1
|
Bramlett SN, Foster SL, Weinshenker D, Hepler JR. Endogenous Regulator of G protein Signaling 14 (RGS14) suppresses cocaine-induced emotionally motivated behaviors in female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612719. [PMID: 39314405 PMCID: PMC11419016 DOI: 10.1101/2024.09.12.612719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Addictive drugs hijack the neuronal mechanisms of learning and memory in motivation and emotion processing circuits to reinforce their own use. Regulator of G-protein Signaling 14 (RGS14) is a natural suppressor of post-synaptic plasticity underlying learning and memory in the hippocampus. The present study used immunofluorescence and RGS14 knockout mice to assess the role of RGS14 in behavioral plasticity and reward learning induced by chronic cocaine in emotional-motivational circuits. We report that RGS14 is strongly expressed in discrete regions of the ventral striatum and extended amygdala in wild-type mice, and is co-expressed with D1 and D2 dopamine receptors in neurons of the nucleus accumbens (NAc). Of note, we found that RGS14 is upregulated in the NAc in mice with chronic cocaine history following acute cocaine treatment. We found significantly increased cocaine-induced locomotor sensitization, as well as enhanced conditioned place preference and conditioned locomotor activity in RGS14-deficient mice compared to wild-type littermates. Together, these findings suggest that endogenous RGS14 suppresses cocaine-induced plasticity in emotional-motivational circuits, implicating RGS14 as a protective agent against the maladaptive neuroplastic changes that occur during addiction.
Collapse
Affiliation(s)
- Sara N. Bramlett
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephanie L. Foster
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John R. Hepler
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Tasma Z, Wills P, Hay DL, Walker CS. Agonist bias and agonist-dependent antagonism at corticotrophin releasing factor receptors. Pharmacol Res Perspect 2021; 8:e00595. [PMID: 32529807 PMCID: PMC7290078 DOI: 10.1002/prp2.595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 01/14/2023] Open
Abstract
The corticotropin-releasing factor (CRF) receptors represent potential drug targets for the treatment of anxiety, stress, and other disorders. However, it is not known if endogenous CRF receptor agonists display biased signaling, how effective CRF receptor antagonists are at blocking different agonists and signaling pathways or how receptor activity-modifying proteins (RAMPs) effect these processes. This study aimed to address this by investigating agonist and antagonist action at CRF1 and CRF2 receptors. We used CRF1 and CRF2 receptor transfected Cos7 cells to assess the ability of CRF and urocortin (UCN) peptides to activate cAMP, inositol monophosphate (IP1 ), and extracellular signal-regulated kinase 1/2 signaling and determined the ability of antagonists to block agonist-stimulated cAMP and IP1 accumulation. The ability of RAMPs to interact with CRF receptors was also examined. At the CRF1 receptor, CRF and UCN1 activated signaling in the same manner. However, at the CRF2 receptor, UCN1 and UCN2 displayed similar signaling profiles, whereas CRF and UCN3 displayed bias away from IP1 accumulation over cAMP. The antagonist potency was dependent on the receptor, agonist, and signaling pathway. CRF1 and CRF2 receptors had no effect on RAMP1 or RAMP2 surface expression. The presence of biased agonism and agonist-dependent antagonism at the CRF receptors offers new avenues for developing drugs tailored to activate a specific signaling pathway or block a specific agonist. Our findings suggest that the already complex CRF receptor pharmacology may be underappreciated and requires further investigation.
Collapse
Affiliation(s)
- Zoe Tasma
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Peter Wills
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Vandael D, Gounko NV. Corticotropin releasing factor-binding protein (CRF-BP) as a potential new therapeutic target in Alzheimer's disease and stress disorders. Transl Psychiatry 2019; 9:272. [PMID: 31641098 PMCID: PMC6805916 DOI: 10.1038/s41398-019-0581-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease is the most common cause of dementia and one of the most complex human neurodegenerative diseases. Numerous studies have demonstrated a critical role of the environment in the pathogenesis and pathophysiology of the disease, where daily life stress plays an important role. A lot of epigenetic studies have led to the conclusion that chronic stress and stress-related disorders play an important part in the onset of neurodegenerative disorders, and an enormous amount of research yielded valuable discoveries but has so far not led to the development of effective treatment strategies for Alzheimer's disease. Corticotropin-releasing factor (CRF) is one of the major hormones and at the same time a neuropeptide acting in stress response. Deregulation of protein levels of CRF is involved in the pathogenesis of Alzheimer's disease, but little is known about the precise roles of CRF and its binding protein, CRF-BP, in neurodegenerative diseases. In this review, we summarize the key evidence for and against the involvement of stress-associated modulation of the CRF system in the pathogenesis of Alzheimer's disease and discuss how recent findings could lead to new potential treatment possibilities in Alzheimer's disease by using CRF-BP as a therapeutic target.
