1
|
Chopra P, Yadavalli T, Palmieri F, Jongkees SAK, Unione L, Shukla D, Boons GJ. Synthetic Heparanase Inhibitors Can Prevent Herpes Simplex Viral Spread. Angew Chem Int Ed Engl 2023; 62:e202309838. [PMID: 37555536 DOI: 10.1002/anie.202309838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Herpes simplex virus (HSV-1) employs heparan sulfate (HS) as receptor for cell attachment and entry. During late-stage infection, the virus induces the upregulation of human heparanase (Hpse) to remove cell surface HS allowing viral spread. We hypothesized that inhibition of Hpse will prevent viral release thereby representing a new therapeutic strategy for HSV-1. A range of HS-oligosaccharides was prepared to examine the importance of chain length and 2-O-sulfation of iduronic moieties for Hpse inhibition. It was found that hexa- and octasaccharides potently inhibited the enzyme and that 2-O-sulfation of iduronic acid is tolerated. Computational studies provided a rationale for the observed structure-activity relationship. Treatment of human corneal epithelial cells (HCEs) infected with HSV-1 with the hexa- and octasaccharide blocked viral induced shedding of HS which significantly reduced spread of virions. The compounds also inhibited migration and proliferation of immortalized HCEs thereby providing additional therapeutic properties.
Collapse
Affiliation(s)
- Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Francesco Palmieri
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Seino A K Jongkees
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Luca Unione
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Current address: CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Schleyer KA, Liu J, Chen Z, Wang Z, Zhang Y, Zuo J, Ybargollin AJ, Guo H, Cui L. A Universal and Modular Scaffold for Heparanase Activatable Probes and Drugs. Bioconjug Chem 2022; 33:2290-2298. [PMID: 36346913 PMCID: PMC10897860 DOI: 10.1021/acs.bioconjchem.2c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heparanase (HPSE) is an endo-β-glucuronidase involved in extracellular matrix remodeling in rapidly healing tissues, most cancers and inflammation, and viral infection. Its importance as a therapeutic target warrants further study, but such is hampered by a lack of research tools. To expand the toolkits for probing HPSE enzymatic activity, we report the design of a substrate scaffold for HPSE comprised of a disaccharide substrate appended with a linker, capable of carrying cargo until being cleaved by HPSE. Here exemplified as a fluorogenic, coumarin-based imaging probe, this scaffold can potentially expand the availability of HPSE-responsive imaging or drug delivery tools using a variety of imaging moieties or other cargo. We show that electronic tuning of the scaffold provides a robust response to HPSE while simplifying the structural requirements of the attached cargo. Molecular docking and modeling suggest a productive probe/HPSE binding mode. These results further support the hypothesis that the reactivity of these HPSE-responsive probes is predominantly influenced by the electron density of the aglycone. This universal HPSE-activatable scaffold will greatly facilitate future development of HPSE-responsive probes and drugs.
Collapse
Affiliation(s)
- Kelton A Schleyer
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Jun Liu
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Zixin Chen
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Zhishen Wang
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Yuzhao Zhang
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Junxiang Zuo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Alberto Jimenez Ybargollin
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Lina Cui
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
3
|
Resveratrol Decreases the Invasion Potential of Gastric Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103047. [PMID: 35630523 PMCID: PMC9145179 DOI: 10.3390/molecules27103047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022]
Abstract
The cancer-preventive agent Resveratrol (RSV) [3,5,4′-trihydroxytrans-stilbene] is a widely recognized antioxidant molecule with antitumoral potential against several types of cancers, including prostate, hepatic, breast, skin, colorectal, and pancreatic. Herein, we studied the effect of RSV on the cell viability and invasion potential of gastric cancer cells. AGS and MKN45 cells were treated with different doses of RSV (0–200 μM) for 24 h. Cell viability was determined using the Sulphorhodamine B dye (SRB) assay. For invasion assays, gastric cells were pre-treated with RSV (5–25 μM) for 24 h and then seeded in a Transwell chamber with coating Matrigel. The results obtained showed that RSV inhibited invasion potential in both cell lines. Moreover, to elucidate the mechanism implicated in this process, we analyzed the effects of RSV on SOD, heparanase, and NF-κB transcriptional activity. The results indicated that RSV increased SOD activity in a dose-dependent manner. Conversely, RSV significantly reduced the DNA-binding activity of NF-κB and the enzymatic activity of heparanase in similar conditions, which was determined using ELISA-like assays. In summary, these results show that RSV increases SOD activity but decreases NF-kB transcriptional activity and heparanase enzymatic activity, which correlates with the attenuation of invasion potential in gastric cancer cells. To our knowledge, no previous study has described the effect of RSV on heparanase activity. This article proposes that heparanase could be a key effector in the invasive events occurring during gastric cancer metastasis.
Collapse
|
4
|
Whitefield C, Hong N, Mitchell JA, Jackson CJ. Computational design and experimental characterisation of a stable human heparanase variant. RSC Chem Biol 2022; 3:341-349. [PMID: 35382258 PMCID: PMC8905545 DOI: 10.1039/d1cb00239b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
Heparanase is the only human enzyme known to hydrolyse heparin sulfate and is involved in many important physiological processes. However, it is also unregulated in many disease states, such as cancer, diabetes and Covid-19. It is thus an important drug target, yet the heterologous production of heparanase is challenging and only possible in mammalian or insect expression systems, which limits the ability of many laboratories to study it. Here we describe the computational redesign of heparanase to allow high yield expression in Escherchia coli. This mutated form of heparanase exhibits essentially identical kinetics, inhibition, structure and protein dynamics to the wild type protein, despite the presence of 26 mutations. This variant will facilitate wider study of this important enzyme and contributes to a growing body of literature that shows evolutionarily conserved and functionally neutral mutations can have significant effects on protein folding and expression. A mutant heparanase that exhibits wild type structure and activity but can be heterologously produced in bacterial protein expression systems.![]()
Collapse
Affiliation(s)
- Cassidy Whitefield
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Nansook Hong
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Joshua A. Mitchell
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Colin J. Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
5
|
Mayfosh AJ, Nguyen TK, Hulett MD. The Heparanase Regulatory Network in Health and Disease. Int J Mol Sci 2021; 22:11096. [PMID: 34681753 PMCID: PMC8541136 DOI: 10.3390/ijms222011096] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) is a structural framework that has many important physiological functions which include maintaining tissue structure and integrity, serving as a barrier to invading pathogens, and acting as a reservoir for bioactive molecules. This cellular scaffold is made up of various types of macromolecules including heparan sulfate proteoglycans (HSPGs). HSPGs comprise a protein core linked to the complex glycosaminoglycan heparan sulfate (HS), the remodeling of which is important for many physiological processes such as wound healing as well as pathological processes including cancer metastasis. Turnover of HS is tightly regulated by a single enzyme capable of cleaving HS side chains: heparanase. Heparanase upregulation has been identified in many inflammatory diseases including atherosclerosis, fibrosis, and cancer, where it has been shown to play multiple roles in processes such as epithelial-mesenchymal transition, angiogenesis, and cancer metastasis. Heparanase expression and activity are tightly regulated. Understanding the regulation of heparanase and its downstream targets is attractive for the development of treatments for these diseases. This review provides a comprehensive overview of the regulators of heparanase as well as the enzyme's downstream gene and protein targets, and implications for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Alyce J. Mayfosh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| | - Tien K. Nguyen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| | - Mark D. Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| |
Collapse
|
6
|
Ventura J, Uriel C, Gomez AM, Avellanal-Zaballa E, Bañuelos J, García-Moreno I, Lopez JC. A Concise Synthesis of a BODIPY-Labeled Tetrasaccharide Related to the Antitumor PI-88. Molecules 2021; 26:2909. [PMID: 34068920 PMCID: PMC8156587 DOI: 10.3390/molecules26102909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 02/04/2023] Open
Abstract
A convergent synthetic route to a tetrasaccharide related to PI-88, which allows the incorporation of a fluorescent BODIPY-label at the reducing-end, has been developed. The strategy, which features the use of 1,2-methyl orthoesters (MeOEs) as glycosyl donors, illustrates the usefulness of suitably-designed BODIPY dyes as glycosyl labels in synthetic strategies towards fluorescently-tagged oligosaccharides.
Collapse
Affiliation(s)
- Juan Ventura
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (J.V.); (C.U.)
| | - Clara Uriel
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (J.V.); (C.U.)
| | - Ana M. Gomez
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (J.V.); (C.U.)
| | - Edurne Avellanal-Zaballa
- Departamento de Química Física, Universidad del Pais Vasco-EHU, Apartado 644, 48080 Bilbao, Spain;
| | - Jorge Bañuelos
- Departamento de Química Física, Universidad del Pais Vasco-EHU, Apartado 644, 48080 Bilbao, Spain;
| | | | - Jose Cristobal Lopez
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (J.V.); (C.U.)
| |
Collapse
|
7
|
Melo CM, Nader HB, Justo GZ, Pinhal MAS. Heparanase modulation by Wingless/INT (Wnt). Mol Biol Rep 2021; 48:3117-3125. [PMID: 33891270 DOI: 10.1007/s11033-021-06348-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/08/2021] [Indexed: 11/28/2022]
Abstract
Heparanase is an endo-beta-glucuronidase, the only enzyme in mammals capable of cleaving heparan sulfate/heparin chains from proteoglycans. The oligosaccharides generated by heparanase present extensive biological functions since such oligosaccharides interact with adhesion molecules, growth factors, angiogenic factors and cytokines, modulating cell proliferation, migration, inflammation, and carcinogenesis. However, the regulation of heparanase activity is not fully understood. It is known that heparanase is synthesized as an inactive 65 kDa isoform and that post-translation processing forms an active 50 kDa enzyme. In the present study, we are interested in investigating whether heparanase is regulated by its own substrate as observed with many other enzymes. Wild-type Chinese hamster (Cricetulus griséus) ovary cells (CHO-K1) were treated with different doses of heparin. Heparanase expression was analyzed by Real-time PCR and flow cytometry. Also, heparanase activity was measured. The heparanase activity assay was performed using a coated plate with biotinylated heparan sulfate. In the present assay, a competitive heparin inhibition scenario was set aside. Exogenous heparin trigged a cell signaling pathway that increased heparanase mRNA and protein levels. The Wnt/beta-catenin pathway, judged by TCF-driven luciferase activity, seems to be involved to enhance heparanase profile during treatment with exogenous heparin. Lithium chloride treatment, an activator of the Wnt/beta-catenin pathway, confirmed such mechanism of transduction in vivo using zebrafish embryos and in vitro using CHO-K1 cells. Taken together the results suggest that heparin modulates heparanase expression by Wnt/beta-catenin.
