1
|
Kumar U. Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci 2024; 26:152. [PMID: 39796008 PMCID: PMC11720483 DOI: 10.3390/ijms26010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
An impact of legalization and decriminalization of marijuana is the gradual increase in the use of cannabis for recreational purposes, which poses a potential threat to society and healthcare systems worldwide. However, the discovery of receptor subtypes, endogenous endocannabinoids, and enzymes involved in synthesis and degradation, as well as pharmacological characterization of receptors, has led to exploration of the use of cannabis in multiple peripheral and central pathological conditions. The role of cannabis in the modulation of crucial events involving perturbed physiological functions and disease progression, including apoptosis, inflammation, oxidative stress, perturbed mitochondrial function, and the impaired immune system, indicates medicinal values. These events are involved in most neurological diseases and prompt the gradual progression of the disease. At present, several synthetic agonists and antagonists, in addition to more than 70 phytocannabinoids, are available with distinct efficacy as a therapeutic alternative in different pathological conditions. The present review aims to describe the use of cannabis in neurological diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
2
|
Oshaghi M, Kourosh-Arami M, Roozbehkia M. Role of neurotransmitters in immune-mediated inflammatory disorders: a crosstalk between the nervous and immune systems. Neurol Sci 2023; 44:99-113. [PMID: 36169755 DOI: 10.1007/s10072-022-06413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/14/2022] [Indexed: 02/07/2023]
Abstract
Immune-mediated inflammatory diseases (IMIDs) are a group of common heterogeneous disorders, characterized by an alteration of cellular homeostasis. Primarily, it has been shown that the release and diffusion of neurotransmitters from nervous tissue could result in signaling through lymphocyte cell-surface receptors and the modulation of immune function. This finding led to the idea that the neurotransmitters could serve as immunomodulators. It is now manifested that neurotransmitters can also be released from leukocytes and act as autocrine or paracrine modulators. Increasing data indicate that there is a crosstalk between inflammation and alterations in neurotransmission. The primary goal of this review is to demonstrate how these two pathways may converge at the level of the neuron and glia to involve in IMID. We review the role of neurotransmitters in IMID. The different effects that these compounds exert on a variety of immune cells are also reviewed. Current and future developments in understanding the cross-talk between the immune and nervous systems will undoubtedly identify new ways for treating immune-mediated diseases utilizing agonists or antagonists of neurotransmitter receptors.
Collapse
Affiliation(s)
- Mojgan Oshaghi
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maryam Roozbehkia
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Longoria V, Parcel H, Toma B, Minhas A, Zeine R. Neurological Benefits, Clinical Challenges, and Neuropathologic Promise of Medical Marijuana: A Systematic Review of Cannabinoid Effects in Multiple Sclerosis and Experimental Models of Demyelination. Biomedicines 2022; 10:539. [PMID: 35327341 PMCID: PMC8945692 DOI: 10.3390/biomedicines10030539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Despite current therapeutic strategies for immunomodulation and relief of symptoms in multiple sclerosis (MS), remyelination falls short due to dynamic neuropathologic deterioration and relapses, leading to accrual of disability and associated patient dissatisfaction. The potential of cannabinoids includes add-on immunosuppressive, analgesic, neuroprotective, and remyelinative effects. This study evaluates the efficacy of medical marijuana in MS and its experimental animal models. A systematic review was conducted by a literature search through PubMed, ProQuest, and EBSCO electronic databases for studies reported since 2007 on the use of cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) in MS and in experimental autoimmune encephalomyelitis (EAE), Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD), and toxin-induced demyelination models. Study selection and data extraction were performed by 3 reviewers, and 28 studies were selected for inclusion. The certainty of evidence was appraised using the Cochrane GRADE approach. In clinical studies, there was low- and moderate-quality evidence that treatment with ~1:1 CBD/THC mixtures as a nabiximols (Sativex®) oromucosal spray reduced numerical rating scale (NRS) scores for spasticity, pain, and sleep disturbance, diminished bladder overactivity, and decreased proinflammatory cytokine and transcription factor expression levels. Preclinical studies demonstrated decreases in disease severity, hindlimb stiffness, motor function, neuroinflammation, and demyelination. Other experimental systems showed the capacity of cannabinoids to promote remyelination in vitro and by electron microscopy. Modest short-term benefits were realized in MS responders to adjunctive therapy with CBD/THC mixtures. Future studies are recommended to investigate the cellular and molecular mechanisms of cannabinoid effects on MS lesions and to evaluate whether medical marijuana can accelerate remyelination and retard the accrual of disability over the long term.
