1
|
Osorio-Olivares ME, Vásquez-Martínez Y, Díaz K, Canelo J, Taborga L, Espinoza-Catalán L. Antibacterial and Antioxidant Activity of Synthetic Polyoxygenated Flavonoids. Int J Mol Sci 2024; 25:5999. [PMID: 38892186 PMCID: PMC11172986 DOI: 10.3390/ijms25115999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Flavonoids are an abundant class of naturally occurring compounds with broad biological activities, but their limited abundance in nature restricts their use in medicines and food additives. Here we present the synthesis and determination of the antibacterial and antioxidant activities of twenty-two structurally related flavonoids (five of which are new) by scientifically validated methods. Flavanones (FV1-FV11) had low inhibitory activity against the bacterial growth of MRSA 97-7. However, FV2 (C5,7,3',4' = OH) and FV6 (C5,7 = OH; C4' = SCH3) had excellent bacterial growth inhibitory activity against Gram-negative E. coli (MIC = 25 µg/mL for both), while Chloramphenicol (MIC = 25 µg/mL) and FV1 (C5,7,3' = OCH3; 4' = OH) showed inhibitory activity against Gram-positive L. monocytogenes (MIC = 25 µg/mL). From the flavone series (FO1-FO11), FO2 (C5,7,3',4' = OH), FO3 (C5,7,4' = OH; 3' = OCH3), and FO5 (C5,7,4' = OH) showed good inhibitory activity against Gram-positive MRSA 97-7 (MIC = 50, 12, and 50 µg/mL, respectively), with FO3 being more active than the positive control Vancomycin (MIC = 25 µg/mL). FO10 (C5,7= OH; 4' = OCH3) showed high inhibitory activity against E. coli and L. monocytogenes (MIC = 25 and 15 µg/mL, respectively). These data add significantly to our knowledge of the structural requirements to combat these human pathogens. The positions and number of hydroxyl groups were key to the antibacterial and antioxidant activities.
Collapse
Affiliation(s)
| | - Yesseny Vásquez-Martínez
- Escuela de Medicina, Facultad de Ciencias Médicas, Laboratorio de Virología Molecular y Control de Patógenos, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile; (Y.V.-M.); (J.C.)
| | - Katy Díaz
- Laboratorio de Pruebas Biológicas, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
| | - Javiera Canelo
- Escuela de Medicina, Facultad de Ciencias Médicas, Laboratorio de Virología Molecular y Control de Patógenos, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile; (Y.V.-M.); (J.C.)
| | - Lautaro Taborga
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
| | - Luis Espinoza-Catalán
- Laboratorio de Síntesis Orgánica, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
| |
Collapse
|
2
|
Alazemi AM, Dawood KM, Al-Matar HM, Tohamy WM. Microwave-assisted chemoselective synthesis and photophysical properties of 2-arylazo-biphenyl-4-carboxamides from hydrazonals. RSC Adv 2023; 13:25054-25068. [PMID: 37614785 PMCID: PMC10442861 DOI: 10.1039/d3ra04558g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
The reaction of 3-oxo-2-arylhydrazonopropanals with acetoacetanilide in an equimolar ratio, under DBU/1,4-dioxane/microwave irradiation reaction conditions, resulted in chemoselective formation of 4-arylazo-5-hydroxy-benzamide derivatives. The structures of the obtained biphenyl-4-carboxamides were characterized by several spectroscopic techniques including IR, 1H- and 13C-NMR, MS and HRMS, and X-ray single crystals of three examples. The photophysical properties of the new products were also evaluated, with a particular focus on their absorption and emission spectra, which provided valuable information regarding their optical properties. The new compounds emitted 513-549 nm green fluorescence in acetone solution under UV irradiation.
Collapse
Affiliation(s)
- Abdulrahman M Alazemi
- Chemistry Department, Faculty of Science, University of Kuwait P.O. Box 5969 Safat 13060 Kuwait +965 24816482
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556
| | - Hamad M Al-Matar
- Chemistry Department, Faculty of Science, University of Kuwait P.O. Box 5969 Safat 13060 Kuwait +965 24816482
| | - Wael M Tohamy
- Chemistry Department, Faculty of Science, University of Kuwait P.O. Box 5969 Safat 13060 Kuwait +965 24816482
- Organometallic and Organometalloid Chemistry Department, National Research Centre Cairo Egypt
| |
Collapse
|
3
|
Kesternich V, Pérez-Fehrmann M, Quezada V, Castroagudín M, Nelson R, Martínez R. A simple and efficient synthesis of N-[3-chloro-4-(4-chlorophenoxy)-phenyl]-2-hydroxy-3,5-diiodobenzamide, rafoxanide. CHEMICKE ZVESTI 2023; 77:1-5. [PMID: 37362790 PMCID: PMC10176281 DOI: 10.1007/s11696-023-02846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/28/2023] [Indexed: 06/28/2023]
Abstract
A method for the synthesis of rafoxanide 6, a halogenated salicylanilide used as an efficient anthelmintic in sheep and cattle, is presented. Rafoxanide 6 was synthesized in only three steps from readily available 4-chlorophenol with 74% overall yield. The synthesis has two key stages: the first was salicylic acid iodination, adding iodine in the presence of hydrogen peroxide, which allowed obtaining a 95% yield. The second key stage was the reaction of 3,5-diiodosalicylic acid 5 with aminoether 4, where salicylic acid chloride was formed in situ with PCl3 achieving 82% yield. Chemical characterization of both intermediates and final product was achieved through physical and spectroscopic (IR, NMR and MS) techniques. Supplementary Information The online version contains supplementary material available at 10.1007/s11696-023-02846-9.
Collapse
Affiliation(s)
- Víctor Kesternich
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile
| | - Marcia Pérez-Fehrmann
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile
| | - Víctor Quezada
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile
| | - Mariña Castroagudín
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile
| | - Ronald Nelson
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile
| | - Rolando Martínez
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile
| |
Collapse
|
4
|
Ayon NJ. High-Throughput Screening of Natural Product and Synthetic Molecule Libraries for Antibacterial Drug Discovery. Metabolites 2023; 13:625. [PMID: 37233666 PMCID: PMC10220967 DOI: 10.3390/metabo13050625] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
Due to the continued emergence of resistance and a lack of new and promising antibiotics, bacterial infection has become a major public threat. High-throughput screening (HTS) allows rapid screening of a large collection of molecules for bioactivity testing and holds promise in antibacterial drug discovery. More than 50% of the antibiotics that are currently available on the market are derived from natural products. However, with the easily discoverable antibiotics being found, finding new antibiotics from natural sources has seen limited success. Finding new natural sources for antibacterial activity testing has also proven to be challenging. In addition to exploring new sources of natural products and synthetic biology, omics technology helped to study the biosynthetic machinery of existing natural sources enabling the construction of unnatural synthesizers of bioactive molecules and the identification of molecular targets of antibacterial agents. On the other hand, newer and smarter strategies have been continuously pursued to screen synthetic molecule libraries for new antibiotics and new druggable targets. Biomimetic conditions are explored to mimic the real infection model to better study the ligand-target interaction to enable the designing of more effective antibacterial drugs. This narrative review describes various traditional and contemporaneous approaches of high-throughput screening of natural products and synthetic molecule libraries for antibacterial drug discovery. It further discusses critical factors for HTS assay design, makes a general recommendation, and discusses possible alternatives to traditional HTS of natural products and synthetic molecule libraries for antibacterial drug discovery.
Collapse
Affiliation(s)
- Navid J Ayon
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
5
|
Csuvik O, Szatmári I. Synthesis of Bioactive Aminomethylated 8-Hydroxyquinolines via the Modified Mannich Reaction. Int J Mol Sci 2023; 24:ijms24097915. [PMID: 37175622 PMCID: PMC10177806 DOI: 10.3390/ijms24097915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
8-hydroxyquinoline (oxine) is a widely known and frequently used chelating agent, and the pharmacological effects of the core molecule and its derivatives have been studied since the 19th century. There are several synthetic methods to modify this core. The Mannich reaction is one of the most easily implementable examples, which requires mild reaction conditions and simple chemical reagents. The three components of the Mannich reaction are a primary or secondary amine, an aldehyde and a compound having a hydrogen with pronounced activity. In the modified Mannich reaction, naphthol or a nitrogen-containing naphthol analogue (e.g., 8-hydroxyquinoline) is utilised as the active hydrogen provider compound, thus affording the formation of aminoalkylated products. The amine component can be ammonia and primary or secondary amines. The aldehyde component is highly variable, including aliphatic and aromatic aldehydes. Based on the pharmacological relevance of aminomethylated 8-hydroxyquinolines, this review summarises their syntheses via the modified Mannich reaction starting from 8-hydroxyquinoline, formaldehyde and various amines.
Collapse
Affiliation(s)
- Oszkár Csuvik
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Stereochemistry Research Group, Eötvös Loránd Research Network, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| |
Collapse
|
6
|
Winter C, Siepe I, Wise A, Dorali A, Barrett AGM, Witschel M. Agrochemical Lessons for Infectious Disease Research: New Resistance Breaking Antifungal Hits against Candida auris. ACS Med Chem Lett 2023; 14:136-140. [PMID: 36793433 PMCID: PMC9923843 DOI: 10.1021/acsmedchemlett.2c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Analysis of the history of the invention of the block-buster antifungal drug Fluconazole underscores the importance of agrochemical research on drug discovery and development. The multidrug resistant fungal pathogen Candida auris is now responsible for serious morbidity and mortality among immuno-compromised and long-term resident hospital patients globally. New drugs against C. auris are urgently needed. A focused screening of 1487 fungicides from the BASF agrochemical collection gave several potent inhibitors of C. auris with yet noncommercialized modes of action. The hits showed only minor activity loss against the azole-resistant C. auris strain CDC 0385 and low to moderate cytotoxicity to human HepG2 cells. Aminopyrimidine 4 showed high activity against resistant strains and selectivity in a HepG2 cells assay and is a potential hit candidate for further optimization.
Collapse
Affiliation(s)
| | | | - Andrew Wise
- Evotec, Alderley
Park, Cheshire SK10 4TG, U.K.
| | | | | | | |
Collapse
|
7
|
Helmy YA, Taha-Abdelaziz K, Hawwas HAEH, Ghosh S, AlKafaas SS, Moawad MMM, Saied EM, Kassem II, Mawad AMM. Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics (Basel) 2023; 12:274. [PMID: 36830185 PMCID: PMC9952301 DOI: 10.3390/antibiotics12020274] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the most important global public health problems. The imprudent use of antibiotics in humans and animals has resulted in the emergence of antibiotic-resistant bacteria. The dissemination of these strains and their resistant determinants could endanger antibiotic efficacy. Therefore, there is an urgent need to identify and develop novel strategies to combat antibiotic resistance. This review provides insights into the evolution and the mechanisms of AMR. Additionally, it discusses alternative approaches that might be used to control AMR, including probiotics, prebiotics, antimicrobial peptides, small molecules, organic acids, essential oils, bacteriophage, fecal transplants, and nanoparticles.