Collapse
Affiliation(s)
- Carina Mucciolo Melo
- Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio, 100, 4a. andar, Biologia Molecular, São Paulo, SP, 04044-020, Brazil.,Department of Biochemistry, Faculdade de Medicina do ABC, Avenida Príncipe de Gales, 821, Bioquímica, Santo André, SP, 09060-650, Brazil
| | - Helena Bonciani Nader
- Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio, 100, 4a. andar, Biologia Molecular, São Paulo, SP, 04044-020, Brazil
| | - Giselle Zenker Justo
- Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio, 100, 4a. andar, Biologia Molecular, São Paulo, SP, 04044-020, Brazil.,Department of Biochemistry, Universidade Federal de São Paulo, Rua Prof. Artur Riedel, no. 275 - Jd. Eldorado, Diadema, SP, CEP: 09972-270, Brazil
| | - Maria Aparecida Silva Pinhal
- Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio, 100, 4a. andar, Biologia Molecular, São Paulo, SP, 04044-020, Brazil. .,Department of Biochemistry, Faculdade de Medicina do ABC, Avenida Príncipe de Gales, 821, Bioquímica, Santo André, SP, 09060-650, Brazil.
| |
Collapse
|
8
|
Zhou L, Yin R, Gao N, Sun H, Chen D, Cai Y, Ren L, Yang L, Zuo Z, Zhang H, Zhao J. Oligosaccharides from fucosylated glycosaminoglycan prevent breast cancer metastasis in mice by inhibiting heparanase activity and angiogenesis. Pharmacol Res 2021; 166:105527. [PMID: 33667689 DOI: 10.1016/j.phrs.2021.105527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/10/2021] [Accepted: 02/28/2021] [Indexed: 01/05/2023]
Abstract
The invasion and metastasis of tumor cells are the hallmarks of malignant diseases and the greatest obstacle to overcome. Heparanase-mediated degradation of heparan sulfate (HS) is the critical process for tumor angiogenesis and metastasis, therefore, heparanase become an attractive target for cancer research. Herein, we reported a native fucosylated glycosaminoglycan (nHG) extracted from sea cucumber Holothuria fuscopunctata and a depolymerized nHG (dHG) and its contained oligosaccharides (hs17, hs14, hs11, hs8 and hs5), acting as heparanase inhibitors. nHG and its derivatives have the ability to bind with heparanase directly, leading to significant inhibition of heparanase activity. Moreover, their apparent binding affinity to heparanase was comparable to their inhibitory effect, which was elevated along with the increase of chain length, similar to the effect of heparins. In addition, oligosaccharides inhibited the migration and invasion of 4T1 mammary carcinoma cells and human umbilical vein endothelial cells (HUVECs) and also suppressed tube formation in Matrigel matrix and angiogenesis in the chick chorioallantoic membrane (CAM) assay. In the metastatic mouse model, oligosaccharides exhibited practical antimetastatic effects on 4T1 mammary carcinoma cells. According to the reported anticoagulant activity and the low bleeding tendency of dHG and its oligosaccharides, the use of the oligosaccharides may lead to better effects on tumor patients with thrombosis tendency.
Collapse
Affiliation(s)
- Lutan Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Huifang Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dingyuan Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Cai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Ren
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
9
|
Heparanome-Mediated Rescue of Oligodendrocyte Progenitor Quiescence following Inflammatory Demyelination. J Neurosci 2021; 41:2245-2263. [PMID: 33472827 DOI: 10.1523/jneurosci.0580-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 12/03/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022] Open
Abstract
The proinflammatory cytokine IFN-γ, which is chronically elevated in multiple sclerosis, induces pathologic quiescence in human oligodendrocyte progenitor cells (OPCs) via upregulation of the transcription factor PRRX1. In this study using animals of both sexes, we investigated the role of heparan sulfate proteoglycans in the modulation of IFN-γ signaling following demyelination. We found that IFN-γ profoundly impaired OPC proliferation and recruitment following adult spinal cord demyelination. IFN-γ-induced quiescence was mediated by direct signaling in OPCs as conditional genetic ablation of IFNγR1 (Ifngr1) in adult NG2+ OPCs completely abrogated these inhibitory effects. Intriguingly, OPC-specific IFN-γ signaling contributed to failed oligodendrocyte differentiation, which was associated with hyperactive Wnt/Bmp target gene expression in OPCs. We found that PI-88, a heparan sulfate mimetic, directly antagonized IFN-γ to rescue human OPC proliferation and differentiation in vitro and blocked the IFN-γ-mediated inhibitory effects on OPC recruitment in vivo Importantly, heparanase modulation by PI-88 or OGT2155 in demyelinated lesions rescued IFN-γ-mediated axonal damage and demyelination. In addition to OPC-specific effects, IFN-γ-augmented lesions were characterized by increased size, reactive astrogliosis, and proinflammatory microglial/macrophage activation along with exacerbated axonal injury and cell death. Heparanase inhibitor treatment rescued many of the negative IFN-γ-induced sequelae suggesting a profound modulation of the lesion environment. Together, these results suggest that the modulation of the heparanome represents a rational approach to mitigate the negative effects of proinflammatory signaling and rescuing pathologic quiescence in the inflamed and demyelinated human brain.SIGNIFICANCE STATEMENT The failure of remyelination in multiple sclerosis contributes to neurologic dysfunction and neurodegeneration. The activation and proliferation of oligodendrocyte progenitor cells (OPCs) is a necessary step in the recruitment phase of remyelination. Here, we show that the proinflammatory cytokine interferon-γ directly acts on OPCs to induce pathologic quiescence and thereby limit recruitment following demyelination. Heparan sulfate is a highly structured sulfated carbohydrate polymer that is present on the cell surface and regulates several aspects of the signaling microenvironment. We find that pathologic interferon-γ can be blocked by modulation of the heparanome following demyelination using either a heparan mimetic or by treatment with heparanase inhibitor. These studies establish the potential for modulation of heparanome as a regenerative approach in demyelinating disease.
Collapse
|
10
|
Alshehri MA, Alshehri MM, Albalawi NN, Al-Ghamdi MA, Al-Gayyar MMH. Heparan sulfate proteoglycans and their modification as promising anticancer targets in hepatocellular carcinoma. Oncol Lett 2021; 21:173. [PMID: 33552290 PMCID: PMC7798035 DOI: 10.3892/ol.2021.12434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of primary liver cancer. Despite advancements in the treatment strategies of HCC, there is an urgent requirement to identify and develop novel therapeutic drugs that do not lead to resistance. These novel agents should have the potential to influence the primary mechanisms participating in the pathogenesis of HCC. Heparan sulfate proteoglycans (HSPGs) are major elements of the extracellular matrix that perform structural and signaling functions. HSPGs protect against invasion of tumor cells by preventing cell infiltration and intercellular adhesion. Several enzymes, such as heparanase, matrix metalloproteinase-9 and sulfatase-2, have been reported to affect HSPGs, leading to their degradation and thus enhancing tumor invasion. In addition, some compounds that are produced from the degradation of HSPGs, including glypican-3 and syndecan-1, enhance tumor progression. Thus, the identification of enzymes that affect HSPGs or their degradation products in HCC may lead to the development of novel therapeutic targets. The present review discusses the main enzymes and compounds associated with HSPGs, and their involvement with the pathogenicity of HCC.
Collapse
Affiliation(s)
- Mohammed A Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Moath M Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Naif N Albalawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Moshari A Al-Ghamdi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammed M H Al-Gayyar
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
11
|
Zhang W, Xia L, Ren X, Cui M, Liu T, Ling C, Xu Y, Deng D, Zhang X, Gu Y, Wang P. The improved targeting of an aspirin prodrug albumin-based nanosystem for visualizing and inhibiting lung metastasis of breast cancer. Biomater Sci 2020; 8:5941-5954. [PMID: 32966407 DOI: 10.1039/d0bm01035a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lung metastasis is the principal reason for the majority of deaths from breast cancer. The nonsteroidal anti-inflammatory drug aspirin can prevent lung metastasis in breast tumors via inhibiting heparanase. However, the lack of specific targets and limited accumulation at the site of the tumor have thus far hindered the use of aspirin in oncotherapy. In this study, we developed the nanoplatform FA-BSA@DA and loaded it with the versatile aspirin prodrug DA to visualize and inhibit breast cancer metastasis via targeting heparanase. This nanosystem can be effectively targeted to folic acid (FA)-positive tumor cells, and would then subsequently release a high dose of DA, whose ester bond is specifically ruptured by H2O2 in the tumor microenvironment to afford the therapeutic drug aspirin and near-infrared (NIR) fluorescent reporter DCM. The released aspirin can effectively prevent breast cancer lung metastasis through the inhibition of heparanase activity, and the NIR fluorescent signals emitted from DCM can be used to monitor and evaluate the metastasis levels of breast cancer. Our results showed that the expression of heparanase was significantly decreased, and lung metastasis from breast cancer was effectively monitored and inhibited after treatment with FA-BSA@DA. Furthermore, the collaborative therapy nanoplatform FA-BSA@DA/DOX exhibited strong therapeutic effects in the treatment of breast cancer in vitro and in vivo via the introduction of doxorubicin (DOX) to the system, which resulted in an even stronger result due to its synergistic effects with aspirin. This heparanase-reliant strategy has profound significance for the extended development of nanoplatforms based on versatile aspirin prodrugs, which may offer a solution to clinically prevent breast cancer recurrence and lung metastasis.
Collapse
Affiliation(s)
- Wancun Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Liu J, Schleyer KA, Bryan TL, Xie C, Seabra G, Xu Y, Kafle A, Cui C, Wang Y, Yin K, Fetrow B, Henderson PKP, Fatland PZ, Liu J, Li C, Guo H, Cui L. Ultrasensitive small molecule fluorogenic probe for human heparanase. Chem Sci 2020; 12:239-246. [PMID: 34163592 PMCID: PMC8178809 DOI: 10.1039/d0sc04872k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/16/2020] [Indexed: 11/23/2022] Open
Abstract
Heparanase (HPA) is a critical enzyme involved in the remodeling of the extracellular matrix (ECM), and its elevated expression has been linked with diseases such as various types of cancer and inflammation. The detection of heparanase enzymatic activity holds tremendous value in the study of the cellular microenvironment, and search of molecular therapeutics targeting heparanase, however, no structurally defined probes are available for the detection of heparanase activity. Here we present the development of the first ultrasensitive fluorogenic small-molecule probe for heparanase enzymatic activity via tuning the electronic effect of the substrate. The probe exhibits a 756-fold fluorescence turn-on response in the presence of human heparanase, allowing one-step detection of heparanase activity in real-time with a picomolar detection limit. The high sensitivity and robustness of the probe are exemplified in a high-throughput screening assay for heparanase inhibitors.
Collapse
Affiliation(s)
- Jun Liu
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA
| | - Kelton A Schleyer
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA
| | - Tyrel L Bryan
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Changjian Xie
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Gustavo Seabra
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina Chapel Hill NC 27599 USA
| | - Arjun Kafle
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Chao Cui
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA
| | - Ying Wang
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Kunlun Yin
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Benjamin Fetrow
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Paul K P Henderson
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Peter Z Fatland
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina Chapel Hill NC 27599 USA
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Lina Cui
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA
| |
Collapse
|
13
|
Chhabra M, Ferro V. PI-88 and Related Heparan Sulfate Mimetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:473-491. [PMID: 32274723 DOI: 10.1007/978-3-030-34521-1_19] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heparan sulfate mimetic PI-88 (muparfostat) is a complex mixture of sulfated oligosaccharides that was identified in the late 1990s as a potent inhibitor of heparanase. In preclinical animal models it was shown to block angiogenesis, metastasis and tumor growth, and subsequently became the first heparanase inhibitor to enter clinical trials for cancer. It progressed to Phase III trials but ultimately was not approved for use. Herein we summarize the preparation, physicochemical and biological properties of PI-88, and discuss preclinical/clinical and structure-activity relationship studies. In addition, we discuss the PI-88-inspired development of related HS mimetic heparanase inhibitors with improved properties, ultimately leading to the discovery of PG545 (pixatimod) which is currently in clinical trials.