Collapse
Affiliation(s)
- Victor Longoria
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Hannah Parcel
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Bameelia Toma
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Annu Minhas
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Rana Zeine
- School of Natural Sciences, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| |
Collapse
|
4
|
Zhou S, Wu Q, Lin X, Ling X, Miao J, Liu X, Hu C, Zhang Y, Jia N, Hou FF, Liu Y, Zhou L. Cannabinoid receptor type 2 promotes kidney fibrosis through orchestrating β-catenin signaling. Kidney Int 2020; 99:364-381. [PMID: 33152447 DOI: 10.1016/j.kint.2020.09.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
Abstract
The endocannabinoid system has multiple effects. Through interacting with cannabinoid receptor type 1 and type 2, this system can greatly affect disease progression. Previously, we showed that activated cannabinoid receptor type 2 (CB2) mediated kidney fibrosis. However, the underlying mechanisms remain underdetermined. Here, we report that CB2 was upregulated predominantly in kidney tubular epithelial cells in unilateral urinary obstruction and ischemia-reperfusion injury models in mice, and in patients with a variety of kidney diseases. CB2 expression was closely correlated with the progression of kidney fibrosis and accompanied by the activation of β-catenin. Furthermore, CB2 induced the formation of a β-arrestin 1/Src/β-catenin complex, which further triggered the nuclear translocation of β-catenin and caused fibrotic injury. Incubation with XL-001, an inverse agonist to CB2, or knockdown of β-arrestin 1 inhibited CB2-triggered activation of β-catenin and fibrotic injury. Notably, CB2 potentiated Wnt1-induced β-arrestin 1/β-catenin activation and augmented the pathogenesis of kidney fibrosis in mice with unilateral ischemia-reperfusion injury or folic acid-induced nephropathy. Knockdown of β-arrestin 1 inhibited the CB2 agonist AM1241-induced β-catenin activation and kidney fibrosis. By promoter sequence analysis, putative transcription factor binding sites for T-cell factor/lymphoid enhancer factor were found in the promoter regions of the CB2 gene regardless of the species. Overexpression of β-catenin induced the binding of T-cell factor/lymphoid enhancer factor-1 to these sites, promoted the expression of CB2, β-arrestin 1, and the proto-oncogene Src, and triggered their accumulation. Thus, the CB2/β-catenin pathway appears to create a reciprocal activation feedback loop that plays a central role in the pathogenesis of kidney fibrosis.
Collapse
Affiliation(s)
- Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinyu Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xu Lin
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xian Ling
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xi Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengxiao Hu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunfang Zhang
- Department of Nephrology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Nan Jia
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health, Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
5
|
Haider A, Gobbi L, Kretz J, Ullmer C, Brink A, Honer M, Woltering TJ, Muri D, Iding H, Bürkler M, Binder M, Bartelmus C, Knuesel I, Pacher P, Herde AM, Spinelli F, Ahmed H, Atz K, Keller C, Weber M, Schibli R, Mu L, Grether U, Ametamey SM. Identification and Preclinical Development of a 2,5,6-Trisubstituted Fluorinated Pyridine Derivative as a Radioligand for the Positron Emission Tomography Imaging of Cannabinoid Type 2 Receptors. J Med Chem 2020; 63:10287-10306. [PMID: 32787079 DOI: 10.1021/acs.jmedchem.0c00778] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite the broad implications of the cannabinoid type 2 receptor (CB2) in neuroinflammatory processes, a suitable CB2-targeted probe is currently lacking in clinical routine. In this work, we synthesized 15 fluorinated pyridine derivatives and tested their binding affinities toward CB2 and CB1. With a sub-nanomolar affinity (Ki for CB2) of 0.8 nM and a remarkable selectivity factor of >12,000 over CB1, RoSMA-18-d6 exhibited outstanding in vitro performance characteristics and was radiofluorinated with an average radiochemical yield of 10.6 ± 3.8% (n = 16) and molar activities ranging from 52 to 65 GBq/μmol (radiochemical purity > 99%). [18F]RoSMA-18-d6 showed exceptional CB2 attributes as demonstrated by in vitro autoradiography, ex vivo biodistribution, and positron emission tomography (PET). Further, [18F]RoSMA-18-d6 was used to detect CB2 upregulation on postmortem human ALS spinal cord tissues. Overall, these results suggest that [18F]RoSMA-18-d6 is a promising CB2 PET radioligand for clinical translation.
