selective to locomotor hyperactivity and startle, but not prepulse inhibition. This study used two widely-used, validated preclinical assays relevant to psychosis; the results of this study have implications for psychiatry research, particularly for disorders where marked sex differences in onset and symptomology are observed.
Collapse
Affiliation(s)
- Andrea Gogos
- Hormones in Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Behavioural Neuroscience Laboratory, Mental Health Research Institute, Parkville, Australia.
| | - Snezana Kusljic
- Hormones in Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Behavioural Neuroscience Laboratory, Mental Health Research Institute, Parkville, Australia; Department of Nursing, The University of Melbourne, Melbourne, Australia
| | - Shane J Thwaites
- Behavioural Neuroscience Laboratory, Mental Health Research Institute, Parkville, Australia
| | - Maarten van den Buuse
- Behavioural Neuroscience Laboratory, Mental Health Research Institute, Parkville, Australia; School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| |
Collapse
|
3
|
Uys M, Shahid M, Sallinen J, Dreyer W, Cockeran M, Harvey BH. The α2C-adrenoceptor antagonist, ORM-10921, has antipsychotic-like effects in social isolation reared rats and bolsters the response to haloperidol. Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:108-16. [PMID: 27381554 DOI: 10.1016/j.pnpbp.2016.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 02/04/2023]
Abstract
Early studies suggest that selective α2C-adrenoceptor (AR)-antagonism has anti-psychotic-like and pro-cognitive properties. However, this has not been demonstrated in an animal model of schizophrenia with a neurodevelopmental construct. The beneficial effects of clozapine in refractory schizophrenia and associated cognitive deficits have, among others, been associated with its α2C-AR modulating activity. Altered brain-derived neurotrophic factor (BDNF) has been linked to schizophrenia and cognitive deficits. We investigated whether the α2C-AR antagonist, ORM-10921, could modulate sensorimotor gating and cognitive deficits, as well as alter striatal BDNF levels in the social isolation reared (SIR) model of schizophrenia, comparing its effects to clozapine and the typical antipsychotic, haloperidol, the latter being devoid of α2C-AR-activity. Moreover, the ability of ORM-10921 to augment the effects of haloperidol on the above parameters was also investigated. Animals received subcutaneous injection of either ORM-10921 (0.01mg/kg), clozapine (5mg/kg), haloperidol (0.2mg/kg), haloperidol (0.2mg/kg)+ORM-10921 (0.01mg/kg) or vehicle once daily for 14days, followed by assessment of novel object recognition (NOR), prepulse inhibition (PPI) of startle response and striatal BDNF levels. SIR significantly attenuated NOR memory as well as PPI, and reduced striatal BDNF levels vs. social controls. Clozapine, ORM-10921 and haloperidol+ORM-10921, but not haloperidol alone, significantly improved SIR-associated deficits in PPI and NOR, with ORM-10921 also significantly improving PPI deficits vs. haloperidol-treated SIR animals. Haloperidol+ORM-10921 significantly reversed reduced striatal BDNF levels in SIR rats. α2C-AR-antagonism improves deficits in cognition and sensorimotor gating in a neurodevelopmental animal model of schizophrenia and bolsters the effects of a typical antipsychotic, supporting a therapeutic role for α2C-AR-antagonism in schizophrenia.
Collapse
Affiliation(s)
- Madeleine Uys
- Division of Pharmacology, North-West University (Potchefstroom Campus), Potchefstroom 2520, South Africa.
| | | | | | - Walter Dreyer
- Center of Excellence for Pharmaceutical Sciences, North-West University (Potchefstroom Campus), Hoffman Street, Potchefstroom 2520, South Africa.
| | - Marike Cockeran
- Medicines Usage in South Africa, North-West University (Potchefstroom Campus), Hoffman Street, Potchefstroom 2520, South Africa.
| | - Brian H Harvey
- Center of Excellence for Pharmaceutical Sciences, North-West University (Potchefstroom Campus), Hoffman Street, Potchefstroom 2520, South Africa.