Collapse
Affiliation(s)
- Mohit Chhabra
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
14
|
Zhu S, Li J, Loka RS, Song Z, Vlodavsky I, Zhang K, Nguyen HM. Modulating Heparanase Activity: Tuning Sulfation Pattern and Glycosidic Linkage of Oligosaccharides. J Med Chem 2020; 63:4227-4255. [PMID: 32216347 DOI: 10.1021/acs.jmedchem.0c00156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Heparanase cleaves polymeric heparan sulfate (HS) molecules into smaller oligosaccharides, allowing for release of angiogenic growth factors promoting tumor development and autoreactive immune cells to reach the insulin-producing β cells. Interaction of heparanase with HS chains is regulated by specific substrate sulfation sequences. We have synthesized 11 trisaccharides that are highly tunable in structure and sulfation pattern, allowing us to determine how heparanase recognizes HS substrate and selects a favorable cleavage site. Our study shows that (1) N-SO3- at +1 subsite and 6-O-SO3- at -2 subsite of trisaccharides are critical for heparanase recognition, (2) addition of 2-O-SO3- at the -1 subsite and of 3-O-SO3- to GlcN unit is not advantageous, and (3) the anomeric configuration (α or β) at the reducing end is crucial in controlling heparanase activity. Our study also illustrates that the α-trisaccharide having N- and 6-O-SO3- at -2 and +1 subsites inhibited heparanase and was resistant toward hydrolysis.
Collapse
Affiliation(s)
- Sanyong Zhu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Jiayi Li
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Ravi S Loka
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
15
|
Pang X, Dong N, Zheng Z. Small Leucine-Rich Proteoglycans in Skin Wound Healing. Front Pharmacol 2020; 10:1649. [PMID: 32063855 PMCID: PMC6997777 DOI: 10.3389/fphar.2019.01649] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Healing of cutaneous wounds is a complex and well-coordinated process requiring cooperation among multiple cells from different lineages and delicately orchestrated signaling transduction of a diversity of growth factors, cytokines, and extracellular matrix (ECM) at the wound site. Most skin wound healing in adults is imperfect, characterized by scar formation which results in significant functional and psychological sequelae. Thus, the reconstruction of the damaged skin to its original state is of concern to doctors and scientists. Beyond the traditional treatments such as corticosteroid injection and radiation therapy, several growth factors or cytokines-based anti-scarring products are being or have been tested in clinical trials to optimize skin wound healing. Unfortunately, all have been unsatisfactory to date. Currently, accumulating evidence suggests that the ECM not only functions as the structural component of the tissue but also actively modulates signal transduction and regulates cellular behaviors, and thus, ECM should be considered as an alternative target for wound management pharmacotherapy. Of particular interest are small leucine-rich proteoglycans (SLRPs), a group of the ECM, which exist in a wide range of connecting tissues, including the skin. This manuscript summarizes the most current knowledge of SLRPs regarding their spatial-temporal expression in the skin, as well as lessons learned from the genetically modified animal models simulating human skin pathologies. In this review, particular focus is given on the diverse roles of SLRP in skin wound healing, such as anti-inflammation, pro-angiogenesis, pro-migration, pro-contraction, and orchestrate transforming growth factor (TGF)β signal transduction, since cumulative investigations have indicated their therapeutic potential on reducing scar formation in cutaneous wounds. By conducting this review, we intend to gain insight into the potential application of SLRPs in cutaneous wound healing management which may pave the way for the development of a new generation of pharmaceuticals to benefit the patients suffering from skin wounds and their sequelae.
Collapse
Affiliation(s)
- Xiaoxiao Pang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nuo Dong
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Zhong Zheng
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
16
|
Cohen-Kaplan V, Ilan N, Vlodavsky I. Heparanase Loosens E-Cadherin-Mediated Cell-Cell Contact via Activation of Src. Front Oncol 2020; 10:2. [PMID: 32038981 PMCID: PMC6990126 DOI: 10.3389/fonc.2020.00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/02/2020] [Indexed: 01/18/2023] Open
Abstract
Activity of heparanase, responsible for cleavage of heparan sulfate (HS), is strongly implicated in tumor metastasis. This is due primarily to remodeling of the extracellular matrix (ECM) that becomes more prone to invasion by metastatic tumor cells. In addition, heparanase promotes the development of blood and lymph vessels that mobilize disseminated cells to distant organs. Here, we provide evidence for an additional mechanism by which heparanase affects cell motility, namely the destruction of E-cadherin based adherent junctions (AJ). We found that overexpression of heparanase or its exogenous addition results in reduced E-cadherin levels in the cell membrane. This was associated with a substantial increase in the phosphorylation levels of E-cadherin, β-catenin, and p120-catenin, the latter recognized as a substrate of Src. Indeed, we found that Src phosphorylation is increased in heparanase overexpressing cells, associating with a marked decrease in the interaction of E-cadherin with β-catenin, which is instrumental for AJ integrity and cell-cell adhesion. Notably, the association of E-cadherin with β-catenin in heparanase overexpressing cells was restored by Src inhibitor, along with reduced cell migration. These results imply that heparanase promotes tumor metastasis by virtue of its enzymatic activity responsible for remodeling of the ECM, and by signaling aspects that result in Src-mediated phosphorylation of E-cadherin/catenins and loosening of cell-cell contacts that are required for maintaining the integrity of epithelial sheets.
Collapse
Affiliation(s)
- Victoria Cohen-Kaplan
- Rappaport Faculty of Medicine, Technion Integrated Cancer Center (TICC), Technion, Haifa, Israel
| | - Neta Ilan
- Rappaport Faculty of Medicine, Technion Integrated Cancer Center (TICC), Technion, Haifa, Israel
| | - Israel Vlodavsky
- Rappaport Faculty of Medicine, Technion Integrated Cancer Center (TICC), Technion, Haifa, Israel
| |
Collapse
|
17
|
Abstract
From 1999-2003, Oxford GlycoSciences (OGS) ran a successful drug discovery oncology programme to discover small molecule inhibitors of the Heparanase I enzyme (HPSE1). HPSE1 at the time was widely regarded as being the sole mammalian enzyme capable of cleaving Heparan Sulfate (HS). A second family protein member however called Heparanase 2 (HPSE2) including splice forms was subsequently discovered by PCR analysis based on EST sequences. HPSE2 was found to be expressed mainly in smooth muscle containing tissues, particularly bladder and brain. HPSE2 is poorly expressed in haematopoietic cells and placenta which contrasts with the HPSE1 distribution pattern. HPSE2 binds more strongly to HS than HPSE1 and is believed to out compete for substrate binding and so in effect act as a tumor suppressor. So far, all attempts to show specific HPSE2 endoglycosidase activity against HS have failed suggesting that the enzyme may act as a pseudoenzyme that has evolved to retain only certain non-catalytic heparanase like functions. A breakthrough in the elucidation of functional roles for HPSE2 came about in 2010 with the linkage of HPSE2 gene deletions and mutations to the development of Ochoa/Urofacial Syndrome. Future work into the mechanistic analysis of HPSE2's role in signalling, tumor suppression and bladder/nerve functioning are needed to fully explore the role of this family of proteins.
Collapse
|
18
|
Opposing Effects of Heparanase and Heparanase-2 in Head & Neck Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:847-856. [PMID: 32274741 DOI: 10.1007/978-3-030-34521-1_37] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Squamous cell carcinoma of head and neck (SCCHN) is the most common cancer in the head and neck and is the sixth most common neoplasm worldwide. SCCHN has a high propensity to lymph node metastases, especially cancer of the pharynx. Prognosis of patients with SCCHN is severely influenced by the status of metastatic cervical lymph nodes and survival rates drop down to half when patients are presented with a metastatic node. The clinical relevance of heparanase as a prognostic marker in SCCHN was reported in several publications. Low levels of heparanase in SCCHN tumor cells was correlated with prolonged disease-free and overall survival. Furthermore, nuclear localization of heparanase predicts a favorable outcome compared to cytoplasmic localization. Heparanase staining was positively correlated with lymphatic vessel density and lymph node metastasis associated with the elevation of vascular endothelial growth factor C (VEGF-C). Heparanase ability to enhance phosphorylation of epidermal growth factor receptor (EGFR), and signal transducer and activator of transcription 3 (STAT3) were postulated to serve as critical molecular mechanisms by which heparanase facilitates tumor growth.Heparanase-2 (HPA2) is a close homolog of heparanase that lacks intrinsic HS-degrading activity but retains the capacity to bind HS with high affinity. HPA2 expression was markedly elevated in SCCHN patients, correlating with prolonged follow-up time to recurrence and inversely correlating with patients' N-stage. HPA2 appears to inhibit tumor dissemination, suggesting that HPA2 functions as a tumor suppressor. Thus, Heparanase and Heparanase-2 seem to exert opposing effects on SCCHN.
Collapse
|
19
|
Roneparstat: Development, Preclinical and Clinical Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:523-538. [PMID: 32274725 DOI: 10.1007/978-3-030-34521-1_21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A growing interest around heparanase and its role in cancer, inflammation and other diseases prompted the identification of specific inhibitors of this enzyme and the exploration of their potential therapeutic role. Roneparstat, a 15-25 kDa N-acetylated and glycol split heparin, is one of the most potent and widely studied heparanase inhibitors. These studies generated a large body of data, which allowed to characterize Roneparstat properties and to endorse its potential therapeutic role. Multiple Myeloma represents the indication that most of the studies, including the phase I clinical trial, addressed. However, Roneparstat antitumor activity activity has been documented in other cancers, and in non-oncological conditions.In addition, assessing Roneparstat activity in different experimental models contributed to understanding heparanase role and the biological factors that may be affected by heparanase inhibition in more detail. Finally, some studies elucidated the molecular mechanisms regulating the enzyme-inhibitor kinetics, thus providing important data for the identification and design of new inhibitors.The objective of this chapter is to provide a comprehensive overview of the most significant studies involving Roneparstat and discuss its potential role in therapy.
Collapse
|
20
|
Yang C, Gao L, Shao M, Cai C, Wang L, Chen Y, Li J, Fan F, Han Y, Liu M, Linhardt RJ, Yu G. End-functionalised glycopolymers as glycosaminoglycan mimetics inhibit HeLa cell proliferation. Polym Chem 2020. [DOI: 10.1039/d0py00384k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel glycopeptide mimetic, prepared by end-functionalised conjugation of iRGD peptide on a glycopolymer, could effectively enter HeLa cells and inhibit signalling pathways involved in tumour cell proliferation.
Collapse
|
21
|
Giannini G, Battistuzzi G, Rivara S. The Control of Heparanase Through the Use of Small Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:567-603. [PMID: 32274727 DOI: 10.1007/978-3-030-34521-1_23] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite the enormous progress made in recent years with antibodies, vaccines, antisense oligonucleotides, etc., the so-called "biological" approaches for tackling the control of various diseases, medicinal chemistry remains a bulwark to refer to for the development of new drugs. Also in the case of heparanase, medicinal chemistry has always been in the forefront to identify new inhibitors, through modification of natural macromolecules, e.g., sulfated polysaccharides like heparin, or of natural compounds isolated from bacteria or plants, or through rational design. In this chapter, the reader will find a detailed description of the most relevant small-molecule heparanase inhibitors reported so far in the scientific literature and in patent applications, with mention to the design strategy and to structure-activity relationships. Starting from heparanase inhibitors of natural origin and the attempts to improve their potency and selectivity, the reader will be guided through the major chemical classes of synthetic inhibitors, with representation of the structure of the most relevant compounds. The last paragraph is dedicated to a brief description of inhibitors that have reached clinical trials, highlighting their structure, mechanism, and improved derivatives.