Collapse
Affiliation(s)
- Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - Hanan Abd El-Halim Hawwas
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Samar Sami AlKafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31511, Egypt
| | | | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Issmat I. Kassem
- Centre for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30609, USA
| | - Asmaa M. M. Mawad
- Department of Biology, College of Science, Taibah University, Madinah 42317, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
8
|
Doolan JA, Williams GT, Hilton KLF, Chaudhari R, Fossey JS, Goult BT, Hiscock JR. Advancements in antimicrobial nanoscale materials and self-assembling systems. Chem Soc Rev 2022; 51:8696-8755. [PMID: 36190355 PMCID: PMC9575517 DOI: 10.1039/d1cs00915j] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/21/2022]
Abstract
Antimicrobial resistance is directly responsible for more deaths per year than either HIV/AIDS or malaria and is predicted to incur a cumulative societal financial burden of at least $100 trillion between 2014 and 2050. Already heralded as one of the greatest threats to human health, the onset of the coronavirus pandemic has accelerated the prevalence of antimicrobial resistant bacterial infections due to factors including increased global antibiotic/antimicrobial use. Thus an urgent need for novel therapeutics to combat what some have termed the 'silent pandemic' is evident. This review acts as a repository of research and an overview of the novel therapeutic strategies being developed to overcome antimicrobial resistance, with a focus on self-assembling systems and nanoscale materials. The fundamental mechanisms of action, as well as the key advantages and disadvantages of each system are discussed, and attention is drawn to key examples within each field. As a result, this review provides a guide to the further design and development of antimicrobial systems, and outlines the interdisciplinary techniques required to translate this fundamental research towards the clinic.
Collapse
Affiliation(s)
- Jack A Doolan
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - George T Williams
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Kira L F Hilton
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - Rajas Chaudhari
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - John S Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Jennifer R Hiscock
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| |
Collapse
|
9
|
Eserci H, Çetin M, Aydınoğlu F, Eçik ET, Okutan E. Naphthalimide-BODIPY dyads: Synthesis, characterization, photophysical properties, live cell imaging and antimicrobial effect. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Ienașcu IMC, Căta A, Ştefănuț MN, Popescu I, Rusu G, Sfîrloagă P, Ursu D, Moşoarcă C, Dabici A, Danciu C, Muntean D, Pop R. Novel Chloro-Substituted Salicylanilide Derivatives and Their β-Cyclodextrin Complexes: Synthesis, Characterization, and Antibacterial Activity. Biomedicines 2022; 10:1740. [PMID: 35885043 PMCID: PMC9312894 DOI: 10.3390/biomedicines10071740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022] Open
Abstract
The goal of this research was to design novel chloro-substituted salicylanilide derivatives and their β-cyclodextrin complexes in order to obtain efficient antibacterial compounds and to demonstrate the beneficial role of complexation on the efficiency of these compounds. Thus, salicylanilide derivatives, esters, and hydrazides were obtained by microwave-assisted synthesis and their structure proven based on FTIR and NMR spectra. In order to improve water solubility, chemical and physical stability, and drug distribution through biological membranes, the inclusion complexes of the ethyl esters in β-cyclodextrin were also obtained using kneading. Inclusion-complex characterization was accomplished by modern analytical methods, X-ray diffraction, SEM, TGA, FTIR, and UV-vis spectroscopy. The newly synthesized compounds were tested against some Gram-positive and Gram-negative bacteria. Antimicrobial tests revealed good activity on Gram-positive bacteria and no inhibition against Gram-negative strains. The MIC and MBC values for compounds derived from N-(2-chlorophenyl)-2-hydroxybenzamide were 0.125-1.0 mg/mL. N-(4-chlorophenyl)-2-hydroxybenzamide derivatives were found to be less active. The inclusion complexes generally behaved similarly to the guest compounds, and antibacterial activity was not been altered by complexation.
Collapse
Affiliation(s)
- Ioana Maria Carmen Ienașcu
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania; (I.M.C.I.); (M.N.Ş.); (P.S.); (D.U.); (C.M.); (A.D.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, “Vasile Goldiș” Western University of Arad, 86 Liviu Rebreanu, 310045 Arad, Romania
| | - Adina Căta
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania; (I.M.C.I.); (M.N.Ş.); (P.S.); (D.U.); (C.M.); (A.D.)
| | - Mariana Nela Ştefănuț
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania; (I.M.C.I.); (M.N.Ş.); (P.S.); (D.U.); (C.M.); (A.D.)
| | - Iuliana Popescu
- Faculty of Agriculture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 119 Calea Aradului, 300645 Timișoara, Romania
| | - Gerlinde Rusu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timișoara, 6 C. Telbisz, 300001 Timișoara, Romania;
| | - Paula Sfîrloagă
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania; (I.M.C.I.); (M.N.Ş.); (P.S.); (D.U.); (C.M.); (A.D.)
| | - Daniel Ursu
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania; (I.M.C.I.); (M.N.Ş.); (P.S.); (D.U.); (C.M.); (A.D.)
| | - Cristina Moşoarcă
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania; (I.M.C.I.); (M.N.Ş.); (P.S.); (D.U.); (C.M.); (A.D.)
| | - Anamaria Dabici
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania; (I.M.C.I.); (M.N.Ş.); (P.S.); (D.U.); (C.M.); (A.D.)
| | - Corina Danciu
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timișoara, Romania; (C.D.); (D.M.); (R.P.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timișoara, Romania
| | - Delia Muntean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timișoara, Romania; (C.D.); (D.M.); (R.P.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timișoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timișoara, Romania
| | - Raluca Pop
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timișoara, Romania; (C.D.); (D.M.); (R.P.)
| |
Collapse
|
11
|
Kupriyanova OV, Shevyrin VA, Shafran YM. Potential of chromatography and mass spectrometry for the differentiation of three series of positional isomers of 2-(dimethoxyphenyl)-N-(2-halogenobenzyl)ethanamines. Drug Test Anal 2022; 14:1102-1115. [PMID: 35106940 DOI: 10.1002/dta.3232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 11/10/2022]
Abstract
N-(2-Substituted benzyl)-2,5-dimethoxyphenethylamines often cause severe poisonings which has led to their legal prohibition in many countries. At the same time, their positional isomers can be studied as potential therapeutic drugs. In this regard, the search for various approaches to differentiate these isomers is an important practical task, the solution of which would guarantee from identification errors during laboratory analysis. In this paper, the possibilities of differentiation of isomers varying in the position of two methoxy groups in the phenylethyl part of the molecule are considered on the example of compounds of NBF, NBCl and NBBr series by chromatography-mass spectrometry methods. Gas or liquid reverse-phase chromatography in the proposed chromatographic separation modes has demonstrated their ability to resolve this problem reliably. Data on retention indices of isomeric compounds and their derivatives can serve as an additional identification criterion for gas chromatography-mass spectrometry (GC-MS) analysis. Differentiation of NBF and NBCl isomers using electron ionization (EI) mass spectra is feasible only if both the spectrum of the compound and its N-trifluoroacetyl derivative are registered; differentiation of NBBr positional isomers under these conditions does not require obtaining the derivatives. Using electrospray ion source, the compounds can easily be differentiated based on the distinctive features of their collision induced dissociation (CID) spectra recorded at low energy values, which also does not require the synthesis of derivatives. The data presented in current paper will be useful for analysis in laboratories providing the determination of narcotic drugs.
Collapse
Affiliation(s)
- Olga V Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation.,Kazan State Medical University, Kazan, Russian Federation
| | - Vadim A Shevyrin
- Ural Federal University, Institute of Chemistry and Technology, Ekaterinburg, Russian Federation
| | - Yuri M Shafran
- Ural Federal University, Institute of Chemistry and Technology, Ekaterinburg, Russian Federation
| |
Collapse
|
12
|
Cao C, Lan X, Shang B, Jiang W, Guo L, Zheng S, Bi X, Zhou A, Sun Z, Shou J. Phenotypical screening on metastatic PRCC-TFE3 fusion translocation renal cell carcinoma organoids reveals potential therapeutic agents. Clin Transl Oncol 2022; 24:1333-1346. [PMID: 35118587 PMCID: PMC9192364 DOI: 10.1007/s12094-021-02774-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/31/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE Translocation renal cell carcinoma (tRCC) is a subtype that occurs predominantly in children and young individuals. Metastatic tRCC occurring in young patients is more aggressive than that occurring in older patients, and there are still no effective therapies. Organoids can mimic original tissues and be assessed by high-throughput screening (HTS). We aimed to utilize patient-derived organoids and HTS to screen drugs that can be repurposed for metastatic tRCC with PRCC-TFE3 fusion. METHODS Tumor tissues were obtained from treatment-naïve metastatic tRCC patients who underwent surgery. Histopathology and fluorescence in situ hybridization (FISH) confirmed the tRCC. Organoids derived from the dissected tissues were cultured and verified by FISH and RNA-seq. HTS was performed to seek promising drugs, and potential mechanisms were explored by RNA-seq and cell-based studies. RESULTS We successfully established a metastatic tRCC organoid with PRCC-TFE3 fusion, a common fusion subtype, and its characteristics were verified by histopathology, FISH, and RNA-seq. An HTS assay was developed, and the robustness was confirmed. A compound library of 1816 drugs was screened. Eventually, axitinib, crizotinib, and JQ-1 were selected for further validation and were found to induce cell cycle arrest and apoptosis. RNA-seq analyses of posttreatment organoids indicated that crizotinib induced significant changes in autophagy-related genes, consistent with the potential pathogenesis of tRCC. CONCLUSIONS We established and validated organoids derived from tissues dissected from a patient with metastatic tRCC with PRCC-TFE3 fusion and achieved the HTS process for the first time. Crizotinib might be a targeted therapy worthy of exploration in the clinic for metastatic tRCC with PRCC-TFE3 fusion. Such organoid and HTS assays may represent a promising model system in translational research assisting in the development of clinical strategies.
Collapse
Affiliation(s)
- Chuanzhen Cao
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17#, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Xiaomei Lan
- K2 Oncology Co. Ltd., Beijing, 100176, People's Republic of China
| | - Bingqing Shang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17#, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Weixing Jiang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17#, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Shan Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Xingang Bi
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17#, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Aiping Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17#, Beijing, 100021, People's Republic of China.
| | - Zhijian Sun
- K2 Oncology Co. Ltd., Beijing, 100176, People's Republic of China.
| | - Jianzhong Shou
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17#, Chaoyang District, Beijing, 100021, People's Republic of China.