Collapse
Affiliation(s)
- Dorien Vandael
- VIB-KU Leuven Center for Brain and Disease Research, Electron Microscopy Platform, Herestraat 49, B-3000 Leuven, Belgium ,VIB Bioimaging Core Facility, Herestraat 49, B-3000 Leuven, Belgium ,KU Leuven Department of Neurosciences, Leuven Brain Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Natalia V. Gounko
- VIB-KU Leuven Center for Brain and Disease Research, Electron Microscopy Platform, Herestraat 49, B-3000 Leuven, Belgium ,VIB Bioimaging Core Facility, Herestraat 49, B-3000 Leuven, Belgium ,KU Leuven Department of Neurosciences, Leuven Brain Institute, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
4
|
Deussing JM, Chen A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiol Rev 2018; 98:2225-2286. [DOI: 10.1152/physrev.00042.2017] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The physiological stress response is responsible for the maintenance of homeostasis in the presence of real or perceived challenges. In this function, the brain activates adaptive responses that involve numerous neural circuits and effector molecules to adapt to the current and future demands. A maladaptive stress response has been linked to the etiology of a variety of disorders, such as anxiety and mood disorders, eating disorders, and the metabolic syndrome. The neuropeptide corticotropin-releasing factor (CRF) and its relatives, the urocortins 1–3, in concert with their receptors (CRFR1, CRFR2), have emerged as central components of the physiological stress response. This central peptidergic system impinges on a broad spectrum of physiological processes that are the basis for successful adaptation and concomitantly integrate autonomic, neuroendocrine, and behavioral stress responses. This review focuses on the physiology of CRF-related peptides and their cognate receptors with the aim of providing a comprehensive up-to-date overview of the field. We describe the major molecular features covering aspects of gene expression and regulation, structural properties, and molecular interactions, as well as mechanisms of signal transduction and their surveillance. In addition, we discuss the large body of published experimental studies focusing on state-of-the-art genetic approaches with high temporal and spatial precision, which collectively aimed to dissect the contribution of CRF-related ligands and receptors to different levels of the stress response. We discuss the controversies in the field and unravel knowledge gaps that might pave the way for future research directions and open up novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jan M. Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
POU6f1 Mediates Neuropeptide-Dependent Plasticity in the Adult Brain. J Neurosci 2018; 38:1443-1461. [PMID: 29305536 DOI: 10.1523/jneurosci.1641-17.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/11/2017] [Accepted: 12/21/2017] [Indexed: 01/20/2023] Open
Abstract
The mouse olfactory bulb (OB) features continued, activity-dependent integration of adult-born neurons, providing a robust model with which to examine mechanisms of plasticity in the adult brain. We previously reported that local OB interneurons secrete the neuropeptide corticotropin-releasing hormone (CRH) in an activity-dependent manner onto adult-born granule neurons and that local CRH signaling promotes expression of synaptic machinery in the bulb. This effect is mediated via activation of the CRH receptor 1 (CRHR1), which is developmentally regulated during adult-born neuron maturation. CRHR1 is a GS-protein-coupled receptor that activates CREB-dependent transcription in the presence of CRH. Therefore, we hypothesized that locally secreted CRH activates CRHR1 to initiate circuit plasticity programs. To identify such programs, we profiled gene expression changes associated with CRHR1 activity in adult-born neurons of the OB. Here, we show that CRHR1 activity influences expression of the brain-specific Homeobox-containing transcription factor POU Class 6 Homeobox 1 (POU6f1). To elucidate the contributions of POU6f1 toward activity-dependent circuit remodeling, we targeted CRHR1+ neurons in male and female mice for cell-type-specific manipulation of POU6f1 expression. Whereas loss of POU6f1 in CRHR1+ neurons resulted in reduced dendritic complexity and decreased synaptic connectivity, overexpression of POU6f1 in CRHR1+ neurons promoted dendritic outgrowth and branching and influenced synaptic function. Together, these findings suggest that the transcriptional program directed by POU6f1 downstream of local CRH signaling in adult-born neurons influences circuit dynamics in response to activity-dependent peptide signaling in the adult brain.SIGNIFICANCE STATEMENT Elucidating mechanisms of plasticity in the adult brain is helpful for devising strategies to understand and treat neurodegeneration. Circuit plasticity in the adult mouse olfactory bulb is exemplified by both continued cell integration and synaptogenesis. We previously reported that these processes are influenced by local neuropeptide signaling in an activity-dependent manner. Here, we show that local corticotropin-releasing hormone (CRH) signaling induces dynamic gene expression changes in CRH receptor expressing adult-born neurons, including altered expression of the transcription factor POU6f1 We further show that POU6f1 is necessary for proper dendrite specification and patterning, as well as synapse development and function in adult-born neurons. Together, these findings reveal a novel mechanism by which peptide signaling modulates adult brain circuit plasticity.