Collapse
Affiliation(s)
| | | | - Silvia Rivara
- Department of Food and Drug, Università degli Studi di Parma, Parma, Italy
| |
Collapse
|
22
|
Wu YJ, Hsu WJ, Wu LH, Liou HP, Pangilinan CR, Tyan YC, Lee CH. Hinokitiol reduces tumor metastasis by inhibiting heparanase via extracellular signal-regulated kinase and protein kinase B pathway. Int J Med Sci 2020; 17:403-413. [PMID: 32132875 PMCID: PMC7053356 DOI: 10.7150/ijms.41177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Heparanase cleaves the extracellular matrix by degrading heparan sulfate that ultimately leads to cell invasion and metastasis; a condition that causes high mortality among cancer patients. Many of the anticancer drugs available today are natural products of plant origin, such as hinokitiol. In the previous report, it was revealed that hinokitiol plays an essential role in anti-inflammatory and anti-oxidation processes and promote apoptosis or autophagy resulting to the inhibition of tumor growth and differentiation. Therefore, this study explored the effects of hinokitiol on the cancer-promoting pathway in mouse melanoma (B16F10) and breast (4T1) cancer cells, with emphasis on heparanase expression. We detected whether hinokitiol can elicit anti-metastatic effects on cancer cells via wound healing and Transwell assays. Besides, mice experiment was conducted to observe the impact of hinokitiol in vivo. Our results show that hinokitiol can inhibit the expression of heparanase by reducing the phosphorylation of protein kinase B (Akt) and extracellular regulated protein kinase (ERK). Furthermore, in vitro cell migration assay showed that heparanase downregulation by hinokitiol led to a decrease in metastatic activity which is consistent with the findings in the in vivo experiment.
Collapse
Affiliation(s)
- Yueh-Jung Wu
- Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Wei-Jie Hsu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Li-Hsien Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Huei-Pu Liou
- Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | | | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Heparanase promotes myeloma stemness and in vivo tumorigenesis. Matrix Biol 2019; 88:53-68. [PMID: 31812535 DOI: 10.1016/j.matbio.2019.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Heparanase is known to enhance the progression of many cancer types and is associated with poor patient prognosis. We recently reported that after patients with multiple myeloma were treated with high dose chemotherapy, the tumor cells that emerged upon relapse expressed a much higher level of heparanase than was present prior to therapy. Because tumor cells having stemness properties are thought to seed tumor relapse, we investigated whether heparanase had a role in promoting myeloma stemness. When plated at low density and grown in serum-free conditions that support survival and expansion of stem-like cells, myeloma cells expressing a low level of heparanase formed tumor spheroids poorly. In contrast, cells expressing a high level of heparanase formed significantly more and larger spheroids than did the heparanase low cells. Importantly, heparanase-low expressing cells exhibited plasticity and were induced to exhibit stemness properties when exposed to recombinant heparanase or to exosomes that contained a high level of heparanase cargo. The spheroid-forming heparanase-high cells had elevated expression of GLI1, SOX2 and ALDH1A1, three genes known to be associated with myeloma stemness. Inhibitors that block the heparan sulfate degrading activity of heparanase significantly diminished spheroid formation and expression of stemness genes implying a direct role of the enzyme in regulating stemness. Blocking the NF-κB pathway inhibited spheroid formation and expression of stemness genes demonstrating a role for NF-κB in heparanase-mediated stemness. Myeloma cells made deficient in heparanase exhibited decreased stemness properties in vitro and when injected into mice they formed tumors poorly compared to the robust tumorigenic capacity of cells expressing higher levels of heparanase. These studies reveal for the first time a role for heparanase in promoting cancer stemness and provide new insight into its function in driving tumor progression and its association with poor prognosis in cancer patients.
Collapse
|
24
|
Yu Y, Williams A, Zhang X, Fu L, Xia K, Xu Y, Zhang F, Liu J, Koffas M, Linhardt RJ. Specificity and action pattern of heparanase Bp, a β-glucuronidase from Burkholderia pseudomallei. Glycobiology 2019; 29:572-581. [PMID: 31143933 PMCID: PMC6639543 DOI: 10.1093/glycob/cwz039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
The specificity and action pattern of a β-glucuronidase derived from the pathogenic bacteria Burkholderia pseudomallei and expressed in Escherichia coli as a recombinant protein has been evaluated. While this enzyme shows activity on a number of glycosaminoglycans, our study has focused on its action on heparin, heparan sulfate and their biosynthetic intermediates as well as chemoenzymatically synthesized, structurally defined heparan sulfate oligosaccharides. These heparin/heparan sulfate (HP/HS) substrates examined varied in size and structure, but all contained an uronic acid (UA) residue β-(1→4) linked to a glucosamine residue. On the substrates tested, this enzyme (heparanase Bp) acted only on a glucuronic acid residue β-(1→4) linked to an N-acetylglucosamine, N-sulfoglucosamine or N-acetyl-6-O-sulfoglucosamine residue. A substrate was required to have a length of pentasaccharide or longer and heparanase Bp acted with a random endolytic action pattern on HP/HS. The specificity and glycohydrolase mechanism of action of heparanase Bp resembles mammalian heparanase and is complementary to the bacterial heparin lyases, which act through an eliminase mechanism on a glucosamine residue (1→4) linked to a UA residue, suggesting its utility as a tool for the structural determination of HP/HS as well as representing a possible model for the medically relevant mammalian heparanase. The utility heparanase Bp was demonstrated by the oligosaccharide mapping of heparin, which afforded resistant intact highly sulfated domains ranging from tetrasaccharide to >28-mer with a molecular weight >9000.
Collapse
Affiliation(s)
- Yanlei Yu
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Asher Williams
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Xing Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Li Fu
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
25
|
He Z, Zhou L, Lin L, Yin R, Zhao J. Structure and heparanase inhibitory activity of a new glycosaminoglycan from the slug Limacus flavus. Carbohydr Polym 2019; 220:176-184. [PMID: 31196538 DOI: 10.1016/j.carbpol.2019.05.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 01/28/2023]
Abstract
A new glycosaminoglycan (LF-GAG) was purified from the slug Limacus flavus. Its unique chemical structure and heparanase inhibitory activity were studied in this work. The native LF-GAG was composed of L-iduronic acid (L-IdoA) and N-acetyl-D-glucosamine (D-GlcNAc), with a Mw of 22,700 Da. To elucidate the precise structure and structure-activity relationship, its deacetylation-deaminative depolymerized product (dLF-GAG) was prepared, and from which four oligosaccharides were purified. Combining the NMR spectral analysis of LF-GAG and its derived oligosaccharides, the structure of LF-GAG was deduced to be -4)-L-IdoA2R-(α1,4)-D-GlcNAc-(α1-, in which R was -OH (˜80%) or -OSO3- (˜20%). Bioactivity assays showed that LF-GAG could potently inhibit human heparanase (IC50, 0.10 μM). dLF-GAG and LF-3 were less potent but also active for heparanase inhibition. Structure-activity relationship analysis indicated that the chain length and sulfate substitution of LF-GAG are essential for its heparanase inhibitory activity.
Collapse
Affiliation(s)
- Zhicheng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lutan Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ronghua Yin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
26
|
Mohan CD, Hari S, Preetham HD, Rangappa S, Barash U, Ilan N, Nayak SC, Gupta VK, Basappa, Vlodavsky I, Rangappa KS. Targeting Heparanase in Cancer: Inhibition by Synthetic, Chemically Modified, and Natural Compounds. iScience 2019; 15:360-390. [PMID: 31103854 PMCID: PMC6548846 DOI: 10.1016/j.isci.2019.04.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 01/23/2023] Open
Abstract
Heparanase is an endoglycosidase involved in remodeling the extracellular matrix and thereby in regulating multiple cellular processes and biological activities. It cleaves heparan sulfate (HS) side chains of HS proteoglycans into smaller fragments and hence regulates tissue morphogenesis, differentiation, and homeostasis. Heparanase is overexpressed in various carcinomas, sarcomas, and hematological malignancies, and its upregulation correlates with increased tumor size, tumor angiogenesis, enhanced metastasis, and poor prognosis. In contrast, knockdown or inhibition of heparanase markedly attenuates tumor progression, further underscoring the potential of anti-heparanase therapy. Heparanase inhibitors were employed to interfere with tumor progression in preclinical studies, and selected heparin mimetics are being examined in clinical trials. However, despite tremendous efforts, the discovery of heparanase inhibitors with high clinical benefit and minimal adverse effects remains a therapeutic challenge. This review discusses the key roles of heparanase in cancer progression focusing on the status of natural, chemically modified, and synthetic heparanase inhibitors in various types of malignancies.
Collapse
Affiliation(s)
| | - Swetha Hari
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Habbanakuppe D Preetham
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, AIMS Campus, B. G. Nagar, Nagamangala Taluk, Mandya District 571448, India
| | - Uri Barash
- Technion Integrated Cancer Center (TICC), The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - S Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Basappa
- Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel.
| | | |
Collapse
|
27
|
Tan YX, Cui H, Wan LM, Gong F, Zhang X, Vlodavsky I, Li JP. Overexpression of heparanase in mice promoted megakaryopoiesis. Glycobiology 2018; 28:269-275. [PMID: 29471321 DOI: 10.1093/glycob/cwy011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/15/2018] [Indexed: 12/17/2022] Open
Abstract
Heparanase, an endo-glucuronidase that specifically cleaves heparan sulfate (HS), is upregulated in several pathological conditions. In this study, we aimed to find a correlation of heparanase expression and platelets production. In the transgenic mice overexpressing human heparanase (Hpa-tg), hematological analysis of blood samples revealed a significantly higher number of platelets in comparison with wild-type (Ctr) mice, while no significant difference was found in leukocytes and red blood cell number between the two groups. Total number of thiazole orange positive platelets was increased in Hpa-tg vs. Ctr blood, reflecting a higher rate of platelets production. Concomitantly, megakaryocytes from Hpa-tg mice produced more and shorter HS fragments that were shed into the medium. Further, thrombopoietin (TPO) level was elevated in the liver and plasma of Hpa-tg mice. Together, the data indicate that heparanase expression promoted megakaryopoiesis, which may be through upregulated expression of TPO and direct effect of released HS fragments expressed in the megakaryocytes.