| |
Collapse
|
13
|
Bio-evaluation of fluoro and trifluoromethyl-substituted salicylanilides against multidrug-resistant S. aureus. Med Chem Res 2021; 30:2301-2315. [PMID: 34720564 PMCID: PMC8548355 DOI: 10.1007/s00044-021-02808-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Staphylococcus aureus (VRSA) are primary causes of skin and soft tissue infections worldwide. To address the emergency caused due to increasing multidrug-resistant (MDR) bacterial infections, a series of novel fluoro and trifluoromethyl-substituted salicylanilide derivatives were synthesized and their antimicrobial activity was investigated. MIC data reveal that the compounds inhibited S. aureus specifically (MIC 0.25–64 µg/mL). The in vitro cytotoxicity of compounds with MIC < 1 µg/mL against Vero cells led to identification of four compounds (20, 22, 24 and 25) with selectivity index above 10. These four compounds were tested against MDR S. aureus panel. Remarkably, 5-chloro-N-(4’-bromo-3’-trifluoromethylphenyl)-2-hydroxybenzamide (22) demonstrated excellent activity against nine MRSA and three VRSA strains with MIC 0.031–0.062 µg/mL, which is significantly better than the control drugs methicillin and vancomycin. The comparative time–kill kinetic experiment revealed that the effect of bacterial killing of 22 is comparable with vancomycin. Compound 22 did not synergize with or antagonize any FDA-approved antibiotic and reduced pre-formed S. aureus biofilm better than vancomycin. Overall, study suggested that 22 could be further developed as a potent anti-staphylococcal therapeutic. ![]()
Collapse
|
14
|
Srivastava V, Deblais L, Kathayat D, Rotondo F, Helmy YA, Miller SA, Rajashekara G. Novel Small Molecule Growth Inhibitors of Xanthomonas spp. Causing Bacterial Spot of Tomato. PHYTOPATHOLOGY 2021; 111:940-953. [PMID: 34311554 DOI: 10.1094/phyto-08-20-0341-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial spot (BS) of tomato, caused by Xanthomonas gardneri, X. perforans, X. vesicatoria, and X. euvesicatoria, is difficult to control because of the high prevalence of copper- and streptomycin-resistant strains and the lack of resistance cultivars and effective bactericides. The objective of this study was to identify novel growth inhibitors of BS-causing Xanthomonas (BS-X) species by using small molecules (SM; n = 4,182). Several SMs (X1, X2, X5, X9, X12, and X16) completely inhibited the growth of BS-X isolates (n = 68 X. gardneri, 55 X. perforans, 4 X. vesicatoria, and 32 X. euvesicatoria) at ≥12.5 µM by disrupting Xanthomonas cell integrity through weakening of the cell membrane and formation of pores. These SMs were also effective against biofilm-embedded, copper- and streptomycin-resistant Xanthomonas strains while having minimal impact on other plant pathogenic (n = 20) and beneficial bacteria (n = 12). Furthermore, these SMs displayed equivalent antimicrobial activity against BS-X in seeds and X. gardneri in seedlings compared with conventional control methods (copper sulfate and streptomycin) at similar concentrations while having no detectable toxicity to tomato tissues. SMs X2, X5, and X12 reduced X. gardneri, X. perforans, X. vesicatoria, and X. euvesicatoria populations in artificially infested seeds ≤3.4-log CFU/seed 1 day postinfection (dpi) compared with the infested untreated control (P ≤ 0.05). SMs X1, X2, X5, and X12 reduced disease severity ≤72% and engineered bioluminescent X. gardneri populations ≤3.0-log CFU/plant in infected seedlings at 7 dpi compared with the infected untreated control (P ≤ 0.05). Additional studies are needed to increase the applicability of these SMs for BS management in tomato production.
Collapse
Affiliation(s)
- Vishal Srivastava
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH
| | - Loic Deblais
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH
| | - Dipak Kathayat
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH
| | - Francesca Rotondo
- Department of Plant Pathology, The Ohio State University, Wooster, OH
| | - Yosra A Helmy
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH
| | - Sally A Miller
- Department of Plant Pathology, The Ohio State University, Wooster, OH
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH
| |
Collapse
|
15
|
Pottie E, Kupriyanova OV, Shevyrin VA, Stove CP. Synthesis and Functional Characterization of 2-(2,5-Dimethoxyphenyl)- N-(2-fluorobenzyl)ethanamine (25H-NBF) Positional Isomers. ACS Chem Neurosci 2021; 12:1667-1673. [PMID: 33906351 DOI: 10.1021/acschemneuro.1c00124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Serotonergic psychedelics, substances exerting their pharmacological action through activation of the serotonin 2A receptor (5-HT2AR), have continuously comprised a substantial fraction of the over 1000 reported New Psychoactive Substances (NPS) so far. Within this category, N-benzyl derived phenethylamines, such as NBOMes and NBFs, have shown to be of particular relevance. As these substances remain incompletely characterized, this study aimed at synthesizing positional isomers of 25H-NBF, with two methoxy groups placed on different positions of the phenyl group of the phenethylamine moiety. These isomers were then functionally characterized in an in vitro bioassay monitoring the recruitment of β-arrestin 2 to the 5-HT2AR through luminescent readout via the NanoBiT technology. The obtained results provide insight into the optimal substitution pattern of the phenyl group of the phenethylamine moiety of N-benzyl derived substances, a feature so far mostly explored in the phenethylamines underived at the N-position. In the employed bioassay, the most potent substances were 24H-NBF (EC50 value of 158 nM), 26H-NBF (397 nM), and 25H-NBF (448 nM), with 23H-NBF, 35H-NBF, and 34H-NBF yielding μM EC50 values. A similar ranking was obtained for the compounds' efficacy: taking as a reference LSD (lysergic acid diethylamide), 24H-, 26H-, and 25H-NBF had an efficacy of 106-107%, followed by 23H-NBF (96.1%), 34H-NBF (75.2%), and 35H-NBF (58.9%). The stronger activity of 24H-, 25H-, and 26H-NBF emphasizes the important role of the methoxy group at position 2 of the phenethylamine moiety for the in vitro functionality of NBF substances.
Collapse
Affiliation(s)
- Eline Pottie
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Olga V. Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russian Federation
- Kazan State Medical University, 49 Butlerova Str., 420012 Kazan, Russian Federation
| | - Vadim A. Shevyrin
- Institute of Chemistry and Technology, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russian Federation
| | - Christophe P. Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
16
|
Walker SS, Black TA. Are outer-membrane targets the solution for MDR Gram-negative bacteria? Drug Discov Today 2021; 26:2152-2158. [PMID: 33798647 DOI: 10.1016/j.drudis.2021.03.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/27/2021] [Accepted: 03/23/2021] [Indexed: 01/17/2023]
Abstract
The outer membrane (OM) of Gram-negative bacteria confers a significant barrier to many antibacterial agents targeting periplasmic and cytosolic functions. 'Synergist' approaches to disrupt the OM have been hampered by poor specificity and accompanying toxicities. The OM contains proteins required for optimal growth and pathogenesis, including lipopolysaccharide (LPS) and capsular polysaccharide (CPS) transport, porins for uptake of macromolecules, and transporters for essential elements (such as iron). Does the external proximity of these proteins offer an enhanced potential to identify effective therapies? Here, we review recent experiences in exploiting Gram-negative OM proteins (OMPs) to address the calamity of exploding antimicrobial resistance. Teaser: Multidrug-resistant (MDR) Gram-negative bacteria are a growing crisis. Few new antimicrobial chemotypes or targets have been identified after decades of screening. Are OMP targets a solution to MDR Gram-negative bacteria?
Collapse
Affiliation(s)
- Scott S Walker
- Infectious Diseases and Vaccines Basic Research, Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Todd A Black
- Infectious Diseases and Vaccines Basic Research, Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA 19486, USA.
| |
Collapse
|
17
|
Honmore VS, Natu AD, Khedkar VM, Arkile MA, Sarkar D, Rojatkar SR. Two antibacterial spiro compounds from the roots of Artemisia pallens wall: evidence from molecular docking. Nat Prod Res 2021; 36:2465-2472. [PMID: 33749414 DOI: 10.1080/14786419.2021.1902325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bioassay-guided isolation from acetone extract of the roots of Artemisia pallens Wall yielded two spiro compounds (1 and 2). The structures of these compounds were determined on the basis of spectroscopic techniques such as IR, MS, 1 D and 2 D- NMR. The acetone extract, fractions and the isolated two compounds were investigated for their antibacterial activity against two gram negative (E. coli, P. aeruginosa) and two gram positive (S. aureus, B. subtilis) bacterial strains. Compound (2) showed the best spectra of activity with IC50 and MIC values between 2.48-3.08 and 12.78 - 21.77 µM and Compound (1) with 2.57-3.69 and 38.17 - 80.57 µM, respectively, for the four bacterial strains, whereas inactive against Mycobacterium tuberculosis. Molecular docking study could further help in understanding the various interactions between these compounds and DNA gyrase active site in detail and thereby could provide valuable insight into the mechanism of action.
Collapse
Affiliation(s)
- Varsha S Honmore
- Post Graduate and Research Center, Department of Chemistry, MES Abasaheb Garware College, Pune, Maharashtra, India
| | - Arun D Natu
- Post Graduate and Research Center, Department of Chemistry, MES Abasaheb Garware College, Pune, Maharashtra, India
| | - Vijay M Khedkar
- Department of Pharmaceutical Chemistry, School of Pharmacy, Vishwakarma University, Pune, Maharashtra, India
| | - Manisha A Arkile
- Combichem-Bioresource Center, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Dhiman Sarkar
- Combichem-Bioresource Center, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Supada R Rojatkar
- R&D Centre in Pharmaceutical Sciences and Applied Chemistry, Poona College of Pharmacy Campus, Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India
| |
Collapse
|
18
|
High throughput screening to determine the antibacterial activity of Terminalia ferdinandiana (Kakadu plum): A proof of concept. J Microbiol Methods 2021; 182:106169. [PMID: 33596404 DOI: 10.1016/j.mimet.2021.106169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/20/2022]
Abstract
Different types of susceptibility tests are available to identify antimicrobial activity, including the disc agar diffusion and broth micro-dilution methods. In recent years, high throughput screening (HTS) methods have been considered and evaluated as an efficient method to rapidly monitor the antimicrobial potential of a wide range of plant products. The objective of this study was to test the ability of a 96-well plate reader as HTS method to evaluate the antimicrobial potential of extracts of Terminalia ferdinandiana (Kakadu plum). The main changes observed in the UV-VIS spectra of the bacteria samples were related to the biochemical and chemical compounds that might originate from the effect of the T. ferdinandiana extracts and the bacteria. Partial least squares discriminant analysis (PLS-DA) allowed the correct classification of samples according to the concentration of extract added to the culture (e.g. high, medium and low). The results of this study indicated that might be possible to record changes in the UV-VIS spectra associated with the interactions between bacteria and T. ferdinandiana extracts using a 96-well plate reader. The method was able to detect or differentiate between live and dead bacteria based on the UV-VIS spectra as a function of the addition of the T. ferdinandiana extracts.
Collapse
|
19
|
Emmerich CH, Gamboa LM, Hofmann MCJ, Bonin-Andresen M, Arbach O, Schendel P, Gerlach B, Hempel K, Bespalov A, Dirnagl U, Parnham MJ. Improving target assessment in biomedical research: the GOT-IT recommendations. Nat Rev Drug Discov 2021; 20:64-81. [PMID: 33199880 PMCID: PMC7667479 DOI: 10.1038/s41573-020-0087-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Academic research plays a key role in identifying new drug targets, including understanding target biology and links between targets and disease states. To lead to new drugs, however, research must progress from purely academic exploration to the initiation of efforts to identify and test a drug candidate in clinical trials, which are typically conducted by the biopharma industry. This transition can be facilitated by a timely focus on target assessment aspects such as target-related safety issues, druggability and assayability, as well as the potential for target modulation to achieve differentiation from established therapies. Here, we present recommendations from the GOT-IT working group, which have been designed to support academic scientists and funders of translational research in identifying and prioritizing target assessment activities and in defining a critical path to reach scientific goals as well as goals related to licensing, partnering with industry or initiating clinical development programmes. Based on sets of guiding questions for different areas of target assessment, the GOT-IT framework is intended to stimulate academic scientists' awareness of factors that make translational research more robust and efficient, and to facilitate academia-industry collaboration.