Collapse
|
6
|
Xu WX. Central and Peripheral Modulation of Visceral Pain and Visceral Hypersensitivity by the CRF-CRFR System. ACTA ACUST UNITED AC 2017. [DOI: 10.15406/ghoa.2017.06.00207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Taché Y, Million M. Role of Corticotropin-releasing Factor Signaling in Stress-related Alterations of Colonic Motility and Hyperalgesia. J Neurogastroenterol Motil 2015; 21:8-24. [PMID: 25611064 PMCID: PMC4288101 DOI: 10.5056/jnm14162] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 12/28/2014] [Indexed: 12/13/2022] Open
Abstract
The corticotropin-releasing factor (CRF) signaling systems encompass CRF and the structurally related peptide urocortin (Ucn) 1, 2, and 3 along with 2 G-protein coupled receptors, CRF1 and CRF2. CRF binds with high and moderate affinity to CRF1 and CRF2 receptors, respectively while Ucn1 is a high-affinity agonist at both receptors, and Ucn2 and Ucn3 are selective CRF2 agonists. The CRF systems are expressed in both the brain and the colon at the gene and protein levels. Experimental studies established that the activation of CRF1 pathway in the brain or the colon recaptures cardinal features of diarrhea predominant irritable bowel syndrome (IBS) (stimulation of colonic motility, activation of mast cells and serotonin, defecation/watery diarrhea, and visceral hyperalgesia). Conversely, selective CRF1 antagonists or CRF1/CRF2 antagonists, abolished or reduced exogenous CRF and stress-induced stimulation of colonic motility, defecation, diarrhea and colonic mast cell activation and visceral hyperalgesia to colorectal distention. By contrast, the CRF2 signaling in the colon dampened the CRF1 mediated stimulation of colonic motor function and visceral hyperalgesia. These data provide a conceptual framework that sustained activation of the CRF1 system at central and/or peripheral sites may be one of the underlying basis of IBS-diarrhea symptoms. While targeting these mechanisms by CRF1 antagonists provided a relevant novel therapeutic venue, so far these promising preclinical data have not translated into therapeutic use of CRF1 antagonists. Whether the existing or newly developed CRF1 antagonists will progress to therapeutic benefits for stress-sensitive diseases including IBS for a subset of patients is still a work in progress.
Collapse
Affiliation(s)
- Yvette Taché
- CURE/Digestive Diseases Research Center, and Center for the Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Mulugeta Million
- CURE/Digestive Diseases Research Center, and Center for the Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
8
|
Local corticotropin releasing hormone (CRH) signals to its receptor CRHR1 during postnatal development of the mouse olfactory bulb. Brain Struct Funct 2014; 221:1-20. [PMID: 25224546 DOI: 10.1007/s00429-014-0888-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 09/09/2014] [Indexed: 02/07/2023]
Abstract
Neuropeptides play important physiological functions during distinct behaviors such as arousal, learning, memory, and reproduction. However, the role of local, extrahypothalamic neuropeptide signaling in shaping synapse formation and neuronal plasticity in the brain is not well understood. Here, we characterize the spatiotemporal expression profile of the neuropeptide corticotropin-releasing hormone (CRH) and its receptor CRHR1 in the mouse OB throughout development. We found that CRH-expressing interneurons are present in the external plexiform layer, that its cognate receptor is expressed by granule cells, and show that both CRH and CRHR1 expression enriches in the postnatal period when olfaction becomes important towards olfactory-related behaviors. Further, we provide electrophysiological evidence that CRHR1-expressing granule cells functionally respond to CRH ligand, and that the physiological circuitry of CRHR1 knockout mice is abnormal, leading to impaired olfactory behaviors. Together, these data suggest a physiologically relevant role for local CRH signaling towards shaping the neuronal circuitry within the mouse OB.
Collapse
|
9
|
Garcia I, Quast KB, Huang L, Herman AM, Selever J, Deussing JM, Justice NJ, Arenkiel BR. Local CRH signaling promotes synaptogenesis and circuit integration of adult-born neurons. Dev Cell 2014; 30:645-59. [PMID: 25199688 DOI: 10.1016/j.devcel.2014.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 05/02/2014] [Accepted: 06/30/2014] [Indexed: 01/09/2023]
Abstract
Neural activity either enhances or impairs de novo synaptogenesis and circuit integration of neurons, but how this activity is mechanistically relayed in the adult brain is largely unknown. Neuropeptide-expressing interneurons are widespread throughout the brain and are key candidates for conveying neural activity downstream via neuromodulatory pathways that are distinct from classical neurotransmission. With the goal of identifying signaling mechanisms that underlie neuronal circuit integration in the adult brain, we have virally traced local corticotropin-releasing hormone (CRH)-expressing inhibitory interneurons with extensive presynaptic inputs onto new neurons that are continuously integrated into the adult rodent olfactory bulb. Local CRH signaling onto adult-born neurons promotes and/or stabilizes chemical synapses in the olfactory bulb, revealing a neuromodulatory mechanism for continued circuit plasticity, synapse formation, and integration of new neurons in the adult brain.
Collapse
Affiliation(s)
- Isabella Garcia
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kathleen B Quast
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Longwen Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander M Herman
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer Selever
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jan M Deussing
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Nicholas J Justice
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
10
|
M T, JE G, RL H, AL H, VB R. The role of PKC signaling in CRF-induced modulation of startle. Psychopharmacology (Berl) 2013; 229:579-89. [PMID: 23722830 PMCID: PMC3784645 DOI: 10.1007/s00213-013-3114-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 04/11/2013] [Indexed: 02/06/2023]
Abstract
RATIONALE Hypersignaling of corticotropin releasing factor (CRF) has been implicated in stress disorders; however, many of its downstream mechanisms of action remain unclear. In vitro, CRF1 receptor activation initiates multiple cell signaling cascades, including protein kinase A (PKA), protein kinase C (PKC), and mitogen-activated protein kinase kinase MEK1/2 signaling. It is unclear, however, which of these signaling cascades mediate CRF-induced behaviors during stress. OBJECTIVES We examined the role of PKA, PKC, and MEK1/2 signaling pathways in CRF-induced anxiety as measured by startle hyperreactivity. METHODS Mice treated with intracerbroventricular (ICV) ovine CRF (oCRF) were pretreated with the PKA inhibitor Rp-cAMPS, PKC inhibitor bisindolylmaleimide (BIM), or MEK1/2 inhibitor PD98059 (ICV) and assessed for acoustic startle reactivity. RESULTS The PKC inhibitor BIM significantly attenuated CRF-induced increases in startle. BIM was also able to block startle increases induced by oCRF when both compounds were infused directly into the bed nucleus of stria terminalis (BNST). PKA and MEK1/2 inhibition had no significant effects on CRF-induced changes in startle at the dose ranges tested. CRF-induced disruption of prepulse inhibition was not significantly reversed by any of the three pretreatments at the dose ranges tested. CONCLUSIONS PKC signaling is required for CRF-induced increases in startle, and this effect is mediated at least in part at the BNST. These findings suggest that PKC signaling cascades (1) may be important for the acute effects of CRF to induce startle hyperreactivity and (2) support further research of the role of PKC signaling in startle abnormalities relevant to disorders such as posttraumatic stress disorder.