Collapse
Affiliation(s)
- Ying-Xia Tan
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Husargatan 3, 75123 Uppsala, Sweden.,Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, No 27, Taiping Road, 100850 Beijing, China
| | - Hao Cui
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Husargatan 3, 75123 Uppsala, Sweden.,College of Life Science, Jiangxi Normal University, No 99, Ziyang Road, 330022 Nanchang, China
| | - Lu-Ming Wan
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, No 27, Taiping Road, 100850 Beijing, China
| | - Feng Gong
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, No 27, Taiping Road, 100850 Beijing, China
| | - Xiao Zhang
- Department of Neuroscience and Pharmacology, University of Uppsala, Box 593, 75124 Uppsala, Sweden
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center Rappaport, Faculty of Medicine, Technion, Box 9649, 31096 Haifa, Israel
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Husargatan 3, 75123 Uppsala, Sweden
| |
Collapse
|
28
|
Patient derived xenografts (PDX) predict an effective heparanase-based therapy for lung cancer. Oncotarget 2018; 9:19294-19306. [PMID: 29721203 PMCID: PMC5922397 DOI: 10.18632/oncotarget.25022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/17/2018] [Indexed: 01/04/2023] Open
Abstract
Heparanase, the sole heparan sulfate (HS) degrading endoglycosidase, regulates multiple biological activities that enhance tumor growth, metastasis, angiogenesis, and inflammation. Heparanase accomplishes this by degrading HS and thereby facilitating cell invasion and regulating the bioavailability of heparin-binding proteins. HS mimicking compounds that inhibit heparanase enzymatic activity were examined in numerous preclinical cancer models. While these studies utilized established tumor cell lines, the current study utilized, for the first time, patient-derived xenografts (PDX) which better resemble the behavior and drug responsiveness of a given cancer patient. We have previously shown that heparanase levels are substantially elevated in lung cancer, correlating with reduced patients survival. Applying patient-derived lung cancer xenografts and a potent inhibitor of heparanase enzymatic activity (PG545) we investigated the significance of heparanase in the pathogenesis of lung cancer. PG545 was highly effective in lung cancer PDX, inhibiting tumor growth in >85% of the cases. Importantly, we show that PG545 was highly effective in PDX that did not respond to conventional chemotherapy (cisplatin) and vice versa. Moreover, we show that spontaneous metastasis to lymph nodes is markedly inhibited by PG545 but not by cisplatin. These results reflect the variability among patients and strongly imply that PG545 can be applied for lung cancer therapy in a personalized manner where conventional chemotherapy fails, thus highlighting the potential benefits of developing anti-heparanase treatment modalities for oncology.
Collapse
|
29
|
Yang S, Liao Y, Zhao Q, Xie Y, Zheng A, Wan H. Heparanase Is a Critical Regulator of Mitotic Spindles Required for Maintaining Chromosome Stability. DNA Cell Biol 2018; 37:291-297. [PMID: 29431512 DOI: 10.1089/dna.2017.3990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Shuo Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People's Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yong Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People's Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- Chengdu Newgenegle Biotech Co. Ltd., Chengdu, People's Republic of China
| | - Qi Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People's Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yuqin Xie
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People's Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ai Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People's Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Huajing Wan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People's Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- Chengdu Newgenegle Biotech Co. Ltd., Chengdu, People's Republic of China
| |
Collapse
|
30
|
Cassinelli G, Favini E, Dal Bo L, Tortoreto M, De Maglie M, Dagrada G, Pilotti S, Zunino F, Zaffaroni N, Lanzi C. Antitumor efficacy of the heparan sulfate mimic roneparstat (SST0001) against sarcoma models involves multi-target inhibition of receptor tyrosine kinases. Oncotarget 2018; 7:47848-47863. [PMID: 27374103 PMCID: PMC5216983 DOI: 10.18632/oncotarget.10292] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/08/2016] [Indexed: 12/20/2022] Open
Abstract
The heparan sulfate (HS) mimic/heparanase inhibitor roneparstat (SST0001) shows antitumor activity in preclinical sarcoma models. We hypothesized that this 100% N-acetylated and glycol-split heparin could interfere with the functions of several receptor tyrosine kinases (RTK) coexpressed in sarcomas and activated by heparin-binding growth factors. Using a phospho-proteomic approach, we investigated the drug effects on RTK activation in human cell lines representative of different sarcoma subtypes. Inhibition of FGF, IGF, ERBB and PDGF receptors by the drug was biochemically and functionally validated. Roneparstat counteracted the autocrine loop induced by the COL1A1/PDGFB fusion oncogene, expressed in a human dermatofibrosarcoma protuberans primary culture and in NIH3T3COL1A1/PDGFB transfectants, inhibiting cell anchorage-independent growth and invasion. In addition, roneparstat inhibited the activation of cell surface PDGFR and PDGFR-associated FAK, likely contributing to the reversion of NIH3T3COL1A1/PDGFB cell transformed and pro-invasive phenotype. Biochemical and histological/immunohistochemical ex vivo analyses confirmed a reduced activation of ERBB4, EGFR, INSR, IGF1R, associated with apoptosis induction and angiogenesis inhibition in a drug-treated Ewing's sarcoma family tumor xenograft. The combination of roneparstat with irinotecan significantly improved the antitumor effect against A204 rhabdoid xenografts resulting in a high rate of complete responses and cures. These findings reveal that roneparstat exerts a multi-target inhibition of RTKs relevant in the pathobiology of different sarcoma subtypes. These effects, likely cooperating with heparanase inhibition, contribute to the antitumor efficacy of the drug. The study supports heparanase/HS axis targeting as a valuable approach in combination therapies of different sarcoma subtypes providing a preclinical rationale for clinical investigation.
Collapse
Affiliation(s)
- Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Enrica Favini
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Dal Bo
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Tortoreto
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marcella De Maglie
- Department of Veterinary Sciences and Public Health, Università Degli Studi di Milano, Milan, Italy.,Mouse and Animal Pathology Laboratory, Fondazione Filarete, Milan, Italy
| | - Gianpaolo Dagrada
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvana Pilotti
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Franco Zunino
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
31
|
Wu W, Zhao L, Yu Y, Hu H, Shi H, Jia Q, Du L. Heparanase expression in blood is sensitive to monitor response to anticancer treatment in pancreatic cancer, a pilot study. Pancreatology 2018; 18:100-105. [PMID: 29153700 DOI: 10.1016/j.pan.2017.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND /Objectives: High heparanase level was shown in maliganant tumor; however, whether or not heparanase may serve as a sensitive marker to monitor response to anticancer treatment is still unknown. METHODS In the pilot study, heparanase mRNA expression in peripheral blood mononuclear cell fraction (PBMC) and activity in plasma and urine were detected by quantitative real time RT-PCR and heparan-degrading enzyme assay in 31 pancreatic cancer patients. RESULTS Heparanase mRNA and activity in samples from cancer patients were significantly higher than that in healthy donors. Both heparanase mRNA and activity in plasma and urine decreased significantly in 17 patients who underwent R0 resection, but increased remarkably in 6 patients when recurrence or metastasis occurred (P < 0.05). However, those who underwent R1 or R2 resection in 6 patients kept stable. For 8 patients who received chemotherapy, heparanase mRNA and activity in plasma and urine decreased in each of the samples (P < 0.05). Patients with high heparanase mRNA (≥a cutoff value of 1.84) in PBMC and activity in plasma (≥1.30U/ml) were associated with a poor postoperative survival (P = 0.02 and P = 0.04). CONCLUSIONS Heparanase mRNA in PBMC and activity in plasma are closely correlated with therapeutic responsiveness and survival time, indicating that heparanase level in blood might be a sensitive but non-specific marker to monitor patients' response to anticancer treatment and to predict survival.
Collapse
Affiliation(s)
- Wujun Wu
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, China.
| | - Lin Zhao
- Department of Ophthalmology, The Second Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yongtian Yu
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Haitian Hu
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Huaiping Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qian'an Jia
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Lixue Du
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| |
Collapse
|
32
|
Song Y, Hu B, Qu H, Wang L, Zhang Y, Tao J, Cui J. Novel 1, 3-N, O-Spiroheterocyclic compounds inhibit heparanase activity and enhance nedaplatin-induced cytotoxicity in cervical cancer cells. Oncotarget 2017; 7:36154-36167. [PMID: 27166252 PMCID: PMC5094990 DOI: 10.18632/oncotarget.8959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/31/2016] [Indexed: 12/24/2022] Open
Abstract
Heparanase (HPA) is an enzyme that plays an important role in cancer metastasis and angiogenesis and is a potential target for molecular treatment of tumors. We previously found that abnormally high HPA expression in cervical cancer tissues is associated with poor survival and increased lymph node metastasis. The present study was conducted to assess the utility of inhibiting HPA enzyme activity in cervical cancer treatment. Two series of 13 novel HPA inhibitors were synthesized and optimized. All tested inhibitors reduced HPA enzyme activity (IC50 values ranged from 4.47 μM to 47.19 μM) and inhibited the growth of HeLa cells (IC50 values ranged from 48.16 μM to 96.64 μM). The No. 16 inhibitor inhibited the migration and growth of HeLa and Siha cells in a dose- and time-dependent manner, and increased cell apoptosis and cell cycle G0/G1 and G2/M phase arrest, while decreasing the S phase cell population. More importantly, No. 16 sensitized cervical cancer cells to low concentrations of nedaplatin, decreased HPA, c-Myc and h-TERT levels, and increased p53 levels in HeLa and Siha cells. These results suggest that this HPA inhibitor reduced proliferation and HPA expression in cervical cancer cells by restoring p53 activity and downregulating h-TERT and c-Myc expression.
Collapse
Affiliation(s)
- Yanan Song
- The Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China
| | - Bin Hu
- The Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China
| | - Hongjie Qu
- The Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China
| | - Lu Wang
- The Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China
| | - Yunxiao Zhang
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Jinchao Tao
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Jinquan Cui
- The Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China
| |
Collapse
|
33
|
Cohen DJ, Oliveira AV, Theodoro TR, Petri G, Melo CM, Cavalheiro RP, Nader HB, Mader AM, Pinhal MAS, Glina S. Extracellular matrix alterations after blood instillation in tunica albuginea of rats. Int J Impot Res 2017; 30:85-92. [PMID: 29242634 DOI: 10.1038/s41443-017-0015-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/03/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022]
Abstract
The cause of Peyronie's disease (PD) is still not completely understood. The objective of this study, therefore, was to analyze the histological and biochemical alterations that occur after the instillation of blood in the tunica albuginea (TA) of rats with an emphasis on the remodeling process of ECM. Thirty male Wistar rats were divided into 4 groups: two control groups with instillation of distilled water in TA followed by penectomy after 15 days or 45 days, respectively and two experimental groups with instillation of blood in TA followed by penectomy after 15 days or 45 days, respectively. Histological, immunofluorescent and immunohistochemical analyses were performed. The higher presence of fibrotic tissue in rats injected with blood demonstrated alterations in TA similar to inflammation found in PD. The increased expression of TGF-β, MMP9, HPSE, and biglycan associated with the decreased expression of syndecan-1 and aggrecan in the experimental groups suggested an enhancement in the remodeling of ECM. The results contribute to show that blood instillation on TA appears to trigger alterations in the ECM similar to the ones found in inflammatory diseases such as PD.