| |
Collapse
|
4
|
Kusljic S, Van Den Buuse M. Differential role of serotonin projections from the dorsal and median raphe nuclei in phencyclidine-induced hyperlocomotion and fos-like immunoreactivity in rats. Synapse 2012; 66:885-92. [DOI: 10.1002/syn.21580] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 11/07/2022]
|
5
|
Adams W, van den Buuse M. Hippocampal serotonin depletion facilitates the enhancement of prepulse inhibition by risperidone: Possible role of 5-HT2C receptors in the dorsal hippocampus. Neuropharmacology 2011; 61:458-67. [DOI: 10.1016/j.neuropharm.2011.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 03/16/2011] [Accepted: 03/21/2011] [Indexed: 11/30/2022]
|
6
|
Oliver PL, Davies KE. Interaction between environmental and genetic factors modulates schizophrenic endophenotypes in the Snap-25 mouse mutant blind-drunk. Hum Mol Genet 2009; 18:4576-89. [PMID: 19729413 PMCID: PMC2773274 DOI: 10.1093/hmg/ddp425] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To understand the pathophysiology of neuropsychiatric disorders such as schizophrenia requires consideration of multiple genetic and non-genetic factors. However, very little is known about the consequences of combining models of synaptic dysfunction with controlled environmental manipulations. Therefore, to generate new insights into gene–environment interactions and complex behaviour, we examined the influence of variable prenatal stress (PNS) on two mouse lines with mutations in synaptosomal-associated protein of 25 kDa (Snap-25): the blind-drunk (Bdr) point mutant and heterozygous Snap-25 knockout mice. Neonatal development was analysed in addition to an assessment of adult behavioural phenotypes relevant to the psychotic, cognitive and negative aspects of schizophrenia. These data show that PNS influenced specific anxiety-related behaviour in all animals. In addition, sensorimotor gating deficits previously noted in Bdr mutants were markedly enhanced by PNS; significantly, these effects could be reversed with the application of anti-psychotic drugs. Moreover, social interaction abnormalities were observed only in Bdr animals from stressed dams but not in wild-type littermates or mutants from non-stressed mothers. These results show for the first time that combining a synaptic mouse point mutant with a controlled prenatal stressor paradigm produces both modified and previously unseen phenotypes, generating new insights into the interactions between genetics and the environment relevant to the study of psychiatric disease.
Collapse
Affiliation(s)
- Peter L Oliver
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | | |
Collapse
|
7
|
Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL. Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berl) 2008; 199:331-88. [PMID: 18568339 PMCID: PMC2771731 DOI: 10.1007/s00213-008-1072-4] [Citation(s) in RCA: 425] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 01/03/2008] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Under specific conditions, a weak lead stimulus, or "prepulse", can inhibit the startling effects of a subsequent intense abrupt stimulus. This startle-inhibiting effect of the prepulse, termed "prepulse inhibition" (PPI), is widely used in translational models to understand the biology of brainbased inhibitory mechanisms and their deficiency in neuropsychiatric disorders. In 1981, four published reports with "prepulse inhibition" as an index term were listed on Medline; over the past 5 years, new published Medline reports with "prepulse inhibition" as an index term have appeared at a rate exceeding once every 2.7 days (n=678). Most of these reports focus on the use of PPI in translational models of impaired sensorimotor gating in schizophrenia. This rapid expansion and broad application of PPI as a tool for understanding schizophrenia has, at times, outpaced critical thinking and falsifiable hypotheses about the relative strengths vs. limitations of this measure. OBJECTIVES This review enumerates the realistic expectations for PPI in translational models for schizophrenia research, and provides cautionary notes for the future applications of this important research tool. CONCLUSION In humans, PPI is not "diagnostic"; levels of PPI do not predict clinical course, specific symptoms, or individual medication responses. In preclinical studies, PPI is valuable for evaluating models or model organisms relevant to schizophrenia, "mapping" neural substrates of deficient PPI in schizophrenia, and advancing the discovery and development of novel therapeutics. Across species, PPI is a reliable, robust quantitative phenotype that is useful for probing the neurobiology and genetics of gating deficits in schizophrenia.