Collapse
Affiliation(s)
- Achi Haider
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Luca Gobbi
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Julian Kretz
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Christoph Ullmer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Andreas Brink
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Thomas J Woltering
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Dieter Muri
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Hans Iding
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Markus Bürkler
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Martin Binder
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Christian Bartelmus
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Irene Knuesel
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/NIAAA, 5625 Fishers Lane, Rockville, 20852 Maryland, United States
| | - Adrienne Müller Herde
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Francesco Spinelli
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Hazem Ahmed
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Kenneth Atz
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Claudia Keller
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Roger Schibli
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Linjing Mu
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| |
Collapse
|
6
|
Kerage D, Sloan EK, Mattarollo SR, McCombe PA. Interaction of neurotransmitters and neurochemicals with lymphocytes. J Neuroimmunol 2019; 332:99-111. [PMID: 30999218 DOI: 10.1016/j.jneuroim.2019.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Neurotransmitters and neurochemicals can act on lymphocytes by binding to receptors expressed by lymphocytes. This review describes lymphocyte expression of receptors for a selection of neurotransmitters and neurochemicals, the anatomical locations where lymphocytes can interact with neurotransmitters, and the effects of the neurotransmitters on lymphocyte function. Implications for health and disease are also discussed.
Collapse
Affiliation(s)
- Daniel Kerage
- The University of Queensland Diamantina Institute, Brisbane, Australia; Transplant Research Program, Boston Children's Hospital, Boston, MA, United States of America
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Division of Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Cousins Center for Neuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, USA
| | | | - Pamela A McCombe
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, Australia; Royal Brisbane and Women's Hospital, Herston, Brisbane, Australia.
| |
Collapse
|
7
|
Haider A, Spinelli F, Herde AM, Mu B, Keller C, Margelisch M, Weber M, Schibli R, Mu L, Ametamey SM. Evaluation of 4-oxo-quinoline-based CB2 PET radioligands in R6/2 chorea huntington mouse model and human ALS spinal cord tissue. Eur J Med Chem 2018; 145:746-759. [PMID: 29353725 DOI: 10.1016/j.ejmech.2017.12.097] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 01/19/2023]
Abstract
The cannabinoid receptor 2 (CB2) has been implicated in a series of neurodegenerative disorders and has emerged as an interesting biological target for therapeutic as well as diagnostic purposes. In the present work, we describe an improved radiosynthetic approach to obtain the previously reported CB2-specific PET radioligand [18F]RS-126 in higher radiochemical yields and molar activities. Additionally, the study revealed that prolongation of the [18F]RS-126 fluoroalkyl side chain ultimately leads to an improved stability towards mouse liver enzymes but is accompanied by a reduction in selectivity over the cannabinoid receptor 1 (CB1). Huntington-related phenotypic changes as well as striatal D2R downregulation were confirmed for the transgenic R6/2 mouse model. CB2 upregulation in R6/2 Chorea Huntington mice was observed in hippocampus, cortex, striatum and cerebellum by qPCR, however, these results could not be confirmed at the protein level by PET imaging. Furthermore, we evaluated the utility of the newly developed [11C]RS-028, a potent [18F]RS-126 derivative with increased polarity and high selectivity over CB1 in post-mortem human ALS spinal cord and control tissue. Applying in vitro autoradiography, the translational relevance of CB2 imaging was demonstrated by the specific binding of [11C]RS-028 to post-mortem human ALS spinal cord tissue.
Collapse
Affiliation(s)
- Achi Haider
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Francesco Spinelli
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Boshuai Mu
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Claudia Keller
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Markus Margelisch
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Roger Schibli
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland; Department of Nuclear Medicine, University Hospital Zürich, CH-8091 Zürich, Switzerland
| | - Linjing Mu
- Department of Nuclear Medicine, University Hospital Zürich, CH-8091 Zürich, Switzerland.
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
8
|
Annunziata P, Cioni C, Mugnaini C, Corelli F. Potent immunomodulatory activity of a highly selective cannabinoid CB2 agonist on immune cells from healthy subjects and patients with multiple sclerosis. J Neuroimmunol 2016; 303:66-74. [PMID: 28041663 DOI: 10.1016/j.jneuroim.2016.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/25/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022]
Abstract
COR167, a novel CB2-selective high affinity agonist, was found to significantly inhibit, in a dose-dependent manner, the proliferation of both peripheral blood mononuclear cells and myelin basic protein-reactive T cell lines from normal healthy subjects and patients with relapsing-remitting multiple sclerosis (MS). In MS, a significantly higher inhibition was observed in patients on treatment with disease modifying drugs compared to those naive to treatment. The inhibitory activity of COR167 was exerted through a mixed mechanism involving atypical and incomplete shift of Th1 phenotype towards Th2 phenotype associated with slight reduction of IL-4 and IL-5 as well as strongly reduced levels of Th17-related cytokines. COR167 was also able to reduce in vitro migration of stimulated immunocompetent cells through human brain endothelium associated with a significant reduction of levels of several chemokines. These findings demonstrate that COR167 exerts potent immunomodulatory effects and confirm the cannabinoid CB2 receptor as a novel pharmacological target to counteract neuroinflammation.