Collapse
Affiliation(s)
- Toth M
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla CA USA,Dept. of Psychiatry, University of California San Diego, La Jolla CA USA
| | - Gresack JE
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla CA USA,Dept. of Psychiatry, University of California San Diego, La Jolla CA USA,Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York NY USA
| | - Hauger RL
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla CA USA,Dept. of Psychiatry, University of California San Diego, La Jolla CA USA
| | - Halberstadt AL
- Dept. of Psychiatry, University of California San Diego, La Jolla CA USA
| | - Risbrough VB
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla CA USA,Dept. of Psychiatry, University of California San Diego, La Jolla CA USA,Corresponding author: Victoria Risbrough, Ph.D., University of California San Diego, 9500 Gilman Dr. MC0804, La Jolla CA 92093-0804, Tel: 16195433582; Fax: 16195432475:
| |
Collapse
|
11
|
Wootten D, Lindmark H, Kadmiel M, Willcockson H, Caron KM, Barwell J, Drmota T, Poyner DR. Receptor activity modifying proteins (RAMPs) interact with the VPAC2 receptor and CRF1 receptors and modulate their function. Br J Pharmacol 2013; 168:822-34. [PMID: 22946657 DOI: 10.1111/j.1476-5381.2012.02202.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/15/2012] [Accepted: 08/28/2012] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Although it is established that the receptor activity modifying proteins (RAMPs) can interact with a number of GPCRs, little is known about the consequences of these interactions. Here the interaction of RAMPs with the glucagon-like peptide 1 receptor (GLP-1 receptor), the human vasoactive intestinal polypeptide/pituitary AC-activating peptide 2 receptor (VPAC(2)) and the type 1 corticotrophin releasing factor receptor (CRF(1)) has been examined. EXPERIMENTAL APPROACH GPCRs were co-transfected with RAMPs in HEK 293S and CHO-K1 cells. Cell surface expression of RAMPs and GPCRs was examined by ELISA. Where there was evidence for interactions, agonist-stimulated cAMP production, Ca(2+) mobilization and GTPγS binding to G(s), G(i), G(12) and G(q) were examined. The ability of CRF to stimulate adrenal corticotrophic hormone release in Ramp2(+/-) mice was assessed. KEY RESULTS The GLP-1 receptor failed to enhance the cell surface expression of any RAMP. VPAC(2) enhanced the cell surface expression of all three RAMPs. CRF(1) enhanced the cell surface expression of RAMP2; the cell surface expression of CRF(1) was also increased. There was no effect on agonist-stimulated cAMP production. However, there was enhanced G-protein coupling in a receptor and agonist-dependent manner. The CRF(1) : RAMP2 complex resulted in enhanced elevation of intracellular calcium to CRF and urocortin 1 but not sauvagine. In Ramp2(+/-) mice, there was a loss of responsiveness to CRF. CONCLUSIONS AND IMPLICATIONS The VPAC(2) and CRF(1) receptors interact with RAMPs. This modulates G-protein coupling in an agonist-specific manner. For CRF(1), coupling to RAMP2 may be of physiological significance.
Collapse
Affiliation(s)
- D Wootten
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Grammatopoulos DK. Insights into mechanisms of corticotropin-releasing hormone receptor signal transduction. Br J Pharmacol 2012; 166:85-97. [PMID: 21883143 DOI: 10.1111/j.1476-5381.2011.01631.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During evolution, mammals have developed remarkably similar molecular mechanisms to respond to external challenges and maintain survival. Critical regulators of these mechanisms are the family of 'stress'-peptides that consists of the corticotropin-releasing hormone (CRH) and urocortins (Ucns). These neuropeptides 'fine-tune' integration of an intricate series of physiological responses involving the autonomic, endocrine, immune, cardiovascular and reproductive systems, which induce a spectrum of behavioural and homeostatic changes. CRH and Ucns exert their actions by activating two types of CRH receptors (CRH-R), CRH-R1 and CRH-R2, which belong to the class-B1 family of GPCRs. The CRH-Rs exhibit signalling promiscuity facilitated by their ability to couple to multiple G-proteins and regulate diverse intracellular networks that involve intracellular effectors such as cAMP and an array of PKs in an agonist and tissue-specific manner, a property that allows them to exert unique roles in the integration of homeostatic mechanisms. We only now begin to unravel the plethora of CRH-R biological actions and the transcriptional and post-translational mechanisms such as alternative mRNA splicing or phosphorylation-mediated desensitization developed to tightly control CRH-Rs biological activity and regulate their physiological actions. This review summarizes the current understanding of CRH-R signalling complexity and regulatory mechanisms that underpin cellular responses to CRH and Ucns.