Collapse
Affiliation(s)
- David J Cohen
- Faculdade de Medicina do ABC, Urology Department, Santo André, Brazil
| | - André V Oliveira
- Faculdade de Medicina ABC, Urology Department, Santo André, Brazil
| | | | - Giuliana Petri
- Faculdade de Medicina ABC, Animal House Facility, São Paulo, Brazil
| | - Carina M Melo
- Faculdade de Medicina ABC, Biochemistry Department, Santo André, Brazil.,Biochemistry Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renan P Cavalheiro
- Faculdade de Medicina ABC, Biochemistry Department, Santo André, Brazil.,Biochemistry Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Helena B Nader
- Biochemistry Department, Universidade Federal do ABC, São Paulo, Brazil
| | - Ana M Mader
- Faculdade de Medicina ABC, Pathology Department, Santo André, Brazil
| | - Maria A S Pinhal
- Faculdade de Medicina ABC, Biochemistry Department, Santo André, Brazil.,Biochemistry Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sidney Glina
- Faculdade de Medicina ABC, Urology Department, Santo André, Brazil.
| |
Collapse
|
34
|
Khanna M, Ranasinghe C, Jackson R, Parish CR. Heparan sulfate as a receptor for poxvirus infections and as a target for antiviral agents. J Gen Virol 2017; 98:2556-2568. [PMID: 28933686 DOI: 10.1099/jgv.0.000921] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To establish the importance of virus-heparan sulfate (HS) interactions in virus infectivity, the poxvirus vaccinia virus (VACV) was used, as it binds HS and has both enveloped virus (EV) and non-enveloped mature virus (MV) forms. Initial studies showed that heparin inhibited plaque formation by both MV-rich WR and EV-rich IHD-J strains of VACV, with the EV-rich strain also losing trademark 'comet'-shaped plaques. However, using GFP-tagged EV and MV forms of VACV, based on IC50 values, heparin was 16-fold more effective at inhibiting the infectivity of the EV form compared to the MV form. Furthermore, 6-O and N-sulfation of the glucosamine residues of heparin was essential for inhibition of the infectivity of both VACV forms. Several low-molecular-weight HS mimetics were also shown to have substantial antiviral activity, with glycosidic linkages, chain length and monosaccharide backbone being important contributors towards anti-VACV activity. In fact, the d-mannose-based sulfated oligosaccharide mixture, PI-88 (Muparfostat), was four-fold more active than heparin at inhibiting MV infections. Paradoxically, despite heparin and HS mimetics being potent inhibitors of VACV infections, removal of HS from cell surfaces by enzymatic or genetic means resulted in only a modest reduction in infectivity. It is unlikely that this paradox can be explained by steric hindrance, due to the low molecular weight of the HS mimetics (~1-2.5 kDa), with a more likely explanation being that binding of heparin/HS mimetics to free VACV initiates an abortive viral infection. Based on this explanation, HS mimetics have considerable potential as antivirals against HS-binding viruses.
Collapse
Affiliation(s)
- Mayank Khanna
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra ACT 2601, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra ACT 2601, Australia
| | - Ronald Jackson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra ACT 2601, Australia
| | - Christopher Richard Parish
- Cancer and Vascular Biology Group, ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
35
|
Chen X, Jiang W, Yue C, Zhang W, Tong C, Dai D, Cheng B, Huang C, Lu L. Heparanase Contributes To Trans-Endothelial Migration of Hepatocellular Carcinoma Cells. J Cancer 2017; 8:3309-3317. [PMID: 29158804 PMCID: PMC5665048 DOI: 10.7150/jca.20159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
The overall outcome of patients with hepatocellular carcinoma (HCC) is still very poor due to its high metastasis and recurrence rate. During metastasis, trans-endothelial migration (TEM) of HCC cells is a key step. Heparanase (HPSE) is an endo-beta-glucuronidase and exerts prometastatic properties for normal and tumor-derived cells. However, it is remains unclear that HPSE contributes to TEM of HCC cells. In this study, human umbilical vein endothelial cells-C (HUVEC-C) was used to simulate vascular endothelial cells (VECs), and the HCCLM3 cells with high HPSE expression were chosen and used for in vitro TEM assay and in vivo experiment. As results, we found that HCCLM3 cells showed higher TEM rate compared with other HCC cells. Downregulation or inhibition of HPSE activity resulted in suppression of TEM of HCC cells both in vitro and in vivo. Our findings suggest that HPSE contributes to TEM of HCC cells, which may be a new biological function of HPSE.
Collapse
Affiliation(s)
- Xiaopeng Chen
- Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Wen Jiang
- Department of General Surgery, Maanshan People's Hospital, Maanshan 243000, China
| | - Chaofu Yue
- Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Wenjun Zhang
- Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Chaogang Tong
- Department of General Surgery, Affiliated Chaohu Hospital, Anhui Medical University, Hefei 238000, China
| | - Dafei Dai
- Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Bin Cheng
- Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Chen Huang
- Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Linming Lu
- Department of Pathology, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| |
Collapse
|
36
|
Quayle LA, Pereira MG, Scheper G, Wiltshire T, Peake RE, Hussain I, Rea CA, Bates TE. Anti-angiogenic drugs: direct anti-cancer agents with mitochondrial mechanisms of action. Oncotarget 2017; 8:88670-88688. [PMID: 29179466 PMCID: PMC5687636 DOI: 10.18632/oncotarget.20858] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 06/17/2017] [Indexed: 12/15/2022] Open
Abstract
Components of the mitochondrial electron transport chain have recently gained much interest as potential therapeutic targets. Since mitochondria are essential for the supply of energy that is required for both angiogenic and tumourigenic activity, targeting the mitochondria represents a promising potential therapeutic approach for treating cancer. Here we investigate the established anti-angiogenesis drugs combretastatin A4, thalidomide, OGT 2115 and tranilast that we hypothesise are able to exert a direct anti-cancer effect in the absence of vasculature by targeting the mitochondria. Drug cytotoxicity was measured using the MTT assay. Mitochondrial function was measured in intact isolated mitochondria using polarography, fluorimetry and enzymatic assays to measure mitochondrial oxygen consumption, membrane potential and complex I-IV activities respectively. Combretastatin A4, OGT 2115 and tranilast were both shown to decrease mitochondrial oxygen consumption. OGT 2115 and tranilast decreased mitochondrial membrane potential and reduced complex I activity while combretastatin A4 and thalidomide did not. OGT 2115 inhibited mitochondrial complex II-III activity while combretastatin A4, thalidomide and tranilast did not. Combretastatin A4, thalidomide and OGT 2115 induced bi-phasic concentration-dependent increases and decreases in mitochondrial complex IV activity while tranilast had no evident effect. These data demonstrate that combretastatin A4, thalidomide, OGT 2115 and tranilast are all mitochondrial modulators. OGT 2115 and tranilast are both mitochondrial inhibitors capable of eliciting concentration-dependent reductions in cell viability by decreasing mitochondrial membrane potential and oxygen consumption.
Collapse
Affiliation(s)
- Lewis A Quayle
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K.,Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, S10 2RX, U.K
| | - Maria G Pereira
- School of Pharmacy, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Gerjan Scheper
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Tammy Wiltshire
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Ria E Peake
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Issam Hussain
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Carol A Rea
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Timothy E Bates
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K.,Drugs With A Difference Limited, BioCity Nottingham, Nottingham, NG1 1GF, U.K.,Marlin Therapeutics Limited, Nottingham Science Park, Nottingham, NG7 2RF, U.K
| |
Collapse
|
37
|
Dai X, Yan J, Fu X, Pan Q, Sun D, Xu Y, Wang J, Nie L, Tong L, Shen A, Zheng M, Huang M, Tan M, Liu H, Huang X, Ding J, Geng M. Aspirin Inhibits Cancer Metastasis and Angiogenesis via Targeting Heparanase. Clin Cancer Res 2017; 23:6267-6278. [PMID: 28710312 DOI: 10.1158/1078-0432.ccr-17-0242] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/26/2017] [Accepted: 07/10/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Recent epidemiological and clinical studies have suggested the benefit of aspirin for patients with cancer, which inspired increasing efforts to demonstrate the anticancer ability of aspirin and reveal the molecular mechanisms behind. Nevertheless, the anticancer activity and related mechanisms of aspirin remain largely unknown. This study aimed to confirm this observation, and more importantly, to investigate the potential target contributed to the anticancer of aspirin.Experimental Design: A homogeneous time-resolved fluorescence (HTRF) assay was used to examine the impact of aspirin on heparanase. Streptavidin pull-down, surface plasmon resonance (SPR) assay, and molecular docking were performed to identify heparanase as an aspirin-binding protein. Transwell, rat aortic rings, and chicken chorioallantoic membrane model were used to evaluate the antimetastasis and anti-angiogenesis effects of aspirin, and these phenotypes were tested in a B16F10 metastatic model, MDA-MB-231 metastatic model, and MDA-MB-435 xenograft model.Results: This study identified heparanase, an oncogenic extracellular matrix enzyme involved in cancer metastasis and angiogenesis, as a potential target of aspirin. We had discovered that aspirin directly binds to Glu225 region of heparanase and inhibits the enzymatic activity. Aspirin impeded tumor metastasis, angiogenesis, and growth in heparanase-dependent manner.Conclusions: In summary, this study has illustrated heparanase as a target of aspirin for the first time. It provides insights for a better understanding of the mechanisms of aspirin in anticancer effects, and offers a direction for the development of small-molecule inhibitors of heparanase. Clin Cancer Res; 23(20); 6267-78. ©2017 AACR.
Collapse
Affiliation(s)
- Xiaoyang Dai
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Juan Yan
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xuhong Fu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Qiuming Pan
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Danni Sun
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Yuan Xu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jiang Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Litong Nie
- The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Linjiang Tong
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Aijun Shen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Min Huang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Minjia Tan
- The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Hong Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Xun Huang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China.
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China.
| | - Meiyu Geng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China.
| |
Collapse
|
38
|
Baburajeev CP, Mohan CD, Rangappa S, Mason DJ, Fuchs JE, Bender A, Barash U, Vlodavsky I, Basappa, Rangappa KS. Identification of Novel Class of Triazolo-Thiadiazoles as Potent Inhibitors of Human Heparanase and their Anticancer Activity. BMC Cancer 2017; 17:235. [PMID: 28359266 PMCID: PMC5374561 DOI: 10.1186/s12885-017-3214-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/22/2017] [Indexed: 11/16/2022] Open
Abstract
Background Expression and activity of heparanase, an endoglycosidase that cleaves heparan sulfate (HS) side chains of proteoglycans, is associated with progression and poor prognosis of many cancers which makes it an attractive drug target in cancer therapeutics. Methods In the present work, we report the in vitro screening of a library of 150 small molecules with the scaffold bearing quinolones, oxazines, benzoxazines, isoxazoli(di)nes, pyrimidinones, quinolines, benzoxazines, and 4-thiazolidinones, thiadiazolo[3,2-a]pyrimidin-5-one, 1,2,4-triazolo-1,3,4-thiadiazoles, and azaspiranes against the enzymatic activity of human heparanase. The identified lead compounds were evaluated for their heparanase-inhibiting activity using sulfate [35S] labeled extracellular matrix (ECM) deposited by cultured endothelial cells. Further, anti-invasive efficacy of lead compound was evaluated against hepatocellular carcinoma (HepG2) and Lewis lung carcinoma (LLC) cells. Results Among the 150 compounds screened, we identified 1,2,4-triazolo-1,3,4-thiadiazoles bearing compounds to possess human heparanase inhibitory activity. Further analysis revealed 2,4-Diiodo-6-(3-phenyl-[1, 2, 4]triazolo[3,4-b][1, 3, 4]thiadiazol-6yl)phenol (DTP) as the most potent inhibitor of heparanase enzymatic activity among the tested compounds. The inhibitory efficacy was demonstrated by a colorimetric assay and further validated by measuring the release of radioactive heparan sulfate degradation fragments from [35S] labeled extracellular matrix. Additionally, lead compound significantly suppressed migration and invasion of LLC and HepG2 cells with IC50 value of ~5 μM. Furthermore, molecular docking analysis revealed a favourable interaction of triazolo-thiadiazole backbone with Asn-224 and Asp-62 of the enzyme. Conclusions Overall, we identified biologically active heparanase inhibitor which could serve as a lead structure in developing compounds that target heparanase in cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3214-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C P Baburajeev
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College Campus, Palace Road, Bangalore, 560001, India
| | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, 570006, India.,Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, BG Nagara, Nagamangala Taluk, Mandya, district-571448, India
| | - Daniel J Mason
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Julian E Fuchs
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Uri Barash
- Cancer and Vascular Biology Research Center, the Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, the Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| | - Basappa
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College Campus, Palace Road, Bangalore, 560001, India.
| | | |
Collapse
|
39
|
Abstract
The role of platelets as inflammatory cells is now well established. Given the peculiar characteristics of the lung circulation, with a broad capillary bed, platelets are especially involved with the physiology of the lungs and play a key role in a number of inflammatory lung disorders. The platelet precursors, megakaryocytes, are detected in the lung microcirculation; moreover platelets with their endothelium-protective and vascular reparative activities contribute to the lung capillary blood barrier integrity. Given the function of the lungs as first wall against pathogen invasion, platelets participate in immune defence of the normal lung. On the other hand, platelets may turn into effectors of the inflammatory reaction of the lungs to allergens, to infectious agents, to chemical agents and may contribute strongly to the perpetuation of chronic inflammatory reactions, largely by their ability to interact with other inflammatory cells and the endothelium. In this chapter we provide an overview of the role of platelets in several inflammatory lung disorders discussing the pathophysiologic bases of platelet involvement in these conditions and the experimental and clinical evidence for a role of platelets in lung diseases.