Collapse
Affiliation(s)
| | - Lorena Martinez Gamboa
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
| | - Martine C J Hofmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine & Pharmacology TMP, Frankfurt am Main, Germany
| | - Marc Bonin-Andresen
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Olga Arbach
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- SPARK-Validation Fund, Berlin Institute of Health, Berlin, Germany
| | - Pascal Schendel
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Katja Hempel
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Anton Bespalov
- PAASP GmbH, Heidelberg, Germany
- Valdman Institute of Pharmacology, Pavlov Medical University, St. Petersburg, Russia
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine & Pharmacology TMP, Frankfurt am Main, Germany
- Faculty of Biochemistry, Chemistry & Pharmacy, J.W. Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Sabira SF, Kasabe AM, Mane PC, Chaudhari RD, Adhyapak PV. Selective antifungal and antibacterial activities of Ag-Cu and Cu-Ag core-shell nanostructures synthesized in-situ PVA. NANOTECHNOLOGY 2020; 31:485705. [PMID: 32554903 DOI: 10.1088/1361-6528/ab9da5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A simple chemical reduction method was employed to synthesize Cu-Ag and Ag-Cu core-shell nanostructures inside polyvinyl alcohol (PVA) matrix at room temperature. The core-shell nanostructures have been synthesized by varying the two different concentrations (i.e. 0.1 and 0.01 M) of the respective metal ions in equimolar ratios using successive reduction with hydrazine hydrate (HH) as a reducing agent. The core-shell nanostructures have been further characterized by different characterization techniques. The UV-visible spectroscopy exhibit the respective shift in the band positions suggesting the formation of core-shell nanostructures, which was further confirmed by field emission transmission electron microscopy-high-angle-annular dark field elemental mapping. The effect of metal ion concentration of the core-shell nanostructure on various Gram positive and Gram negative bacteria like Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and one fungal species Aspergillus fumigatus was observed by performing MIC and MBC/MFC study. Cu-Ag core-shell nanostructures were found to be effective antibacterial agent against all tested Gram-positive and Gram-negative bacteria, whereas Ag-Cu core-shell nanostructures were more efficient against a particular fungal species known as A. fumigatus. The highest value of MIC (75 µg ml-1) for Ag-Cu 0.1M core shell nanostructures (D1) was noted against S. aureus and E. coli whereas the lowest value (20 µg ml-1) was observed with P. aeruginosa. While in case of Cu-Ag 0.1M core shell nanostructures (E1) the highest value of MIC (100 µg ml-1) was noted against S. aureus and P. aeruginosa whereas the lowest value (15 µg ml-1) was observed with A. fumigatus. Also, field effect scanning electron microscope (FESEM) images of untreated and core-shell nanoparticles treated micro-organisms showed that 0.1 M Ag-Cu and 0.1 M Cu-Ag core-shell nanostructure can successfully break the cell wall of the fungi A. fumigatus and bacteria P. aeruginosa, respectively. Thus the present study concludes that, Cu-Ag & Ag-Cu core-shell nanostructures damage the cell structure of micro-organisms and inhibits their growth. Hence, the present Cu-Ag & Ag-Cu core-shell nanostructure acts as good antimicrobial agent against the bacteria and fungi, respectively.
Collapse
Affiliation(s)
- Syed Farhat Sabira
- Centre for Materials for Electronics Technology, Panchawati, Pashan Road, Pune 411008, India
| | | | | | | | | |
Collapse
|
21
|
Rizzo C, Cancemi P, Mattiello L, Marullo S, D'Anna F. Naphthalimide Imidazolium-Based Supramolecular Hydrogels as Bioimaging and Theranostic Soft Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48442-48457. [PMID: 33070607 DOI: 10.1021/acsami.0c17149] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
1,8-Naphthalimide-based imidazolium salts differing for the alkyl chain length and the nature of the anion were synthesized and characterized to obtain fluorescent probes for bioimaging applications. First, their self-assembly behavior and gelling ability were investigated in water and water/dimethyl sulfoxide binary mixtures. Only salts having longer alkyl chains were able to give supramolecular hydrogels, whose properties were investigated by using a combined approach of fluorescence, resonance light scattering, and rheology measurements. Morphological information was obtained by scanning electron microscopy. In addition, conductive properties of organic salts in solution and gel state were analyzed. Imidazolium salts were successfully tested for their possible application as bioimaging and cytotoxic agents toward three cancer cell lines and a nontumoral epithelial cell line. Characterization of their behavior was performed by MTT and cell-based assays. Finally, the biological activity of hydrogels was also investigated. Collectively, our findings showed that naphthalimide-based imidazolium salts are promising theranostic agents and they were able to preserve their biological properties also in the gel phase.
Collapse
Affiliation(s)
- Carla Rizzo
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica, Viale delle Scienze, Università degli Studi di Palermo, Edificio 17, Palermo 90128, Italy
| | - Patrizia Cancemi
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Sezione di Biologia Cellulare, Viale delle Scienze, Università degli Studi di Palermo, Edificio 17, Palermo 90128, Italy
| | - Leonardo Mattiello
- Dipartimento Scienze di Base e Applicate per l'Ingegneria (SBAI), Sapienza Università di Roma, via Castro Laurenziano 7, Roma 00161, Italy
| | - Salvatore Marullo
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica, Viale delle Scienze, Università degli Studi di Palermo, Edificio 17, Palermo 90128, Italy
| | - Francesca D'Anna
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica, Viale delle Scienze, Università degli Studi di Palermo, Edificio 17, Palermo 90128, Italy
| |
Collapse
|
22
|
Mbaba M, Dingle LMK, Cash D, Mare JADL, Laming D, Taylor D, Hoppe HC, Edkins AL, Khanye SD. Repurposing a polymer precursor: Synthesis and in vitro medicinal potential of ferrocenyl 1,3-benzoxazine derivatives. Eur J Med Chem 2019; 187:111924. [PMID: 31855792 DOI: 10.1016/j.ejmech.2019.111924] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 01/12/2023]
Abstract
Cancer and malaria remain relevant pathologies in modern medicinal chemistry endeavours. This is compounded by the threat of development of resistance to existing clinical drugs in use as first-line option for treatment of these diseases. To counter this threat, strategies such as drug repurposing and hybridization are constantly adapted in contemporary drug discovery for the expansion of the drug arsenal and generation of novel chemotypes with potential to avert or delay resistance. In the present study, a polymer precursor scaffold, 1,3-benzoxazine, has been repurposed by incorporation of an organometallic ferrocene unit to produce a novel class of compounds showing in vitro biological activity against breast cancer, malaria and trypanosomiasis. The resultant ferrocenyl 1,3-benzoxazine compounds displayed high potency and selectivity against the investigated diseases, with IC50 values in the low and sub-micromolar range against both chloroquine-sensitive (3D7) and resistant (Dd2) strains of the Plasmodium falciparum parasite. On the other hand, antitrypanosomal (Trypanosoma brucei brucei) potencies were observed between 0.15 and 38.6 μM. The majority of the compounds were not active against breast cancer cells (HCC70), however, for the toxic compounds, IC50 values ranged from 11.0 to 30.5 μM. Preliminary structure-activity relationships revealed the basic oxazine sub-ring and lipophilic benzene substituents to be conducive for biological efficacy of the ferrocenyl 1,3-benzoxazines reported in the study. DNA interaction studies performed on the most promising compound 4c suggested that DNA damage may be one possible mode of action of this class of compounds.
Collapse
Affiliation(s)
- Mziyanda Mbaba
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa.
| | - Laura M K Dingle
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa; Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa
| | - Devon Cash
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa; Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa
| | - Jo-Anne de la Mare
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa; Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa; Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Dustin Laming
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa; Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Dale Taylor
- Division of Clinical Pharmacology, Faculty of Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Heinrich C Hoppe
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa; Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Adrienne L Edkins
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa; Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa; Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Setshaba D Khanye
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa; Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa; Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
23
|
Venkatachalam G, Venkatesan N, Suresh G, Doble M. Cyclic β-(1, 2)-glucan blended poly DL lactic co glycolic acid (PLGA 10:90) nanoparticles for drug delivery. Heliyon 2019; 5:e02289. [PMID: 31517109 PMCID: PMC6732734 DOI: 10.1016/j.heliyon.2019.e02289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/12/2019] [Accepted: 08/08/2019] [Indexed: 11/16/2022] Open
Abstract
Our group had previously reported the encapsulation efficiency of cyclic β-(1, 2)-glucan for various drugs. The current study is aimed at evaluating the use of glucan as a drug carrier system by blending with poly lactic-co- glycolic acid (L:G = 10:90). Nanoparticles of glucan (0.5, 5, 10 and 20 wt %) blended with PLGA and gentamicin were synthesized. Encapsulation efficiency was higher for the blends (93% with 20 wt % of glucan) than the PLGA alone (79.8%). The presence of glucan enhanced both the biodegradability, and biocompatibility of PLGA. Degradation of the nanoparticles in vitro, was autocatalytic with an initial burst release of active drug and the release profile was modeled using the Korsmeyer-Peppas scheme. In vivo studies indicated that the drug released from the blends had high volume of distribution, and greater clearance from the system. Pharmacokinetics of the drug was predicted using a double exponential decay model. Blending with PLGA improved the drug release characteristics of the cyclic β-(1, 2)-glucan.
Collapse
Affiliation(s)
| | | | | | - Mukesh Doble
- Bioengineering and Drug Design Lab, Department of Biotechnology, IIT-Madras, Chennai, 600036, India
| |
Collapse
|
24
|
Shaikh MH, Subhedar DD, Nawale L, Sarkar D, Khan FAK, Sangshetti JN, Shingate BB. Novel Benzylidenehydrazide-1,2,3-Triazole Conjugates as Antitubercular Agents: Synthesis and Molecular Docking. Mini Rev Med Chem 2019; 19:1178-1194. [DOI: 10.2174/1389557518666180718124858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 10/24/2017] [Accepted: 11/13/2017] [Indexed: 11/22/2022]
Abstract
Background & Objectives:Novel 1,2,3-triazole based benzylidenehydrazide derivatives were synthesized and evaluated for antitubercular activity against Mycobacterium tuberculosis (MTB) H37Ra, M. bovis BCG and cytotoxic activity. Most of the derivatives exhibited promising in vitro potency against MTB characterized by lower MIC values.Methods:Among all the synthesized derivatives, compound 6a and 6j were the most active against active and dormant MTB H37Ra, respectively. Compound 6d was significantly active against dormant and active M. bovis BCG.Results:The structure activity relationship has been explored on the basis of anti-tubercular activity data. The active compounds were also tested against THP-1, A549 and Panc-1 cell lines and showed no significant cytotoxicity. Further, the synthesized compounds were found to have potential antioxidant with IC50 range = 11.19-56.64 µg/mL. The molecular docking study of synthesized compounds was performed against DprE1 enzyme of MTB to understand the binding interactions.Conclusion:Furthermore, synthesized compounds were also analysed for ADME properties and the potency of compounds indicated that, this series can be considered as a starting point for the developement of novel and more potent anti-tubercular agents in future.