Collapse
|
13
|
Ramsey SJ, Attkins NJ, Fish R, van der Graaf PH. Quantitative pharmacological analysis of antagonist binding kinetics at CRF1 receptors in vitro and in vivo. Br J Pharmacol 2012; 164:992-1007. [PMID: 21449919 DOI: 10.1111/j.1476-5381.2011.01390.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE A series of novel non-peptide corticotropin releasing factor type-1 receptor (CRF(1)) antagonists were found to display varying degrees of insurmountable and non-competitive behaviour in functional in vitro assays. We describe how we attempted to relate this behaviour to ligand receptor-binding kinetics in a quantitative manner and how this resulted in the development and implementation of an efficient pharmacological screening method based on principles described by Motulsky and Mahan. EXPERIMENTAL APPROACH A non-equilibrium binding kinetic assay was developed to determine the receptor binding kinetics of non-peptide CRF(1) antagonists. Nonlinear, mixed-effects modelling was used to obtain estimates of the compounds association and dissociation rates. We present an integrated pharmacokinetic-pharmacodynamic (PKPD) approach, whereby the time course of in vivo CRF(1) receptor binding of novel compounds can be predicted on the basis of in vitro assays. KEY RESULTS The non-competitive antagonist behaviour appeared to be correlated to the CRF(1) receptor off-rate kinetics. The integrated PKPD model suggested that, at least in a qualitative manner, the in vitro assay can be used to triage and select compounds for further in vivo investigations. CONCLUSIONS AND IMPLICATIONS This study provides evidence for a link between ligand offset kinetics and insurmountable/non-competitive antagonism at the CRF(1) receptor. The exact molecular pharmacological nature of this association remains to be determined. In addition, we have developed a quantitative framework to study and integrate in vitro and in vivo receptor binding kinetic behaviour of CRF(1) receptor antagonists in an efficient manner in a drug discovery setting.
Collapse
|
14
|
Fekete EM, Zhao Y, Szücs A, Sabino V, Cottone P, Rivier J, Vale WW, Koob GF, Zorrilla EP. Systemic urocortin 2, but not urocortin 1 or stressin 1-A, suppresses feeding via CRF2 receptors without malaise and stress. Br J Pharmacol 2012; 164:1959-75. [PMID: 21627635 DOI: 10.1111/j.1476-5381.2011.01512.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Infusion of corticotropin-releasing factor (CRF)/urocortin (Ucn) family peptides suppresses feeding in mice. We examined whether rats show peripheral CRF/Ucn-induced anorexia and determined its behavioural and pharmacological bases. EXPERIMENTAL APPROACH Male Wistar rats (n= 5-12 per group) were administered (i.p.) CRF receptor agonists with different subtype affinities. Food intake, formation of conditioned taste aversion and corticosterone levels were assessed. In addition, Ucn 1- and Ucn 2-induced anorexia was studied in fasted CRF(2) knockout (n= 11) and wild-type (n= 13) mice. KEY RESULTS Ucn 1, non-selective CRF receptor agonist, reduced food intake most potently (~0.32 nmol·kg(-1) ) and efficaciously (up to 70% reduction) in fasted and fed rats. The peptides' rank-order of anorexic potency was Ucn 1 ≥ Ucn 2 > >stressin(1) -A > Ucn 3, and efficacy, Ucn 1 > stressin(1) -A > Ucn 2 = Ucn 3. Ucn 1 reduced meal frequency and size, facilitated feeding bout termination and slowed eating rate. Stressin(1) -A (CRF(1) agonist) reduced meal size; Ucn 2 (CRF(2) agonist) reduced meal frequency. Stressin(1) -A and Ucn 1, but not Ucn 2, produced a conditioned taste aversion, reduced feeding efficiency and weight regain and elicited diarrhoea. Ucn 1, but not Ucn 2, also increased corticosterone levels. Ucn 1 and Ucn 2 reduced feeding in wild-type, but not CRF(2) knockout, mice. CONCLUSIONS AND IMPLICATIONS CRF(1) agonists, Ucn 1 and stressin(1) -A, reduced feeding and induced interoceptive stress, whereas Ucn 2 potently suppressed feeding via a CRF(2) -dependent mechanism without eliciting malaise. Consistent with their pharmacological differences, peripheral urocortins have diverse effects on appetite.