Collapse
|
40
|
Sanderson RD, Elkin M, Rapraeger AC, Ilan N, Vlodavsky I. Heparanase regulation of cancer, autophagy and inflammation: new mechanisms and targets for therapy. FEBS J 2017; 284:42-55. [PMID: 27758044 PMCID: PMC5226874 DOI: 10.1111/febs.13932] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/20/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022]
Abstract
Because of its impact on multiple biological pathways, heparanase has emerged as a major regulator of cancer, inflammation and other disease processes. Heparanase accomplishes this by degrading heparan sulfate which regulates the abundance and location of heparin-binding growth factors thereby influencing multiple signaling pathways that control gene expression, syndecan shedding and cell behavior. In addition, heparanase can act via nonenzymatic mechanisms that directly activate signaling at the cell surface. Clinical trials testing heparanase inhibitors as anticancer therapeutics are showing early signs of efficacy in patients further emphasizing the biological importance of this enzyme. This review focuses on recent developments in the field of heparanase regulation of cancer and inflammation, including the impact of heparanase on exosomes and autophagy, and novel mechanisms whereby heparanase regulates tumor metastasis, angiogenesis and chemoresistance. In addition, the ongoing development of heparanase inhibitors and their potential for treating cancer and inflammation are discussed.
Collapse
Affiliation(s)
- Ralph D. Sanderson
- Department of Pathology; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael Elkin
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alan C. Rapraeger
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
41
|
Abstract
Lysosomes (or lytic bodies) were so named because they contain high levels of hydrolytic enzymes. Lysosome function and dysfunction have been found to play important roles in human disease, including cancer; however, the ways in which lysosomes contribute to tumorigenesis and cancer progression are still being uncovered. Beyond serving as a cellular recycling center, recent evidence suggests that the lysosome is involved in energy homeostasis, generating building blocks for cell growth, mitogenic signaling, priming tissues for angiogenesis and metastasis formation, and activating transcriptional programs. This review examines emerging knowledge of how lysosomal processes contribute to the hallmarks of cancer and highlights vulnerabilities that might be exploited for cancer therapy.
Collapse
Affiliation(s)
- Shawn M Davidson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; , .,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; , .,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.,Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| |
Collapse
|
42
|
Vlodavsky I, Singh P, Boyango I, Gutter-Kapon L, Elkin M, Sanderson RD, Ilan N. Heparanase: From basic research to therapeutic applications in cancer and inflammation. Drug Resist Updat 2016; 29:54-75. [PMID: 27912844 DOI: 10.1016/j.drup.2016.10.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heparanase, the sole heparan sulfate degrading endoglycosidase, regulates multiple biological activities that enhance tumor growth, angiogenesis and metastasis. Heparanase expression is enhanced in almost all cancers examined including various carcinomas, sarcomas and hematological malignancies. Numerous clinical association studies have consistently demonstrated that upregulation of heparanase expression correlates with increased tumor size, tumor angiogenesis, enhanced metastasis and poor prognosis. In contrast, knockdown of heparanase or treatments of tumor-bearing mice with heparanase-inhibiting compounds, markedly attenuate tumor progression further underscoring the potential of anti-heparanase therapy for multiple types of cancer. Heparanase neutralizing monoclonal antibodies block myeloma and lymphoma tumor growth and dissemination; this is attributable to a combined effect on the tumor cells and/or cells of the tumor microenvironment. In fact, much of the impact of heparanase on tumor progression is related to its function in mediating tumor-host crosstalk, priming the tumor microenvironment to better support tumor growth, metastasis and chemoresistance. The repertoire of the physio-pathological activities of heparanase is expanding. Specifically, heparanase regulates gene expression, activates cells of the innate immune system, promotes the formation of exosomes and autophagosomes, and stimulates signal transduction pathways via enzymatic and non-enzymatic activities. These effects dynamically impact multiple regulatory pathways that together drive inflammatory responses, tumor survival, growth, dissemination and drug resistance; but in the same time, may fulfill some normal functions associated, for example, with vesicular traffic, lysosomal-based secretion, stress response, and heparan sulfate turnover. Heparanase is upregulated in response to chemotherapy in cancer patients and the surviving cells acquire chemoresistance, attributed, at least in part, to autophagy. Consequently, heparanase inhibitors used in tandem with chemotherapeutic drugs overcome initial chemoresistance, providing a strong rationale for applying anti-heparanase therapy in combination with conventional anti-cancer drugs. Heparin-like compounds that inhibit heparanase activity are being evaluated in clinical trials for various types of cancer. Heparanase neutralizing monoclonal antibodies are being evaluated in pre-clinical studies, and heparanase-inhibiting small molecules are being developed based on the recently resolved crystal structure of the heparanase protein. Collectively, the emerging premise is that heparanase expressed by tumor cells, innate immune cells, activated endothelial cells as well as other cells of the tumor microenvironment is a master regulator of the aggressive phenotype of cancer, an important contributor to the poor outcome of cancer patients and a prime target for therapy.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel.
| | - Preeti Singh
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Ilanit Boyango
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Lilach Gutter-Kapon
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Michael Elkin
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ralph D Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| |
Collapse
|
43
|
Mulloy B, Hogwood J, Gray E, Lever R, Page CP. Pharmacology of Heparin and Related Drugs. Pharmacol Rev 2016; 68:76-141. [PMID: 26672027 DOI: 10.1124/pr.115.011247] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heparin has been recognized as a valuable anticoagulant and antithrombotic for several decades and is still widely used in clinical practice for a variety of indications. The anticoagulant activity of heparin is mainly attributable to the action of a specific pentasaccharide sequence that acts in concert with antithrombin, a plasma coagulation factor inhibitor. This observation has led to the development of synthetic heparin mimetics for clinical use. However, it is increasingly recognized that heparin has many other pharmacological properties, including but not limited to antiviral, anti-inflammatory, and antimetastatic actions. Many of these activities are independent of its anticoagulant activity, although the mechanisms of these other activities are currently less well defined. Nonetheless, heparin is being exploited for clinical uses beyond anticoagulation and developed for a wide range of clinical disorders. This article provides a "state of the art" review of our current understanding of the pharmacology of heparin and related drugs and an overview of the status of development of such drugs.
Collapse
Affiliation(s)
- Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Rebecca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| |
Collapse
|
44
|
Dengue Virus NS1 Disrupts the Endothelial Glycocalyx, Leading to Hyperpermeability. PLoS Pathog 2016; 12:e1005738. [PMID: 27416066 PMCID: PMC4944995 DOI: 10.1371/journal.ppat.1005738] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/10/2016] [Indexed: 12/17/2022] Open
Abstract
Dengue is the most prevalent arboviral disease in humans and a major public health problem worldwide. Systemic plasma leakage, leading to hypovolemic shock and potentially fatal complications, is a critical determinant of dengue severity. Recently, we and others described a novel pathogenic effect of secreted dengue virus (DENV) non-structural protein 1 (NS1) in triggering hyperpermeability of human endothelial cells in vitro and systemic vascular leakage in vivo. NS1 was shown to activate toll-like receptor 4 signaling in primary human myeloid cells, leading to secretion of pro-inflammatory cytokines and vascular leakage. However, distinct endothelial cell-intrinsic mechanisms of NS1-induced hyperpermeability remained to be defined. The endothelial glycocalyx layer (EGL) is a network of membrane-bound proteoglycans and glycoproteins lining the vascular endothelium that plays a key role in regulating endothelial barrier function. Here, we demonstrate that DENV NS1 disrupts the EGL on human pulmonary microvascular endothelial cells, inducing degradation of sialic acid and shedding of heparan sulfate proteoglycans. This effect is mediated by NS1-induced expression of sialidases and heparanase, respectively. NS1 also activates cathepsin L, a lysosomal cysteine proteinase, in endothelial cells, which activates heparanase via enzymatic cleavage. Specific inhibitors of sialidases, heparanase, and cathepsin L prevent DENV NS1-induced EGL disruption and endothelial hyperpermeability. All of these effects are specific to NS1 from DENV1-4 and are not induced by NS1 from West Nile virus, a related flavivirus. Together, our data suggest an important role for EGL disruption in DENV NS1-mediated endothelial dysfunction during severe dengue disease. Dengue is the most prevalent mosquito-borne disease in humans and represents a major public health problem worldwide. Leakage of fluids and molecules from the bloodstream into tissues can lead to shock and potentially death and is a critical determinant of dengue disease severity. Recently, we showed that a secreted protein from dengue virus (DENV)-infected cells, non-structural protein 1 (NS1), can trigger increased leakage both in human cell culture and mouse models. It has been shown that NS1 can activate toll-like receptor 4 on peripheral blood mononuclear cells, leading to secretion of pro-inflammatory cytokines that can result in vascular leak. However, the mechanism by which NS1 triggers hyperpermeability directly in human endothelial cells remained undefined. The endothelial glycocalyx layer (EGL) is a network of membrane-bound molecules that lines endothelial cells on the inside of blood vessels, helping to regulate proper vascular function. Here, we show that DENV NS1 can disrupt the integrity of the EGL, inducing breakdown and shedding of key components. This is mediated by NS1 induction of cellular enzymes (e.g., sialidases, heparanase, and cathepsin L) that contribute to EGL alterations. Inhibitors that block these enzymes prevent both EGL disruption and endothelial permeability. These effects were all demonstrated to be specific to NS1 from DENV serotypes 1–4, as NS1 from the related West Nile Virus did not produce EGL alterations or increased leakage. Our study suggests a novel role for DENV NS1 in inducing EGL disruption to increase fluid leakage during severe dengue disease.