Collapse
Affiliation(s)
- Mubarak H. Shaikh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431 004, India
| | - Dnyaneshwar D. Subhedar
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431 004, India
| | - Laxman Nawale
- Combi Chem-Bio Resource Center, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Dhiman Sarkar
- Combi Chem-Bio Resource Center, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Firoz A. Kalam Khan
- Oriental College of Pharmacy, Sanpada (West), Navi Mumbai 400 705, MS, India
| | | | - Bapurao B. Shingate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431 004, India
| |
Collapse
|
25
|
Smith KP, Dowgiallo MG, Chiaraviglio L, Parvatkar P, Kim C, Manetsch R, Kirby JE. A Whole-Cell Screen for Adjunctive and Direct Antimicrobials Active against Carbapenem-Resistant Enterobacteriaceae. SLAS DISCOVERY 2019; 24:842-853. [PMID: 31268804 DOI: 10.1177/2472555219859592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are an emerging antimicrobial resistance threat for which few if any therapeutic options remain. Identification of new agents that either inhibit CRE or restore activity of existing antimicrobials is highly desirable. Therefore, a high-throughput screen of 182,427 commercially available compounds was used to identify small molecules which either enhanced activity of meropenem against a carbapenem-resistant Klebsiella pneumoniae ST258 screening strain and/or directly inhibited its growth. The primary screening methodology was a whole-cell screen/counterscreen combination assay that tested for reduction of microbial growth in the presence or absence of meropenem, respectively. Screening hits demonstrating eukaryotic cell toxicity based on an orthogonal screening effort or identified as pan-assay interference compounds (PAINS) by computational methods were triaged. Primary screening hits were then clustered and ranked according to favorable physicochemical properties. Among remaining hits, we found 10 compounds that enhanced activity of carbapenems against a subset of CRE. Direct antimicrobials that passed toxicity and PAINS filters were not, however, identified in this relatively large screening effort. It was previously shown that the same screening strategy was productive for identifying candidates for further development when screening known bioactive libraries inclusive of natural products. Our findings therefore further highlight liabilities of commercially available small-molecule screening libraries in the Gram-negative antimicrobial space. In particular, there was especially low yield in identifying compelling activity against a representative, highly multidrug-resistant, carbapenemase-producing K. pneumoniae strain.
Collapse
Affiliation(s)
- Kenneth P Smith
- 1 Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,2 Harvard Medical School, Boston, MA, USA
| | - Matthew G Dowgiallo
- 3 Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Lucius Chiaraviglio
- 1 Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Prakash Parvatkar
- 3 Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Chungsik Kim
- 3 Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Roman Manetsch
- 3 Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA.,4 Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - James E Kirby
- 1 Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,2 Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Synthesis and Biological Evaluation of Quinoline Derivatives as a Novel Class of Broad-Spectrum Antibacterial Agents. Molecules 2019; 24:molecules24030548. [PMID: 30717338 PMCID: PMC6384568 DOI: 10.3390/molecules24030548] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 11/16/2022] Open
Abstract
Nineteen new quinoline derivatives were prepared via the Mannich reaction and evaluated for their antibacterial activities against both Gram-positive (G⁺) and Gram-negative (G-) bacteria, taking compound 1 as the lead. Among the target compounds, quinolone coupled hybrid 5d exerted the potential effect against most of the tested G⁺ and G- strains with MIC values of 0.125⁻8 μg/mL, much better than those of 1. Molecular-docking assay showed that compound 5d might target both bacterial LptA and Top IV proteins, thereby displaying a broad-spectrum antibacterial effect. This hybridization strategy was an efficient way to promote the antibacterial activity of this kind, and compound 5d was selected for the further investigation, with an advantage of a dual-target mechanism of action.
Collapse
|
27
|
Luna BL, Garcia JA, Huang M, Ewing PJ, Valentine SC, Chu YM, Ye QZ, Xu HH. Identification and characterization of novel isothiazolones with potent bactericidal activity against multi-drug resistant Acinetobacter baumannii clinical isolates. Int J Antimicrob Agents 2018; 53:474-482. [PMID: 30593847 DOI: 10.1016/j.ijantimicag.2018.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 11/27/2022]
Abstract
Acinetobacter baumannii has emerged as a globally important nosocomial pathogen characterized by an increased multi-drug resistance (MDR), leaving limited options for treating its infection. To identify novel antibacterial compounds with activity against clinical isolates of A. baumannii, we performed high-throughput screening against a chemical library of 42,944 compounds using nonpathogenic Escherichia coli MG1655 and identified 55 hit compounds. The antibacterial activities of 30 pure compounds were determined against MDR clinical isolates of A. baumannii obtained from Los Angeles County hospitals. Two isothiazolones identified, 5-chloro-2-(4-chloro-3-methylphenyl)-4-methyl-3(2H)-isothiazolone (Compound 6) and 5-chloro-2-(4-chlorophenyl)-4-methyl-3(2H)-isothiazolone (Compound 7), possess novel structure and exhibited consistent, potent and cidal activity against all 46 MDR A. baumannii clinical isolates and reference strains. Additionally, structure-activity relationship analysis involving several additional isothiazolones supports the link between a chloro-group on the heterocyclic ring or a fused benzene ring and the cidal activity. Attempts to obtain isothiazolone resistant mutants failed, consistent with the rapid cidal action and indicative of a complex mechanism of action. While cytotoxicity was observed with Compound 7, it had a therapeutic index value of 28 suggesting future therapeutic potential. Our results indicate that high-throughput screening of compound libraries followed by in vitro biological evaluations is a viable approach for the discovery of novel antibacterial agents to contribute in the fight against MDR bacterial pathogens.
Collapse
Affiliation(s)
- Breanna L Luna
- Department of Biological Sciences, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | - Javier A Garcia
- Department of Biological Sciences, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | - Min Huang
- High Throughput Screening Laboratory and Department of Medicinal Chemistry, University of Kansas, 1501 Wakarusa Drive, Lawrence, KS 66045, USA
| | - Peter J Ewing
- Department of Biological Sciences, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | - Sonya C Valentine
- Department of Biological Sciences, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | - Yi-Ming Chu
- Department of Biological Sciences, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | - Qi-Zhuang Ye
- High Throughput Screening Laboratory and Department of Medicinal Chemistry, University of Kansas, 1501 Wakarusa Drive, Lawrence, KS 66045, USA; School of Medicine, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, Guangdong 518060, China
| | - H Howard Xu
- Department of Biological Sciences, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA.
| |
Collapse
|
28
|
Saima, Soni I, Lavekar AG, Shukla M, Equbal D, Sinha AK, Chopra S. Biocatalytic synthesis of diaryl disulphides and their bio-evaluation as potent inhibitors of drug-resistant Staphylococcus aureus. Drug Dev Res 2018; 80:171-178. [PMID: 30565263 DOI: 10.1002/ddr.21507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/06/2018] [Accepted: 11/28/2018] [Indexed: 11/11/2022]
Abstract
Staphylococcus aureus is a WHO Priority II pathogen for its capability to cause acute to chronic infections and to resist antibiotics, thus severely impacting healthcare systems worldwide. In this context, it is urgently desired to discover novel molecules to thwart the continuing emergence of antimicrobial resistance. Disulphide containing small molecules has gained prominence as antibacterials. As their conventional synthesis requires tedious synthetic procedure and sometimes toxic reagents, a green and environmentally benign protocol for their synthesis has been developed through which a series of molecules were obtained and evaluated for antibacterial activity against ESKAPE pathogen panel. The hit compound was tested for cytotoxicity against Vero cells to determine its selectivity index and time-kill kinetics was determined. The activity of hit was determined against a panel of S. aureus multi-drug resistant clinical isolates. Also, its ability to synergize with FDA approved drugs was tested as was its ability to reduce biofilm. We identified bis(2-bromophenyl) disulphide (2t) as possessing equipotent antimicrobial activity against S. aureus including MRSA and VRSA strains. Further, 2t exhibited a selectivity index of 25 with concentration-dependent bactericidal activity, synergized with all drugs tested and significantly reduced preformed biofilm. Taken together, 2t exhibits all properties to be positioned as novel scaffold for anti-staphylococcal therapy.
Collapse
Affiliation(s)
- Saima
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Isha Soni
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Aditya G Lavekar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Manjulika Shukla
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Danish Equbal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Arun K Sinha
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sidharth Chopra
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
29
|
Zhang X, Li Y, Wang W, Zhang J, Lin Y, Hong B, You X, Song D, Wang Y, Jiang J, Si S. Identification of an anti-Gram-negative bacteria agent disrupting the interaction between lipopolysaccharide transporters LptA and LptC. Int J Antimicrob Agents 2018; 53:442-448. [PMID: 30476569 DOI: 10.1016/j.ijantimicag.2018.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/17/2018] [Accepted: 11/15/2018] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The emergence of drug-resistant Gram-negative bacteria is a serious clinical problem that causes increased morbidity and mortality. However, the slow discovery of new antibiotics is unable to meet the need for treating bacterial infections caused by drug-resistant strains. Lipopolysaccharide (LPS) is synthesized in the cytoplasm and transported to the cell envelope by the LPS transport (Lpt) system. LptA and LptC form a complex that transports LPS from the inner membrane to the outer membrane. METHODS This study performed a screen for agents that disrupt the transport of LPS in Gram-negative bacteria Escherichia coli. It established a yeast two-hybrid system to detect LptA-LptC interaction and used this system to identify a compound, IMB-881, that blocks this interaction and shows antibacterial activity. RESULTS This study demonstrated that the IMB-881 compound specifically binds to LptA to disrupt LptA-LptC interaction using surface plasmon resonance assay. Overproduction of LptA protein but not that of LptC lowered the antibacterial activity of IMB-881. Strikingly, Escherichia coli cells accumulated 'extra' membrane material in the periplasm and exhibited filament morphology after treatment with IMB-881. CONCLUSION This study successfully identified, by using a yeast two-hybrid system, an antibacterial agent that likely blocks LPS transport in Gram-negative bacteria.
Collapse
Affiliation(s)
- Xuelian Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiwei Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Lin
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Hong
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Danqing Song
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| | - Jiandong Jiang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shuyi Si
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
30
|
Kathayat D, Helmy YA, Deblais L, Rajashekara G. Novel small molecules affecting cell membrane as potential therapeutics for avian pathogenic Escherichia coli. Sci Rep 2018; 8:15329. [PMID: 30333507 PMCID: PMC6193035 DOI: 10.1038/s41598-018-33587-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/26/2018] [Indexed: 11/09/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC), a most common bacterial pathogen of poultry, causes multiple extra-intestinal diseases in poultry which results in significant economic losses to the poultry industry worldwide. In addition, APEC are a subgroup of extra-intestinal pathogenic E. coli (ExPEC), and APEC contaminated poultry products are a potential source of foodborne ExPEC infections to humans and transfer of antimicrobial resistant genes. The emergence of multi-drug resistant APEC strains and the limited efficacy of vaccines necessitate novel APEC control approaches. Here, we screened a small molecule (SM) library and identified 11 SMs bactericidal to APEC. The identified SMs were effective against multiple APEC serotypes, biofilm embedded APEC, antimicrobials resistant APECs, and other pathogenic E. coli strains. Microscopy revealed that these SMs affect the APEC cell membrane. Exposure of SMs to APEC revealed no resistance. Most SMs showed low toxicity towards chicken and human cells and reduced the intracellular APEC load. Treatment with most SMs extended the wax moth larval survival and reduced the intra-larval APEC load. Our studies could facilitate the development of antimicrobial therapeutics for the effective management of APEC infections in poultry as well as other E. coli related foodborne zoonosis, including APEC related ExPEC infections in humans.