Collapse
Affiliation(s)
- E M Fekete
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Punn A, Chen J, Delidaki M, Tang J, Liapakis G, Lehnert H, Levine MA, Grammatopoulos DK. Mapping structural determinants within third intracellular loop that direct signaling specificity of type 1 corticotropin-releasing hormone receptor. J Biol Chem 2012; 287:8974-85. [PMID: 22247544 PMCID: PMC3308756 DOI: 10.1074/jbc.m111.272161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The type 1 corticotropin-releasing hormone receptor (CRH-R1) influences biological responses important for adaptation to stressful stimuli, through activation of multiple downstream effectors. The structural motifs within CRH-R1 that mediate G protein activation and signaling selectivity are unknown. The aim of this study was to gain insights about important structural determinants within the third intracellular loop (IC3) of the human CRH-R1α important for cAMP and ERK1/2 pathways activation and selectivity. We investigated the role of the juxtamembrane regions of IC3 by mutating amino acid cassettes or specific residues to alanine. Although simultaneous tandem alanine mutations of both juxtamembrane regions Arg292-Met295 and Lys311-Lys314 reduced ligand binding and impaired signaling, all other mutant receptors retained high affinity binding, indistinguishable from wild-type receptor. Agonist-activated receptors with tandem mutations at the proximal or distal terminal segments enhanced activation of adenylyl cyclase by 50–75% and diminished activation of inositol trisphosphate and ERK1/2 by 60–80%. Single Ala mutations identified Arg292, Lys297, Arg310, Lys311, and Lys314 as important residues for the enhanced activation of adenylyl cyclase, partly due to reduced inhibition of adenylyl cyclase activity by pertussis toxin-sensitive G proteins. In contrast, mutation of Arg299 reduced receptor signaling activity and cAMP response. Basic as well as aliphatic amino acids within both juxtamembrane regions were identified as important for ERK1/2 phosphorylation through activation of pertussis toxin-sensitive G proteins as well as Gq proteins. These data uncovered unexpected roles for key amino acids within the highly conserved hydrophobic N- and C-terminal microdomains of IC3 in the coordination of CRH-R1 signaling activity.
Collapse
Affiliation(s)
- Anu Punn
- Department of Endocrinology and Metabolism, Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Jagoda EM, Lang L, McCullough K, Contoreggi C, Kim BM, Ma Y, Rice KC, Szajek LP, Eckelman WC, Kiesewetter DO. [(76) Br]BMK-152, a nonpeptide analogue, with high affinity and low nonspecific binding for the corticotropin-releasing factor type 1 receptor. Synapse 2011; 65:910-8. [PMID: 21308801 PMCID: PMC3625961 DOI: 10.1002/syn.20919] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/20/2011] [Indexed: 11/07/2022]
Abstract
Corticotropin-releasing factor (CRF), a neuropeptide, regulates endocrine and autonomic responses to stress through G-protein coupled receptors, CRF(1) or CRF(2) . A PET ligand able to monitor changes in CRF(1) receptor occupancy in vivo would aid in understanding the pathophysiology of stress-related diseases as well as in the clinical development of nonpeptide antagonists with therapeutic value. We have radiolabeled the CRF(1) receptor ligand, [8-(4-bromo-2,6-dimethoxyphenyl)-2,7-dimethylpyrazolo[1,5-α][1,3,5]triazin-4-yl]-N,N-bis-(2-methoxyethyl)amine (BMK-152) (ClogP = 2.6), at both the 3 and 4 position with [(76) Br]. Using in vitro autoradiography saturation studies the 4-[(76) Br]BMK-152 exhibited high affinity binding to both rat (K(d) = 0.23 ± 0.07 nM; n = 3) and monkey frontal cortex (K(d) = 0.31 ± 0.08 nM; n = 3) consistent with CRF(1) receptor regional distribution whereas with the 3-[(76) Br]BMK-152, the K(d) s could not be determined due to high nonspecific binding. In vitro autoradiography competition studies using [(125) I]Tyr(0) -o-CRF confirmed that 3-Br-BMK-152 (K(i) = 24.4 ± 4.9 nM; n = 3) had lower affinity (70-fold) than 4-Br-BMK-152 (K(i) = 0.35 ± 0.07 nM; n = 3) in monkey frontal cortex and similiar studies using [(125) I]Sauvagine confirmed CRF(1) receptor selectivity. In vivo studies with P-glycoprotein (PGP) knockout mice (KO) and their wild-type littermates (WT) showed that the brain uptake of 3-[(76) Br]BMK/4-[(76) Br]BMK was increased less than twofold in KO versus WT indicating that 3-[(76) Br]BMK-152/4-[(76) Br]BMK was not a Pgp substrate. Rat brain uptakes of 4-[(76) Br] BMK-152 from ex vivo autoradiography studies showed regional localization consistent with known published CRF(1) receptor distribution and potential as a PET ligand for in vivo imaging of CRF(1) receptors.
Collapse
Affiliation(s)
- Elaine M Jagoda
- PET Radiochemistry Group, NIBIB, National Institutes of Health, Bethesda, Maryland 20892-1088, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Stern CM, Meitzen J, Mermelstein PG. Corticotropin-releasing factor and urocortin I activate CREB through functionally selective Gβγ signaling in hippocampal pyramidal neurons. Eur J Neurosci 2011; 34:671-81. [PMID: 21819464 DOI: 10.1111/j.1460-9568.2011.07812.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stress is a perceived perturbation in the environment of the organism that affects numerous extrahypothalamic brain regions including the hippocampus, a limbic structure critical for learning, spatial memory and the regulation of stress hormones. Though many effects of stress on the hippocampus are mediated via local glucocorticoid action, there is now ample evidence for the contributions of the stress peptides corticotropin-releasing factor (CRF) and urocortin I (UCN). Thus, understanding the intracellular signaling pathways activated by stress peptides is required to fully understand the mechanisms by which stress influences the hippocampus. Here we elucidate molecular mechanisms by which CRF and UCN induce phosphorylation of the activity-dependent transcription factor CREB, a molecule critical for numerous forms of neuronal plasticity. We report that nanomolar concentrations of both CRF and UCN lead to a rapid, CRF receptor 1 (CRFR1)- and Gβγ-dependent increase in CREB phosphorylation in rat hippocampal pyramidal neurons. Interestingly, CRF- and UCN-induced signaling pathways diverge downstream of Gβγ, with UCN, but not CRF, signaling to CREB via a MEK/MAPK-dependent pathway. These data suggest novel molecular mechanisms by which stress can directly impact hippocampal neurons, as well as highlight an emerging role for Gβγ signaling in mediating the effects of stress peptides in extrahypothalamic stress-responsive brain regions.