Collapse
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, 92093-0804, USA,
| | | | | | | | | |
Collapse
|
8
|
McOmish CE, Burrows E, Howard M, Scarr E, Kim D, Shin HS, Dean B, van den Buuse M, Hannan AJ. Phospholipase C-beta1 knockout mice exhibit endophenotypes modeling schizophrenia which are rescued by environmental enrichment and clozapine administration. Mol Psychiatry 2008; 13:661-72. [PMID: 17667964 DOI: 10.1038/sj.mp.4002046] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phospholipase C-beta1 (PLC-beta1) is a rate-limiting enzyme implicated in postnatal-cortical development and neuronal plasticity. PLC-beta1 transduces intracellular signals from specific muscarinic, glutamate and serotonin receptors, all of which have been implicated in the pathogenesis of schizophrenia. Here, we present data to show that PLC-beta1 knockout mice display locomotor hyperactivity, sensorimotor gating deficits as well as cognitive impairment. These changes in behavior are regarded as endophenotypes homologous to schizophrenia-like symptoms in rodents. Importantly, the locomotor hyperactivity and sensorimotor gating deficits in PLC-beta1 knockout mice are subject to beneficial modulation by environmental enrichment. Furthermore, clozapine but not haloperidol (atypical and typical antipsychotics, respectively) rescues the sensorimotor gating deficit in these animals, suggesting selective predictive validity. We also demonstrate a relationship between the beneficial effects of environmental enrichment and levels of M1/M4 muscarinic acetylcholine receptor binding in the neocortex and hippocampus. Thus we have demonstrated a novel mouse model, displaying disruption of multiple postsynaptic signals implicated in the pathogenesis of schizophrenia, a relevant behavioral phenotype and associated gene-environment interactions.
Collapse
Affiliation(s)
- C E McOmish
- Howard Florey Institute, University of Melbourne, Melbourne, VIC, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Adams W, Kusljic S, van den Buuse M. Serotonin depletion in the dorsal and ventral hippocampus: effects on locomotor hyperactivity, prepulse inhibition and learning and memory. Neuropharmacology 2008; 55:1048-55. [PMID: 18634810 DOI: 10.1016/j.neuropharm.2008.06.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 06/17/2008] [Accepted: 06/19/2008] [Indexed: 12/20/2022]
Abstract
We present an overview of our studies on the differential role of serotonergic projections from the median raphe nucleus (MRN) and dorsal raphe nucleus (DRN) in behavioural animal models with relevance to schizophrenia. Stereotaxic microinjection of the serotonin neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) into the MRN or one of its main projections regions, the dorsal hippocampus, induced a marked enhancement of phencyclidine-induced locomotor hyperactivity and a disruption of prepulse inhibition (PPI) in rats. There was no enhancement of locomotor hyperactivity induced by amphetamine or MK-801 or after 5,7-DHT lesions of the DRN or ventral hippocampus. Rats with dorsal hippocampus lesions did not show significant changes in the Y-maze test for short-term spatial memory, the Morris water maze for long-term spatial memory, or in the T-maze delayed alternation test for working memory. These chronic lesion studies suggest a modulatory influence of serotonergic projections from the MRN to the dorsal hippocampus on phencyclidine effects and prepulse inhibition, but not on different forms of learning and memory. The results provide new insight into the role of serotonin in the dorsal hippocampus in aspects of schizophrenia.
Collapse
Affiliation(s)
- Wendy Adams
- Behavioural Neuroscience Laboratory, Mental Health Research Institute of Victoria, 155 Oak Street, Parkville, Melbourne, Victoria 3052, Australia
| | | | | |
Collapse
|
10
|
Effects of tryptophan deficiency on prepulse inhibition of the acoustic startle in rats. Psychopharmacology (Berl) 2008; 198:191-200. [PMID: 18330544 DOI: 10.1007/s00213-008-1116-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
RATIONALE Serotonin (5-HT) plays a key role in the pathophysiology of psychotic disorders, presumably through a modulation of dopamine (DA) transmission. Reduction of 5-HT signaling has been suggested to enhance dopaminergic responses in animal models of psychosis. An intriguing naturalistic strategy to reduce 5-HT brain content is afforded by the dietary restriction to its precursor, l-tryptophan (TRP). OBJECTIVE We investigated the impact of a TRP-deficient diet in rats on the prepulse inhibition of the startle (PPI), a measure of sensorimotor gating which is typically impaired by psychotomimetic substances. MATERIALS AND METHODS After either short-term (6 h) or long-term (14 days) TRP deprivation, rats were tested for startle reflex and PPI. Moreover, we assessed the impact of both TRP deprivation regimens on PPI reduction induced by the psychotomimetic substance d-amphetamine (AMPH). RESULTS Both TRP-deficient regimens failed to significantly affect PPI responses. However, chronic, but not short-term, TRP-deficient diet induced a significant sensitization to the effects of AMPH (1.25-2.5 mg/kg, subcutaneous). The enhanced predisposition to PPI disruption elicited by prolonged TRP deprivation was completely reversed 24 h after reinstatement of TRP in the diet, as well as pretreatment with antipsychotic drugs haloperidol (0.1 mg/kg, intraperitoneal) and clozapine (5 mg/kg, intraperitoneal), which exert their therapeutic action mostly through blockade of DA D(2) receptors. CONCLUSIONS The present results confirm and extend previous findings on the impact of serotonergic signaling in the modulation of DA transmission in schizophrenia and point to chronic TRP deprivation as a potential model of environmental manipulation that may produce a sensitization to psychotic-like symptoms induced by dopaminergic activation.