Collapse
Affiliation(s)
- Dipak Kathayat
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, 44691, USA
| | - Yosra A Helmy
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, 44691, USA
| | - Loic Deblais
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, 44691, USA
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, 44691, USA.
| |
Collapse
|
31
|
Amoxapine Demonstrates Incomplete Inhibition of β-Glucuronidase Activity from Human Gut Microbiota. SLAS DISCOVERY 2017; 23:76-83. [DOI: 10.1177/2472555217725264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amoxapine has been demonstrated to be a potent inhibitor of Escherichia coli β-glucuronidase. This study aims to explore the factors causing unsatisfactory efficacy of amoxapine in alleviating CPT-11–induced gastrointestinal toxicity in mice and to predict the outcomes in humans. Amoxapine (100 µM) exhibited poor and varied inhibition on β-glucuronidase activity in gut microbiota from 10 healthy individuals and their pool (pool, 11.9%; individuals, 3.6%−54.4%) with IC50 >100 µM and potent inhibition toward E. coli β-glucuronidase (IC50 = 0.34 µM). p-Nitrophenol formation from p-nitrophenyl-β-D-glucuronide by pooled and individual gut microbiota fitted classical Michaelis-Menten kinetics, showing similar affinity (Km = 113–189 µM) but varied catalytic capability (Vmax = 53–556 nmol/h/mg). Interestingly, amoxapine showed distinct inhibitory effects (8.7%–100%) toward β-glucuronidases of 13 bacterial isolates (including four Enterococcus, three Streptococcus, two Escherichia, and two Staphylococcus strains; gus genes belonging to OTU1, 2 or 21) regardless of their genetic similarity or bacterial origin. In addition, amoxapine inhibited the growth of pooled and individual gut microbiota at a high concentration (6.3%–30.8%, 200 µM). Taken together, these findings partly explain the unsatisfactory efficacy of amoxapine in alleviating CPT-11–induced toxicity and predict a poor outcome of β-glucuronidase inhibition in humans, highlighting the necessity of using a human gut microbiota community for drug screening.
Collapse
|
32
|
Dev P, Ramappa VK, Gopal R, . S. Analysis of Chemical Composition of Mulberry Silkworm Pupal Oil with Fourier Transform Infrared Spectroscopy (FTIR), Gas Chromatography/Mass Spectrometry (GC/MS) and its Antimicrobial Property. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/ajar.2017.108.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Degtyareva NN, Gong C, Story S, Levinson NS, Oyelere AK, Green KD, Garneau-Tsodikova S, Arya DP. Antimicrobial Activity, AME Resistance, and A-Site Binding Studies of Anthraquinone-Neomycin Conjugates. ACS Infect Dis 2017; 3:206-215. [PMID: 28103015 PMCID: PMC5971063 DOI: 10.1021/acsinfecdis.6b00176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The antibacterial effects of aminoglycosides are based on their association with the A-site of bacterial rRNA and interference with the translational process in the bacterial cell, causing cell death. The clinical use of aminoglycosides is complicated by resistance and side effects, some of which arise from their interactions with the human mitochondrial 12S rRNA and its deafness-associated mutations, C1494U and A1555G. We report a rapid assay that allows screening of aminoglycoside compounds to these classes of rRNAs. These screening tools are important to find antibiotics that selectively bind to the bacterial A-site rather than human, mitochondrial A-sites and its mutant homologues. Herein, we report our preliminary work on the optimization of this screen using 12 anthraquinone-neomycin (AMA-NEO) conjugates against molecular constructs representing five A-site homologues, Escherichia coli, human cytosolic, mitochondrial, C1494U, and A1555G, using a fluorescent displacement screening assay. These conjugates were also tested for inhibition of protein synthesis, antibacterial activity against 14 clinically relevant bacterial strains, and the effect on enzymes that inactivate aminoglycosides. The AMA-NEO conjugates demonstrated significantly improved resistance against aminoglycoside-modifying enzymes (AMEs), as compared with NEO. Several compounds exhibited significantly greater inhibition of prokaryotic protein synthesis as compared to NEO and were extremely poor inhibitors of eukaryotic translation. There was significant variation in antibacterial activity and MIC of selected compounds between bacterial strains, with Escherichia coli, Enteroccocus faecalis, Citrobacter freundii, Shigella flexneri, Serratia marcescens, Proteus mirabilis, Enterobacter cloacae, Staphylococcus epidermidis, and Listeria monocytogenes exhibiting moderate to high sensitivity (50-100% growth inhibition) whereas Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiellla pneumoniae, and MRSA strains expressed low sensitivity, as compared to the parent aminoglycoside NEO.
Collapse
Affiliation(s)
| | - Changjun Gong
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Sandra Story
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| | - Nathanael S. Levinson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Adegboyega K. Oyelere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Keith D. Green
- College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | | | - Dev P. Arya
- NUBAD, LLC, Greenville, South Carolina 29605, United States
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
34
|
Paraskevopoulos G, Monteiro S, Vosátka R, Krátký M, Navrátilová L, Trejtnar F, Stolaříková J, Vinšová J. Novel salicylanilides from 4,5-dihalogenated salicylic acids: Synthesis, antimicrobial activity and cytotoxicity. Bioorg Med Chem 2017; 25:1524-1532. [DOI: 10.1016/j.bmc.2017.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 11/24/2022]
|
35
|
Liu FL, Chen CL, Lee CC, Wu CC, Hsu TH, Tsai CY, Huang HS, Chang DM. The Simultaneous Inhibitory Effect of Niclosamide on RANKL-Induced Osteoclast Formation and Osteoblast Differentiation. Int J Med Sci 2017; 14:840-852. [PMID: 28824321 PMCID: PMC5562191 DOI: 10.7150/ijms.19268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/23/2017] [Indexed: 12/21/2022] Open
Abstract
The bone destruction disease including osteoporosis and rheumatoid arthritis are caused by the imbalance between osteoblastogenesis and osteoclastogenesis. Inhibition of the NF-κB pathway was responsible for decreased osteoclastogenesis. Recently many studies indicated that niclosamide, the FDA approved an antihelminth drug, inhibits prostate and breast cancer cells growth by targeting NF-κB signaling pathways. This study evaluated the effects of niclosamide on osteoclast and osteoblast differentiation and function in vitro. In RANKL-induced murine osteoclast precursor cell RAW264.7 and M-CSF/RANKL-stimulated primary murine bone marrow-derived macrophages (BMM), niclosamide dose-dependently inhibited the formation of TRAP-positive multinucleated osteoclasts and resorption pits formation between 0.5uM and 1uM. In addition, niclosamide suppressed the expression of nuclear factor of activated T cells c1 (NFATc1) and osteoclast differentiated-related genes in M-CSF/ RANKL-stimulated BMM by interference with TRAF-6, Erk1/2, JNK and NF-κB activation pathways. However, the cytotoxic effects of niclosamide obviously appeared at the effective concentrations for inhibiting osteoclastogenesis (0.5-1uM) with increase of apoptosis through caspase-3 activation in osteoblast precursor cell line, MC3T3-E1. Niclosamide also inhibited ALP activity, bone mineralization and osteoblast differentiation-related genes expression in MC3T3-E1. Therefore, our findings suggest the new standpoint that niclosamide's effects on bones must be considered before applying it in any therapeutic treatment.
Collapse
Affiliation(s)
- Fei-Lan Liu
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taiwan, Republic of China.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Chun-Liang Chen
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Chia-Chung Lee
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Cheng-Chi Wu
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taiwan, Republic of China.,Graduate Institutes of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Teng-Hsu Hsu
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taiwan, Republic of China
| | - Chang-Youh Tsai
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taiwan, Republic of China
| | - Hsu-Shan Huang
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Deh-Ming Chang
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taiwan, Republic of China.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taiwan, Republic of China.,Graduate Institutes of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| |
Collapse
|
36
|
Sarkar P, Acharyya S, Banerjee A, Patra A, Thankamani K, Koley H, Bag PK. Intracellular, biofilm-inhibitory and membrane-damaging activities of nimbolide isolated from Azadirachta indica A. Juss (Meliaceae) against meticillin-resistant Staphylococcus aureus. J Med Microbiol 2016; 65:1205-1214. [PMID: 27553840 DOI: 10.1099/jmm.0.000343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Staphylococcus aureus is a leading aetiologic agent of nosocomial- and community-acquired infectious diseases worldwide. The public health concern regarding staphylococcal infections is inflated by the increasing occurrence of multidrug-resistant strains, e.g. multidrug- and meticillin-resistant S.aureus (MDR MRSA). This study was designed to evaluate the intracellular killing, membrane-damaging and biofilm-inhibitory activities of nimbolide isolated from Azadirachta indica against MDR MRSA. In vitro antibacterial activity of nimbolide was determined by performing MIC, minimal bactericidal concentration (MBC) and time-kill kinetic studies. Bacterial membrane-damaging activity was determined by membrane perturbation and scanning electron microscopy (SEM) examination. Biofilm-inhibitory activities were determined by SEM. Cellular drug accumulation and assessments of intracellular activities were performed using Vero cell culture. SEM revealed that nimbolide caused significant membrane damage and lysis of the S. aureus cells. The biofilm structure was disrupted, and the biofilm formation was greatly reduced in the presence of nimbolide as examined by SEM. The level of accumulation of nimbolide in Vero cells incubated for 24 h is relatively higher than that of ciprofloxacin and nalidixic acid (Cc/Ce for nimbolide > ciprofloxacin and nalidixic acid). The viable number of intracellular S. aureus was decreased [reduction of ~2 log10 c.f.u. (mg Vero cell protein)-1] in a time-dependent manner in the presence of nimbolide (4× MBC) that was comparable to that of tetracycline and nalidixic acid. The significant intracellular, biofilm-inhibitory and bacterial membrane-damaging activities of nimbolide demonstrated here suggested that it has potential as an effective antibacterial agent for the treatment of severe infections caused by MDR MRSA.
Collapse
Affiliation(s)
- Prodipta Sarkar
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| | - Saurabh Acharyya
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| | - Anirban Banerjee
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| | - Amarendra Patra
- Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Karthika Thankamani
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| | - Hemanta Koley
- National Institute of Cholera and Enteric Diseases, P-33 C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Prasanta K Bag
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| |
Collapse
|
37
|
Ward MS, Silva I, Martinez W, Jefferson J, Rahman S, Garcia JM, Kanichar D, Roppiyakuda L, Kosmowska E, Faust MA, Tran KP, Chow F, Buglo E, Zhou F, Groziak MP, Xu HH. Identification of cellular targets of a series of boron heterocycles using TIPA II-A sensitive target identification platform. Bioorg Med Chem 2016; 24:3267-75. [PMID: 27301675 DOI: 10.1016/j.bmc.2016.05.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/23/2016] [Accepted: 05/28/2016] [Indexed: 11/24/2022]
Abstract
One of the hurdles in the discovery of antibiotics is the difficulty of linking antibacterial compounds to their cellular targets. Our laboratory has employed a genome-wide approach of over-expressing essential genes in order to identify cellular targets of antibacterial inhibitors. Our objective in this project was to develop and validate a more sensitive disk diffusion based platform of target identification (Target Identification Platform for Antibacterials version 2; TIPA II) using a collection of cell clones in an Escherichia coli mutant (AS19) host with increased outer membrane permeability. Five known antibiotics/inhibitors and 28 boron heterocycles were tested by TIPA II assay, in conjunction with the original assay TIPA. The TIPA II was more sensitive than TIPA because eight boron heterocycles previously found to be inactive to AG1 cells in TIPA assays exhibited activity to AS19 cells. For 15 boron heterocycles, resistant colonies were observed within the zones of inhibition only on the inducing plates in TIPA II assays. DNA sequencing confirmed that resistant clones harbor plasmids with fabI gene as insert, indicating that these boron heterocycles all target enoyl ACP reductase. Additionally, cell-based assays and dose response curved obtained indicated that for two boron heterocycle inhibitors, the fabI cell clone in AG1 (wild-type) host cells exhibited at least 11 fold more resistance under induced conditions than under non-induced conditions. Moreover, TIPA II also identified cellular targets of known antibacterial inhibitors triclosan, phosphomycin, trimethoprim, diazaborine and thiolactomycin, further validating the utility of the new system.