Collapse
|
18
|
Peters MF, Vaillancourt F, Heroux M, Valiquette M, Scott CW. Comparing Label-Free Biosensors for Pharmacological Screening With Cell-Based Functional Assays. Assay Drug Dev Technol 2010; 8:219-27. [DOI: 10.1089/adt.2009.0232] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Matthew F. Peters
- Lead Generation Department, AstraZeneca Pharmaceuticals LP, Wilmington, Delaware
| | | | - Madeleine Heroux
- In Vitro Biology & DMPK, AstraZeneca, R&D Montreal, Montreal, Quebec, Canada
| | - Manon Valiquette
- In Vitro Biology & DMPK, AstraZeneca, R&D Montreal, Montreal, Quebec, Canada
| | - Clay W. Scott
- Lead Generation Department, AstraZeneca Pharmaceuticals LP, Wilmington, Delaware
| |
Collapse
|
19
|
Valego NK, Rose JC. A specific CRH antagonist attenuates ACTH-stimulated cortisol secretion in ovine adrenocortical cells. Reprod Sci 2010; 17:477-86. [PMID: 20220106 DOI: 10.1177/1933719110361959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Corticotropin releasing hormone (CRH) has been detected in the adrenal gland of many species and may be involved in regulation of glucocorticoid secretion. In cultured human fetal adrenal definitive/transitional zone cells, CRH upregulates the adrenocorticotropic hormone (ACTH) receptor and steroidogenic enzymes and is blocked by the selective CRH type 1 receptor (CRH(1)) antagonist, antalarmin. Based on these findings and evidence that antalarmin infusion into sheep suppressed prepartum increases in cortisol, we hypothesized that antalarmin would influence adrenal cortisol secretion. Antalarmin strongly attenuated ACTH and forskolin (FSK)-stimulated cortisol and cyclic adenosine monophosphate (cAMP) release from cultured ovine adrenocortical cells but did not prevent ACTH binding to cells or ACTH-induced proliferation in adult cells. Corticotropin releasing hormone was minimally effective as a secretagogue but increased the cortisol response to subsequent ACTH. These results suggest that antalarmin attenuates ACTH-induced cortisol secretion from cultured ovine adrenal cortical cells at a site distal to the ACTH receptor. Although CRH may modulate the secretory response to ACTH, it is probably not a direct cortisol secretagogue in the sheep.
Collapse
Affiliation(s)
- Nancy K Valego
- Center of Research for Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | |
Collapse
|
20
|
Progress in corticotropin-releasing factor-1 antagonist development. Drug Discov Today 2010; 15:371-83. [PMID: 20206287 DOI: 10.1016/j.drudis.2010.02.011] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 12/16/2009] [Accepted: 02/24/2010] [Indexed: 01/02/2023]
Abstract
Corticotropin releasing factor (CRF) receptor antagonists have been sought since the stress-secreted peptide was isolated in 1981. Although evidence is mixed concerning the efficacy of CRF(1) antagonists as antidepressants, CRF(1) antagonists might be novel pharmacotherapies for anxiety and addiction. Progress in understanding the two-domain model of ligand-receptor interactions for CRF family receptors might yield chemically novel CRF(1) receptor antagonists, including peptide CRF(1) antagonists, antagonists with signal transduction selectivity and nonpeptide CRF(1) antagonists that act via the extracellular (rather than transmembrane) domains. Novel ligands that conform to the prevalent pharmacophore and exhibit drug-like pharmacokinetic properties have been identified. The therapeutic utility of CRF(1) antagonists should soon be clearer: several small molecules are currently in Phase II/III clinical trials for depression, anxiety and irritable bowel syndrome.
Collapse
|
21
|
Warnock G, Moechars D, Langlois X, Steckler T. In vivo evidence for ligand-specific receptor activation in the central CRF system, as measured by local cerebral glucose utilization. Peptides 2009; 30:947-54. [PMID: 19428773 DOI: 10.1016/j.peptides.2009.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 10/21/2022]
Abstract
Corticotropin-releasing factor (CRF) is well known for its role in the hypothalamic-pituitary-adrenocortical (HPA) axis and its involvement in stress and anxiety. CRF acts via two main receptor subtypes, CRF(1) and CRF(2). Other endogenous CRF-related peptide ligands are the Urocortins 1 and 2 and Stresscopin. While CRF is thought to mediate its anxiogenic-like properties through CRF(1), the role of CRF(2) and its endogenous ligands Urocortin 2 and Stresscopin are less clear, with a suggested role in mediating the delayed effects of stress. Measurement of local cerebral glucose utilization (LCGU) provides an estimate of neuronal activity, and is of potential use as a translational tool in comparison to FDG PET. We hypothesized that comparison of the patterns of metabolic changes induced by CRF-related peptides could provide further information on their role in the brain. The present studies examined the effects of CRF-related peptides on LCGU, and the role of CRF(1) and CRF(2) in the CRF-induced LCGU response. CRF induced increases in LCGU in hypothalamic, thalamic, cerebellar and hippocampal regions, and further studies using antagonists or mutant mice lacking a functional CRF(1) receptor clearly suggested a role for CRF(2) in this effect. Urocortin 1 increased LCGU in a dissected hindbrain region. However, central administration of the CRF(2)-selective agonists Urocortin 2 and Stresscopin failed to affect LCGU, which may suggest ligand-dependent receptor activation within the CRF system. The present data supports a role for CRF(2) in the regulation of neuronal glucose metabolism.