Collapse
|
11
|
Phencyclidine-induced locomotor hyperactivity is enhanced in mice after stereotaxic brain serotonin depletion. Behav Brain Res 2008; 191:289-93. [PMID: 18482774 DOI: 10.1016/j.bbr.2008.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 04/04/2008] [Accepted: 04/07/2008] [Indexed: 11/23/2022]
Abstract
The aim of this study was to investigate the role of forebrain serotonin projections in behavioural models with relevance to schizophrenia. Mice received stereotaxic micro-injections of the serotonin neurotoxin 5,7-dihydroxytryptamine into the median raphe nucleus (MRN). Two weeks later, MRN-lesioned mice were hyperactive at baseline and showed enhanced locomotor hyperactivity induced by phencyclidine. In contrast, no lesion effect was observed on the locomotor hyperactivity induced by amphetamine treatment or on prepulse inhibition. Lesioned mice showed a 68% depletion of serotonin in the hippocampus and 31% depletion in the striatum. These data confirm previous studies in rats that selective serotonin depletion in the brain enhances the effect of phencyclidine, but not amphetamine, on locomotor activity. This enhanced action of phencyclidine is likely to be mediated by the absence of serotonin-mediated behavioural inhibition in the hippocampus, leaving the psychostimulant effects of phencyclidine unopposed. Taken together with previous studies in rats, these studies in mice suggest that serotonin release in the dorsal hippocampus constitutes a behavioural inhibitory pathway normally involved in dampening excessive behavioural stimulation. Dysfunction of this pathway could be involved in psychosis and its stimulation could be a potential mechanism of action of antipsychotic drugs.
Collapse
|
12
|
Huang XF, Tan YY, Huang X, Wang Q. Effect of chronic treatment with clozapine and haloperidol on 5-HT2A and 2C receptor mRNA expression in the rat brain. Neurosci Res 2007; 59:314-21. [PMID: 17868938 DOI: 10.1016/j.neures.2007.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 07/29/2007] [Accepted: 08/02/2007] [Indexed: 02/01/2023]
Abstract
This study examined regional changes of 5-HT(2A and 2C) receptor mRNA expression in the rat brain after chronic administration of clozapine (1.5 mg/kg/day) and haloperidol (2.0 mg/kg/day) for 36 days. 5-HT(2A and 2C) receptor mRNA expression and distributions were detected by in situ hybridization after rats were sacrificed either 2 or 48 h after the last drug administration to examine both immediate and delayed effects following drug withdrawal. Following 2 h of drug withdrawal, it showed that clozapine administration significantly decreased 5-HT(2A) receptor mRNA, predominantly in the nucleus accumbens (65%), hippocampus (80%), lasteral septal nucleus (61%) and striatum (68%) compared to controls, whilst rebound increases were observed in most of these regions 48 h later. In contrast, no change in 5-HT(2A) receptor mRNA expression was found in the haloperidol treated groups either 2 h or 48 h after drug withdrawal. Clozapine also decreased 5-HT(2C) receptor mRNA expression in the posteromedial cortical amygdala (32%) and substantia nigra (35%) 2 h after the last drug administration, while rebound effects were also observed 48 h later. 5-HT(2C) receptor mRNA was only decreased in the substantia nigra at both 2 h (42%) and 48 h (54%) after the last haloperidol administration. Alterations in serotonin receptor expression in limbic system region such as the nucleus accumbens, hippocampus and lateral septal nucleus as well as the striatum may represent the specific regional targets that mediate the clinical effects of antipsychotics via the serotonin system.
Collapse
Affiliation(s)
- Xu-Feng Huang
- Neuroscience Institute of Schizophrenia and Allied Disorders (NISAD), Sydney NSW 2010, Australia
| | | | | | | |
Collapse
|