Collapse
Affiliation(s)
- Matthew S Ward
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Isba Silva
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Walfre Martinez
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Jameka Jefferson
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Shakila Rahman
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Jeanie M Garcia
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Divya Kanichar
- Department of Chemistry and Biochemistry, California State University East Bay, Hayward, CA 94542, USA
| | - Lance Roppiyakuda
- Department of Chemistry and Biochemistry, California State University East Bay, Hayward, CA 94542, USA
| | - Ewa Kosmowska
- Department of Chemistry and Biochemistry, California State University East Bay, Hayward, CA 94542, USA
| | - Michelle A Faust
- Department of Chemistry and Biochemistry, California State University East Bay, Hayward, CA 94542, USA
| | - Kim P Tran
- Department of Chemistry and Biochemistry, California State University East Bay, Hayward, CA 94542, USA
| | - Felicia Chow
- Department of Chemistry and Biochemistry, California State University East Bay, Hayward, CA 94542, USA
| | - Elena Buglo
- Department of Chemistry and Biochemistry, California State University East Bay, Hayward, CA 94542, USA
| | - Feimeng Zhou
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Michael P Groziak
- Department of Chemistry and Biochemistry, California State University East Bay, Hayward, CA 94542, USA
| | - H Howard Xu
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA.
| |
Collapse
|
38
|
Kumar A, Drozd M, Pina-Mimbela R, Xu X, Helmy YA, Antwi J, Fuchs JR, Nislow C, Templeton J, Blackall PJ, Rajashekara G. Novel Anti-Campylobacter Compounds Identified Using High Throughput Screening of a Pre-selected Enriched Small Molecules Library. Front Microbiol 2016; 7:405. [PMID: 27092106 PMCID: PMC4821856 DOI: 10.3389/fmicb.2016.00405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/14/2016] [Indexed: 12/12/2022] Open
Abstract
Campylobacter is a leading cause of foodborne bacterial gastroenteritis worldwide and infections can be fatal. The emergence of antibiotic-resistant Campylobacter spp. necessitates the development of new antimicrobials. We identified novel anti-Campylobacter small molecule inhibitors using a high throughput growth inhibition assay. To expedite screening, we made use of a "bioactive" library of 4182 compounds that we have previously shown to be active against diverse microbes. Screening for growth inhibition of Campylobacter jejuni, identified 781 compounds that were either bactericidal or bacteriostatic at a concentration of 200 μM. Seventy nine of the bactericidal compounds were prioritized for secondary screening based on their physico-chemical properties. Based on the minimum inhibitory concentration against a diverse range of C. jejuni and a lack of effect on gut microbes, we selected 12 compounds. No resistance was observed to any of these 12 lead compounds when C. jejuni was cultured with lethal or sub-lethal concentrations suggesting that C. jejuni is less likely to develop resistance to these compounds. Top 12 compounds also possessed low cytotoxicity to human intestinal epithelial cells (Caco-2 cells) and no hemolytic activity against sheep red blood cells. Next, these 12 compounds were evaluated for ability to clear C. jejuni in vitro. A total of 10 compounds had an anti-C. jejuni effect in Caco-2 cells with some effective even at 25 μM concentrations. These novel 12 compounds belong to five established antimicrobial chemical classes; piperazines, aryl amines, piperidines, sulfonamide, and pyridazinone. Exploitation of analogs of these chemical classes may provide Campylobacter specific drugs that can be applied in both human and animal medicine.
Collapse
Affiliation(s)
- Anand Kumar
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State UniversityWooster, OH, USA; Poultry CRC, University of New EnglandArmidale, NSW, Australia
| | - Mary Drozd
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State UniversityWooster, OH, USA; Poultry CRC, University of New EnglandArmidale, NSW, Australia
| | - Ruby Pina-Mimbela
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University Wooster, OH, USA
| | - Xiulan Xu
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University Wooster, OH, USA
| | - Yosra A Helmy
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University Wooster, OH, USA
| | - Janet Antwi
- College of Pharmacy, The Ohio State University Columbus, OH, USA
| | - James R Fuchs
- College of Pharmacy, The Ohio State University Columbus, OH, USA
| | - Corey Nislow
- Pharmaceutical Sciences, The University of British Columbia Vancouver, BC, Canada
| | - Jillian Templeton
- Department of Agriculture and Fisheries, EcoSciences Precinct Dutton Park, QLD, Australia
| | - Patrick J Blackall
- Poultry CRC, University of New EnglandArmidale, NSW, Australia; Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, EcoSciences PrecinctDutton Park, QLD, Australia
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University Wooster, OH, USA
| |
Collapse
|
39
|
Porter J, Anderson J, Carter L, Donjacour E, Paros M. In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis. J Dairy Sci 2016; 99:2053-2062. [DOI: 10.3168/jds.2015-9748] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 11/15/2015] [Indexed: 02/04/2023]
|
40
|
Subhedar DD, Shaikh MH, Nawale L, Yeware A, Sarkar D, Shingate BB. [Et3NH][HSO4] catalyzed efficient synthesis of 5-arylidene-rhodanine conjugates and their antitubercular activity. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2484-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
41
|
Wercholuk AN, Thuman JM, Stanley JL, Sargent AL, Anderson ES, Allen WE. Incorporation of fluorophore-cholesterol conjugates into liposomal and mycobacterial membranes. Bioorg Med Chem 2016; 24:1045-9. [PMID: 26827139 DOI: 10.1016/j.bmc.2016.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/05/2016] [Accepted: 01/17/2016] [Indexed: 02/05/2023]
Abstract
Fluorescently-labeled steroids that emit intense blue light in nonpolar solvent (λem (CH2Cl2)≈440nm, ΦF=0.70) were prepared by treating cholesteryl chloroformate with 4-amino-1,8-naphthalimides. The lipid portion of the conjugates embeds into liposomal membrane bilayers in minutes, leaving the fluorophore exposed to the external aqueous environment. This causes a 40-nm red-shift in λem and significant quenching. DFT optimizations predict the conjugates to be about 30Å long when fully extended, but rotation about the linker group can bring the compounds into an 'L'-shape. Such a conformation would allow the cholesteryl anchor to remain parallel to the acyl chains of a membrane while the fluorescent group resides in the interfacial region, instead of extending beyond it. When incubated with Mycobacterium smegmatis mc2 155, a bacterial species known to use natural cholesterol, the labeled steroids support growth and can be found localized in the membrane fraction of the cells using HPLC. These findings demonstrate stable integration of fluorescent cholesterols into bacterial membranes in vivo, indicating that these compounds may be useful for evaluating cholesterol uptake in prokaryotic organisms.
Collapse
Affiliation(s)
- Ashley N Wercholuk
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, NC 27858-4353, USA; Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858-4353, USA
| | - Jenna M Thuman
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, NC 27858-4353, USA; Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858-4353, USA
| | - Jordan L Stanley
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, NC 27858-4353, USA; Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858-4353, USA
| | - Andrew L Sargent
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, NC 27858-4353, USA; Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858-4353, USA
| | - Eric S Anderson
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, NC 27858-4353, USA; Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858-4353, USA
| | - William E Allen
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, NC 27858-4353, USA; Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858-4353, USA.
| |
Collapse
|
42
|
Lin S, Xian Y, Xun Z, Li S, Liu X, Du W, Huang J, Guo X, Dong H. Solid-phase extraction coupled with ultra performance liquid chromatography tandem mass spectrometry to determine seven halogenated salicylanilides in cosmetics. RSC Adv 2016. [DOI: 10.1039/c6ra07944j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A solid-phase extraction (SPE) purification coupled with ultra performance liquid chromatography tandem mass spectrometry (SPE-UPLC-MS/MS) method was developed for simultaneous determination of seven halogenated salicylanilides in cosmetics.
Collapse
Affiliation(s)
- Senyu Lin
- Guangzhou Quality Supervision and Testing Institute
- Guangzhou 511447
- China
| | - Yanping Xian
- Guangzhou Quality Supervision and Testing Institute
- Guangzhou 511447
- China
| | - Zhiqing Xun
- Guangzhou Quality Supervision and Testing Institute
- Guangzhou 511447
- China
| | - Siyan Li
- Guangzhou Quality Supervision and Testing Institute
- Guangzhou 511447
- China
| | - Xinjia Liu
- Guangzhou Quality Supervision and Testing Institute
- Guangzhou 511447
- China
| | - Weifeng Du
- Guangzhou Quality Supervision and Testing Institute
- Guangzhou 511447
- China
| | - Jinfeng Huang
- Guangzhou Quality Supervision and Testing Institute
- Guangzhou 511447
- China
| | - Xindong Guo
- Guangzhou Quality Supervision and Testing Institute
- Guangzhou 511447
- China
| | - Hao Dong
- Guangzhou Quality Supervision and Testing Institute
- Guangzhou 511447
- China
| |
Collapse
|
43
|
Acharyya S, Sarkar P, Saha DR, Patra A, Ramamurthy T, Bag PK. Intracellular and membrane-damaging activities of methyl gallate isolated from Terminalia chebula against multidrug-resistant Shigella spp. J Med Microbiol 2015; 64:901-909. [PMID: 26272388 DOI: 10.1099/jmm.0.000107] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shigella spp. (Shigella dysenteriae, Shigella flexneri, Shigella boydii and Shigella sonnei) cause bacillary dysentery (shigellosis), which is characterized by bloody mucous diarrhoea. Although a variety of antibiotics have been effective for treatment of shigellosis, options are becoming limited due to globally emerging drug resistance. In the present study, in vitro antibacterial activity of methyl gallate (MG) isolated from Terminalia chebula was determined by performing MIC, minimal bactericidal concentration (MBC) and time-kill kinetic studies. Bacterial membrane-damaging activity of MG was determined by membrane perturbation and transmission electron microscopy (TEM). Cellular drug accumulation, cell infection and assessment of intracellular activities of MG and reference antibiotics were performed using HeLa cell cultures. The bactericidal activity of MG against multidrug-resistant (MDR) Shigella spp. in comparison with other commonly used drugs including fluoroquinolone was demonstrated here. TEM findings in the present study revealed that MG caused the total disintegration of inner and outer membranes, and leakage of the cytoplasmic contents of S. dysenteriae. The level of accumulation of MG and tetracycline in HeLa cells incubated for 24 h was relatively higher than that of ciprofloxacin and nalidixic acid (ratio of intracellular concentration/extracellular concentration of antibiotic for MG and tetracycline>ciprofloxacin and nalidixic acid). The viable number of intracellular S. dysenteriae was decreased in a time-dependent manner in the presence of MG (4 × MBC) and reduced to zero within 20 h. The significant intracellular activities of MG suggested that it could potentially be used as an effective antibacterial agent for the treatment of severe infections caused by MDR Shigella spp.