Collapse
|
45
|
Heparanase: a rainbow pharmacological target associated to multiple pathologies including rare diseases. Future Med Chem 2016; 8:647-80. [PMID: 27057774 DOI: 10.4155/fmc-2016-0012] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, heparanase has attracted considerable attention as a promising target for innovative pharmacological applications. Heparanase is a multifaceted protein endowed with enzymatic activity, as an endo-β-D-glucuronidase, and nonenzymatic functions. It is responsible for the cleavage of heparan sulfate side chains of proteoglycans, resulting in structural alterations of the extracellular matrix. Heparanase appears to be involved in major human diseases, from the most studied tumors to chronic inflammation, diabetic nephropathy, bone osteolysis, thrombosis and atherosclerosis, in addition to more recent investigation in various rare diseases. The present review provides an overview on heparanase, its biological role, inhibitors and possible clinical applications, covering the latest findings in these areas.
Collapse
|
46
|
Sue M, Higashi N, Shida H, Kogane Y, Nishimura Y, Adachi H, Kolaczkowska E, Kepka M, Nakajima M, Irimura T. An iminosugar-based heparanase inhibitor heparastatin (SF4) suppresses infiltration of neutrophils and monocytes into inflamed dorsal air pouches. Int Immunopharmacol 2016; 35:15-21. [PMID: 27015605 DOI: 10.1016/j.intimp.2016.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/08/2016] [Accepted: 03/14/2016] [Indexed: 01/23/2023]
Abstract
Local infiltration of inflammatory cells is regulated by a number of biological steps during which the cells likely penetrate through subendothelial basement membranes that contain heparan sulfate proteoglycans. In the present study, we examined whether administration of heparastatin (SF4), an iminosugar-based inhibitor of heparanase, could suppress local inflammation and degradation of heparan sulfate proteoglycans in basement membranes. In a carrageenan- or formyl peptide-induced dorsal air pouch inflammation model, the number of infiltrated neutrophils and monocytes was significantly lower in mice after topical administration of heparastatin (SF4). The concentration of chemokines MIP-2 and KC in pouch exudates of drug-treated mice was similar to control. In a zymosan-induced peritonitis model, the number of infiltrated cells was not altered in drug-treated mice. To further test how heparastatin (SF4) influences transmigration of inflammatory neutrophils, its suppressive effect on migration and matrix degradation was examined in vitro. In the presence of heparastatin (SF4), the number of neutrophils that infiltrated across a Matrigel-coated polycarbonate membrane was significantly lower, while the number of neutrophils passing through an uncoated membrane was not altered. Lysate of bone marrow-derived neutrophils released sulfate-radiolabeled macromolecules from basement membrane-like extracellular matrix, which was suppressed by heparastatin (SF4). Heparan sulfate degradation activity was almost completely abolished after incubation of lysate with protein G-conjugated anti-heparanase monoclonal antibody, strongly suggesting that the activity was due to heparanase-mediated degradation. Taken together, in a dorsal air pouch inflammation model heparastatin (SF4) potentially suppresses extravasation of inflammatory cells by impairing the degradation of basement membrane heparan sulfate.
Collapse
Affiliation(s)
- Mayumi Sue
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuaki Higashi
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; One-stop Sharing Facility Center for Future Drug Discoveries, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroaki Shida
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yusuke Kogane
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshio Nishimura
- Institute of Microbial Chemistry (BIKAKEN), Kamiosaki 3-14-23, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Hayamitsu Adachi
- Institute of Microbial Chemistry (BIKAKEN), Kamiosaki 3-14-23, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Elzbieta Kolaczkowska
- Institute of Zoology, Jagiellonian University, ul. Gronostajowa 9, 30-387 Krakow, Poland
| | - Magdalena Kepka
- Institute of Zoology, Jagiellonian University, ul. Gronostajowa 9, 30-387 Krakow, Poland
| | - Motowo Nakajima
- SBI Pharmaceuticals Co., Ltd., 1-6-1, Roppongi, Minato-ku, Tokyo 106-6019, Japan
| | - Tatsuro Irimura
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Biochemistry, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 104-8560, Japan; Department of Breast and Endocrine Surgery, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 104-8560, Japan.
| |
Collapse
|
47
|
Pala D, Rivara S, Mor M, Milazzo FM, Roscilli G, Pavoni E, Giannini G. Kinetic analysis and molecular modeling of the inhibition mechanism of roneparstat (SST0001) on human heparanase. Glycobiology 2016; 26:640-54. [PMID: 26762172 PMCID: PMC4847616 DOI: 10.1093/glycob/cww003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/05/2016] [Indexed: 12/25/2022] Open
Abstract
Heparanase is a β-d-glucuronidase which cleaves heparan sulfate chains in the extracellular matrix and on cellular membranes. A dysregulated heparanase activity is intimately associated with cell invasion, tumor metastasis and angiogenesis, making heparanase an attractive target for the development of anticancer therapies. SST0001 (roneparstat; Sigma-Tau Research Switzerland S.A.) is a non-anticoagulant 100% N-acetylated and glycol-split heparin acting as a potent heparanase inhibitor, currently in phase I in advanced multiple myeloma. Herein, the kinetics of heparanase inhibition by roneparstat is reported. The analysis of dose-inhibition curves confirmed the high potency of roneparstat (IC50 ≈ 3 nM) and showed, at higher concentrations, a Hill coefficient consistent with the engagement of two molecules of inhibitor. A homology model of human heparanase GS3 construct was built and used for docking experiments with inhibitor fragments. The model has high structural similarity with the recently reported crystal structure of human heparanase. Different interaction schemes are proposed, which support the hypothesis of a complex binding mechanism involving the recruitment of one or multiple roneparstat chains, depending on its concentration. In particular, docking solutions were obtained in which (i) a single roneparstat molecule interacts with both heparin-binding domains (HBDs) of heparanase or (ii) two fragments of roneparstat interact with either HBD-1 or HBD-2, consistent with the possibility of different inhibitor:enzyme binding stoichiometries. This study provides unique insights into the mode of action of roneparstat as well as clues of its interaction with heparanase at a molecular level, which could be exploited to design novel potential inhibitor molecules.
Collapse
Affiliation(s)
- Daniele Pala
- Dipartimento di Farmacia, Università degli Studi di Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Silvia Rivara
- Dipartimento di Farmacia, Università degli Studi di Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Marco Mor
- Dipartimento di Farmacia, Università degli Studi di Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Ferdinando Maria Milazzo
- R&D Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Via Pontina Km 30,400, Pomezia, Roma 00071, Italy
| | | | | | - Giuseppe Giannini
- R&D Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Via Pontina Km 30,400, Pomezia, Roma 00071, Italy
| |
Collapse
|
48
|
Heparanase-neutralizing antibodies attenuate lymphoma tumor growth and metastasis. Proc Natl Acad Sci U S A 2016; 113:704-9. [PMID: 26729870 DOI: 10.1073/pnas.1519453113] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Heparanase is an endoglycosidase that cleaves heparan sulfate side chains of proteoglycans, resulting in disassembly of the extracellular matrix underlying endothelial and epithelial cells and associating with enhanced cell invasion and metastasis. Heparanase expression is induced in carcinomas and sarcomas, often associating with enhanced tumor metastasis and poor prognosis. In contrast, the function of heparanase in hematological malignancies (except myeloma) was not investigated in depth. Here, we provide evidence that heparanase is expressed by human follicular and diffused non-Hodgkin's B-lymphomas, and that heparanase inhibitors restrain the growth of tumor xenografts produced by lymphoma cell lines. Furthermore, we describe, for the first time to our knowledge, the development and characterization of heparanase-neutralizing monoclonal antibodies that inhibit cell invasion and tumor metastasis, the hallmark of heparanase activity. Using luciferase-labeled Raji lymphoma cells, we show that the heparanase-neutralizing monoclonal antibodies profoundly inhibit tumor load in the mouse bones, associating with reduced cell proliferation and angiogenesis. Notably, we found that Raji cells lack intrinsic heparanase activity, but tumor xenografts produced by this cell line exhibit typical heparanase activity, likely contributed by host cells composing the tumor microenvironment. Thus, the neutralizing monoclonal antibodies attenuate lymphoma growth by targeting heparanase in the tumor microenvironment.
Collapse
|
49
|
Downregulation of Heparanase Expression Results in Suppression of Invasion, Migration, and Adhesion Abilities of Hepatocellular Carcinoma Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:241983. [PMID: 26839882 PMCID: PMC4709605 DOI: 10.1155/2015/241983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/31/2015] [Accepted: 11/03/2015] [Indexed: 11/17/2022]
Abstract
Objective. Heparanase (HPSE) is high-expressed in most malignant tumors including hepatocellular carcinoma (HCC) and promotes cancer cell invasion and migration. The aim of the study is to explore whether HPSE enhances adhesion in metastasis of HCC cells. Methods. HPSE expressions in human HCC cells were measured with real-time RT-PCR and Western blot analysis. Four recombinant miRNA vectors pcDNATM6.2-GW/EmGFP-miR-HPSE (pmiR-HPSE) were transfected into HCCLM3 cell. HPSE expression in transfected cell was measured. The cell invasion, migration, and adhesion abilities were detected, respectively. Results. Both HPSE mRNA and protein relative expression levels were higher in HepG2, BEL-7402, and HCCLM3 cells than those in normal hepatocyte (P < 0.05). HPSE showed highest expression level in HCCLM3 cell (P < 0.05). Transfection efficiencies of four miRNA vectors were 75%–85%. The recombinant vectors significantly decreased HPSE expression in transfected HCCLM3 cells (P < 0.01), and pmiR-HPSE-1 showed best interference effect (P < 0.05). pmiR-HPSE-1 significantly decreased the penetrated and migrating cells numbers and adherence rate of HCCLM3 cells (P < 0.05). Conclusion. HPSE is a potentiator of cell adhesion in metastasis of HCC.
Collapse
|
50
|
Brennan TV, Lin L, Brandstadter JD, Rendell VR, Dredge K, Huang X, Yang Y. Heparan sulfate mimetic PG545-mediated antilymphoma effects require TLR9-dependent NK cell activation. J Clin Invest 2015; 126:207-19. [PMID: 26649979 DOI: 10.1172/jci76566] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 11/03/2015] [Indexed: 01/04/2023] Open
Abstract
Heparan sulfate (HS) is an essential component of the extracellular matrix (ECM), which serves as a barrier to tumor invasion and metastasis. Heparanase promotes tumor growth by cleaving HS chains of proteoglycan and releasing HS-bound angiogenic growth factors and facilitates tumor invasion and metastasis by degrading the ECM. HS mimetics, such as PG545, have been developed as antitumor agents and are designed to suppress angiogenesis and metastasis by inhibiting heparanase and competing for the HS-binding domain of angiogenic growth factors. However, how PG545 exerts its antitumor effect remains incompletely defined. Here, using murine models of lymphoma, we determined that the antitumor effects of PG545 are critically dependent on NK cell activation and that NK cell activation by PG545 requires TLR9. We demonstrate that PG545 does not activate TLR9 directly but instead enhances TLR9 activation through the elevation of the TLR9 ligand CpG in DCs. Specifically, PG545 treatment resulted in CpG accumulation in the lysosomal compartment of DCs, leading to enhanced production of IL-12, which is essential for PG545-mediated NK cell activation. Overall, these results reveal that PG545 activates NK cells and that this activation is critical for the antitumor effect of PG545. Moreover, our findings may have important implications for improving NK cell-based antitumor therapies.
Collapse
|