Collapse
Affiliation(s)
- Geoff Warnock
- Dept. Psychiatry, RED Europe, Johnson & Johnson PRD, Beerse, Belgium.
| | | | | | | |
Collapse
|
22
|
Ago-antagonists for G protein-coupled peptide hormone receptor by modifying the agonist's signalling domain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009. [PMID: 19400304 DOI: 10.1007/978-0-387-73657-0_237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
23
|
Gutknecht E, Van der Linden I, Van Kolen K, Verhoeven KFC, Vauquelin G, Dautzenberg FM. Molecular mechanisms of corticotropin-releasing factor receptor-induced calcium signaling. Mol Pharmacol 2008; 75:648-57. [PMID: 19098121 DOI: 10.1124/mol.108.050427] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The molecular mechanisms governing calcium signal transduction of corticotropin-releasing factor (CRF) receptors CRF(1) and CRF(2(a)) stably expressed in human embryonic kidney (HEK) 293 cells were investigated. Calcium signaling strictly depended on intracellular calcium sources, and this is the first study to establish a prominent contribution of the three major G-protein families to CRF receptor-mediated calcium signaling. Overexpression of Galpha(q/11) and Galpha(16) led to leftward shifts of the agonist concentration-response curves. Blockade of Galpha(q/11) proteins by the small interfering RNA (siRNA) technology partially reduced agonist-mediated calcium responses in CRF(1)- and CRF(2(a))-expressing HEK293 cells, thereby proving a contribution of the G(q) protein family. A small but significant inhibition of calcium signaling was recorded by pharmacological inhibition of G(i/o) proteins with pertussis toxin treatment. This effect was mediated by direct binding of Gbetagamma subunits to phospholipase C. G(i/o) inhibition also elevated cAMP responses in CRF receptor-overexpressing HEK293 cells and in Y79 retinoblastoma cells endogenously expressing human CRF(1) and CRF(2(a)) receptors, thereby demonstrating natural coupling of G(i) proteins to both CRF receptors. The strongest reduction of CRF receptor-mediated calcium mobilization was noted when blocking the G(s) signaling protein either by cholera toxin or by siRNA. It is noteworthy that simultaneous inhibition of two G-proteins shed light on the additive effects of G(s) and G(q) on the calcium signaling and, hence, that they act in parallel. On the other hand, G(i) coupling required prior G(s) activation.
Collapse
Affiliation(s)
- Eric Gutknecht
- Johnson and Johnson Research and Development, CNS Research, Beerse, Belgium.
| | | | | | | | | | | |
Collapse
|
24
|
Beyermann M, Heinrich N, Fechner K, Furkert J, Zhang W, Kraetke O, Bienert M, Berger H. Achieving signalling selectivity of ligands for the corticotropin-releasing factor type 1 receptor by modifying the agonist's signalling domain. Br J Pharmacol 2007; 151:851-9. [PMID: 17533422 PMCID: PMC2014118 DOI: 10.1038/sj.bjp.0707293] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Most of the pharmaceuticals target G-protein-coupled receptors (GPCRs) which can generally activate different signalling events. The aim of this study was to achieve functional selectivity of corticotropin-releasing factor receptor type 1 (CRF(1)) ligands. EXPERIMENTAL APPROACH We systematically substituted urocortin, a natural peptide agonist of CRF(1), with bulky amino acids (benzoyl-phenylalanine, naphthylalanine) and determined the effect of the analogues on coupling of CRF(1) to Gs- and Gi-protein in human embryonic kidney cells, using receptor binding, [(35)S]-GTPgammaS binding stimulation, and cAMP accumulation assays. KEY RESULTS Native ligands stimulated Gs and Gi activation through CRF(1), resulting in stimulation and then inhibition of cAMP accumulation. Single replacements in urocortin at positions 6-15 led, dependent on the position and nature of the substituent, to ligands that conserved Gs activity, but were devoid of Gi activity, only stimulating cAMP accumulation, and competitively antagonized the Gi activation by sauvagine. In contrast, analogues with substitutions outside this sequence non-selectively activated Gs and Gi, as urocortin did. CONCLUSIONS AND IMPLICATIONS Modifications in a specific region, which we have called the signalling domain, in the polypeptide agonist urocortin resulted in analogues that behaved as agonists and, at the same time, antagonists for the activation of different G-proteins by CRF(1). This finding implies significant differences between active conformations of the receptor when coupled to different G-proteins. A similar structural encoding of signalling information in other polypeptide hormone receptor ligands would result in a general concept for the development of signalling-selective drug candidates.
Collapse
Affiliation(s)
- M Beyermann
- Leibniz-Institut für Molekulare Pharmakologie im FV Berlin e.V., Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|