Collapse
Affiliation(s)
- Saurabh Acharyya
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| | - Prodipta Sarkar
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| | - Dhira R Saha
- National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Amarendra Patra
- Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - T Ramamurthy
- National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Prasanta K Bag
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| |
Collapse
|
44
|
Paraskevopoulos G, Krátký M, Mandíková J, Trejtnar F, Stolaříková J, Pávek P, Besra G, Vinšová J. Novel derivatives of nitro-substituted salicylic acids: Synthesis, antimicrobial activity and cytotoxicity. Bioorg Med Chem 2015; 23:7292-301. [PMID: 26526729 DOI: 10.1016/j.bmc.2015.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 02/08/2023]
Abstract
Inspired by the high antituberculous activity of novel nitro-substituted derivatives and based on promising predicted ADMET properties we have synthesized a series of 33 salicylanilides containing nitro-group in their salicylic part and evaluated them for their in vitro antimycobacterial, antimicrobial and antifungal activities. The presence of nitro-group in position 4 of the salicylic acid was found to be beneficial and the resulting molecules exhibited minimum inhibitory concentrations (MICs) ranging from 2 to 32 μM against Mycobacterium tuberculosis. The best activity was found for 2-hydroxy-4-nitro-N-[4-(trifluoromethyl)phenyl]benzamide (MIC=2 μM). 4-Nitrosalicylanilides were also found to be active against all Staphylococcus species tested while for MRSA strain 2-hydroxy-4-nitro-N-[4-(trifluoromethyl)phenyl]benzamide's MIC was 0.98 μM. None of the nitrosalicylanilides was active against Enterococcus sp. J 14365/08 and no considerable activity was found against Gram-negative bacteria or fungi. The hepatotoxicity of all nitrosalicylanilides was found to be in the range of their MICs for HepG2 cells.
Collapse
Affiliation(s)
- Georgios Paraskevopoulos
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Martin Krátký
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jana Mandíková
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - František Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jiřina Stolaříková
- Laboratory for Mycobacterial Diagnostics and Tuberculosis, Regional Institute of Public Health in Ostrava, Partyzánské náměstí 7, 702 00 Ostrava, Czech Republic
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Gurdyal Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jarmila Vinšová
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
45
|
Xu X, Kumar A, Deblais L, Pina-Mimbela R, Nislow C, Fuchs JR, Miller SA, Rajashekara G. Discovery of novel small molecule modulators of Clavibacter michiganensis subsp. michiganensis. Front Microbiol 2015; 6:1127. [PMID: 26539169 PMCID: PMC4609890 DOI: 10.3389/fmicb.2015.01127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/28/2015] [Indexed: 12/05/2022] Open
Abstract
Clavibacter michiganensis subsp. michiganensis (Cmm) is a Gram-positive seed-transmitted bacterial phytopathogen responsible for substantial economic losses by adversely affecting tomato production worldwide. A high-throughput, cell-based screen was adapted to identify novel small molecule growth inhibitors to serve as leads for future bactericide development. A library of 4,182 compounds known to be bioactive against Saccharomyces cerevisiae was selected for primary screening against Cmm wild-type strain C290 for whole-cell growth inhibition. Four hundred sixty-eight molecules (11.2% hit rate) were identified as bacteriocidal or bacteriostatic against Cmm at 200 μM. Seventy-seven candidates were selected based on Golden Triangle analyses for secondary screening. Secondary screens showed that several of these candidates were strain-selective. Several compounds were inhibitory to multiple Cmm strains as well as Bacillus subtilis, but not to Pseudomonas fluorescens, Mitsuaria sp., Lysobacter enzymogenes, Lactobacillus rhamnosus, Bifidobacterium animalis, or Escherichia coli. Most of the compounds were not phytotoxic and did not show overt host toxicity. Using a novel 96-well bioluminescent Cmm seedling infection assay, we assessed effects of selected compounds on pathogen infection. The 12 most potent novel molecules were identified by compiling the scores from all secondary screens combined with the reduction of pathogen infection in planta. When tested for ability to develop resistance to the top-12 compounds, no resistant Cmm were recovered, suggesting that the discovered compounds are unlikely to induce resistance. In conclusion, here we report top-12 compounds that provide chemical scaffolds for future Cmm-specific bactericide development.
Collapse
Affiliation(s)
- Xiulan Xu
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University Wooster, OH, USA
| | - Anand Kumar
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University Wooster, OH, USA
| | - Loïc Deblais
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University Wooster, OH, USA
| | - Ruby Pina-Mimbela
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University Wooster, OH, USA
| | - Corey Nislow
- Pharmaceutical Sciences, University of British Columbia Vancouver, BC, Canada
| | - James R Fuchs
- College of Pharmacy, The Ohio State University Columbus, OH, USA
| | - Sally A Miller
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University Wooster, OH, USA
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University Wooster, OH, USA
| |
Collapse
|
46
|
Nayab PS, Pulaganti M, Chitta SK, Abid M, Uddin R. Evaluation of DNA Binding, Radicals Scavenging and Antimicrobial Studies of Newly Synthesized N-Substituted Naphthalimides: Spectroscopic and Molecular Docking Investigations. J Fluoresc 2015; 25:1905-20. [DOI: 10.1007/s10895-015-1683-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/28/2015] [Indexed: 11/28/2022]
|
47
|
Dai J, Suh SJ, Hamon M, Hong JW. Determination of antibiotic EC50 using a zero-flow microfluidic chip based growth phenotype assay. Biotechnol J 2015; 10:1783-91. [PMID: 26110969 DOI: 10.1002/biot.201500037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/30/2015] [Accepted: 06/24/2015] [Indexed: 01/30/2023]
Abstract
Current existing assay systems for evaluating antimicrobial activity suffer from several limitations including excess reagent consumption and inaccurate concentration gradient preparation. Recently, microfluidic systems have been developed to provide miniaturized platforms for antimicrobial susceptibility assays. However, some of current microfluidic based assays require continuous flows of reagents or elaborate preparation steps during concentration preparation. In this study, we introduce a novel microfluidic chip based growth phenotype assay that automatically generates a logarithmic concentration gradient and allows observing the growth of pathogenic bacteria under different concentrations of antibiotics in nanoliter batch culture reactors. We chose pathogen bacterium Pseudomonas aeruginosa as a model strain and evaluated the inhibitory effects of gentamicin and ciprofloxacin. We determined the EC50 values and confirmed the validity of the present system by comparing the EC50 values obtained through conventional test tube method. We demonstrated that the EC50 values acquired from present assay are comparable to those obtained from conventional test tube cultures. The potential application of present assay system for investigating combinatorial effects of antibiotics on multidrug resistant pathogenic bacteria is discussed and it can be further used for systematic evaluation of antifungal or antiviral agents.
Collapse
Affiliation(s)
- Jing Dai
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, AL, USA
| | - Sang-Jin Suh
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Morgan Hamon
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, AL, USA
| | - Jong Wook Hong
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, AL, USA. .,Department of Bionano Engineering, Hanyang University, Ansan, Korea.
| |
Collapse
|
48
|
Duan H, Li Y, Lim HY, Wang W. Identification of 5-nitrofuran-2-amide derivatives that induce apoptosis in triple negative breast cancer cells by activating C/EBP-homologous protein expression. Bioorg Med Chem 2015; 23:4514-4521. [PMID: 26116180 DOI: 10.1016/j.bmc.2015.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/27/2015] [Accepted: 06/04/2015] [Indexed: 12/22/2022]
Abstract
The transcription factor C/EBP-homologous protein (CHOP) is a key component of the terminal unfolded protein response (UPR) that mediates unresolvable endoplasmic reticulum stress-induced apoptosis. CHOP induction is known to cause cancer cell death. Chemicals that induce CHOP expression would thus be valuable as potential cancer therapeutics and as research tools. Here, we identified 5-nitrofuran-2-amide derivatives as small molecule activators of CHOP expression that induced apoptosis in triple negative breast cancer (TNBC) cells. Our preliminary structure-activity relationship studies indicated that compounds with an N-phenyl-5-nitrofuran-2-carboxamide skeleton were particularly potent inducers of TNBC cell apoptosis. The compounds activate CHOP expression via the PERK-eIF2α-ATF4 branch of the UPR. These results indicate that small molecule activators of CHOP expression may have therapeutic potential for TNBC.
Collapse
Affiliation(s)
- Hongliang Duan
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Yu Li
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Hui-Ying Lim
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, OK, USA
| | - Weidong Wang
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, OK, USA.
| |
Collapse
|
49
|
Jiang L, Watkins D, Jin Y, Gong C, King A, Washington AZ, Green KD, Garneau-Tsodikova S, Oyelere AK, Arya DP. Rapid synthesis, RNA binding, and antibacterial screening of a peptidic-aminosugar (PA) library. ACS Chem Biol 2015; 10:1278-89. [PMID: 25706406 DOI: 10.1021/cb5010367] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A 215-member mono- and diamino acid peptidic-aminosugar (PA) library, with neomycin as the model aminosugar, was systematically and rapidly synthesized via solid phase synthesis. Antibacterial activities of the PA library, on 13 bacterial strains (seven Gram-positive and six Gram-negative bacterial strains), and binding affinities of the PA library for a 27-base model of the bacterial 16S ribosomal A-site RNA were evaluated using high-throughput screening. The results of the two assays were correlated using Ribosomal Binding-Bacterial Inhibition Plot (RB-BIP) analysis to provide structure-activity relationship (SAR) information. From this work, we have identified PAs that can discriminate the E. coli A-site from the human A-site by up to a 28-fold difference in binding affinity. Aminoglycoside-modifying enzyme activity studies indicate that APH(2″)-Ia showed nearly complete removal of activity with a number of PAs. The synthesis of the compound library and screening can both be performed rapidly, allowing for an iterative process of aminoglycoside synthesis and screening of PA libraries for optimal binding and antibacterial activity for lead identification.
Collapse
Affiliation(s)
- Liuwei Jiang
- Laboratory
of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | | - Yi Jin
- Laboratory
of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Changjun Gong
- Laboratory
of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Ada King
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| | - Arren Z. Washington
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Keith D. Green
- College
of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- College
of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Adegboyega K. Oyelere
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dev P. Arya
- Laboratory
of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| |
Collapse
|
50
|
Sandiford SK. Perspectives on lantibiotic discovery - where have we failed and what improvements are required? Expert Opin Drug Discov 2015; 10:315-20. [PMID: 25697059 DOI: 10.1517/17460441.2015.1016496] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The increasing resistance of bacteria to conventional antimicrobial therapy within both the nosocomial and community environment has enforced the urgent requirement for the discovery of novel agents. This has stimulated increased research efforts within the field of lantibiotic discovery. Lantibiotics are ribosomally synthesised, post-translationally modified antimicrobial peptides that exhibit antimicrobial activity against a range of multi-drug-resistant (MDR) bacteria. The success of these agents as a novel treatment of MDR infections is exemplified by: the clinical development of MU1140 (mutacin 1140) and NAI-107 (microbisporicin), which are in late pre-clinical trials against gram-positive bacteria; NVB302 that has completed Phase I clinical trials for the treatment of Clostridium difficile infections and; duramycin that has completed Phase II clinical trials in the treatment of cystic fibrosis. Despite these potential successes, the traditional method of lantibiotic discovery involving the induction, production and identification is often an inefficient, time-consuming process creating a barrier to the efficient discovery of novel lantibiotics. The introduction of novel and innovative identification methods, including the application of probes and the ability to improve the stability and activity of agents via mutagenesis offer encouraging new areas to explore. The rapid expansion of available genome sequences of a wide variety of bacteria has revealed multiple interesting lantibiotic clusters that have the potential to be effective antimicrobials. However, due to the inefficient expression, screening and production methods currently employed, they are being assessed inefficiently and not rapidly enough to keep up with the ever-increasing demand for new agents.
Collapse
Affiliation(s)
- Stephanie Kate Sandiford
- Institute of Pharmaceutical Sciences, King's College London , Britannia House, 7 Trinity Street, SE1 1DB London , UK
| |
Collapse
|