Collapse
Affiliation(s)
- Pasquale Annunziata
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.
| | - Chiara Cioni
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Claudia Mugnaini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Federico Corelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
9
|
Harnett JJ, Dolo C, Viossat I, Auger F, Ferrandis E, Bigg D, Auguet M, Auvin S, Chabrier PE. Novel azoles as potent and selective cannabinoid CB2 receptor agonists. Bioorg Med Chem Lett 2015; 25:88-91. [DOI: 10.1016/j.bmcl.2014.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/28/2014] [Accepted: 11/01/2014] [Indexed: 01/01/2023]
|
10
|
Dhopeshwarkar A, Mackie K. CB2 Cannabinoid receptors as a therapeutic target-what does the future hold? Mol Pharmacol 2014; 86:430-7. [PMID: 25106425 PMCID: PMC4164977 DOI: 10.1124/mol.114.094649] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/08/2014] [Indexed: 01/13/2023] Open
Abstract
The past decades have seen an exponential rise in our understanding of the endocannabinoid system, comprising CB1 and CB2 cannabinoid receptors, endogenous cannabinoids (endocannabinoids), and the enzymes that synthesize and degrade endocannabinoids. The primary focus of this review is the CB2 receptor. CB2 receptors have been the subject of considerable attention, primarily due to their promising therapeutic potential for treating various pathologies while avoiding the adverse psychotropic effects that can accompany CB1 receptor-based therapies. With the appreciation that CB2-selective ligands show marked functional selectivity, there is a renewed opportunity to explore this promising area of research from both a mechanistic as well as a therapeutic perspective. In this review, we summarize our present knowledge of CB2 receptor signaling, localization, and regulation. We discuss the availability of genetic tools (and their limitations) to study CB2 receptors and also provide an update on preclinical data on CB2 agonists in pain models. Finally, we suggest possible reasons for the failure of CB2 ligands in clinical pain trials and offer possible ways to move the field forward in a way that can help reconcile the inconsistencies between preclinical and clinical data.
Collapse
Affiliation(s)
- Amey Dhopeshwarkar
- Department of Psychological and Brain Sciences and Gill Center, Indiana University, Bloomington, Indiana
| | - Ken Mackie
- Department of Psychological and Brain Sciences and Gill Center, Indiana University, Bloomington, Indiana
| |
Collapse
|
11
|
Malfitano AM, Basu S, Maresz K, Bifulco M, Dittel BN. What we know and do not know about the cannabinoid receptor 2 (CB2). Semin Immunol 2014; 26:369-79. [PMID: 24877594 DOI: 10.1016/j.smim.2014.04.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 12/19/2022]
Abstract
It has been well appreciated that the endocannabinoid system can regulate immune responses via the cannabinoid receptor 2 (CB2), which is primarily expressed by cells of the hematopoietic system. The endocannabinoid system is composed of receptors, ligands and enzymes controlling the synthesis and degradation of endocannabinoids. Along with endocannabinoids, both plant-derived and synthetic cannabinoids have been shown to bind to and signal through CB2 via G proteins leading to both inhibitory and stimulatory signals depending on the biological process. Because no cannabinoid ligand has been identified that only binds to CB2, the generation of mice deficient in CB2 has greatly expanded our knowledge of how CB2 contributes to immune cell development and function in health and disease. In regards to humans, genetic studies have associated CB2 with a variety of human diseases. Here, we review the endocannabinoid system with an emphasis on CB2 and its role in the immune system.
Collapse
Affiliation(s)
- Anna Maria Malfitano
- Dipartimento di Medicina e Chirurgia, Università di Salerno Facoltà di Medicina, Baronissi Campus, Baronissi 84081, (SA), Italy; Dipartimento di Farmacia, Università di Salerno, Fisciano 84084, (SA), Italy
| | - Sreemanti Basu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Katarzyna Maresz
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Maurizio Bifulco
- Dipartimento di Medicina e Chirurgia, Università di Salerno Facoltà di Medicina, Baronissi Campus, Baronissi 84081, (SA), Italy; Dipartimento di Farmacia, Università di Salerno, Fisciano 84084, (SA), Italy
| | - Bonnie N Dittel
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
12
|
Ahmed Z. Cannabinoids: Do they have the potential to treat the symptoms of multiple sclerosis? World J Neurol 2013; 3:87-96. [DOI: 10.5316/wjn.v3.i4.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/16/2013] [Indexed: 02/06/2023] Open
Abstract
This article reviews the role of cannabinoids in inhibiting neurodegeneration in models of multiple sclerosis (MS). MS is a chronic, debilitating disease of the central nervous system (CNS), induced by autoimmunity-driven inflammation that leads to demyelination and thus disconnection of the normal transmission of nerve impulses. Despite the use of an array of immune modulating drugs that restore blood brain barrier function, disability continues in patients concomitant with the loss of axons in the spinal cord. MS patients therefore suffer neuropathic pain, spasticity and tremor. Anecdotal evidence suggests that MS patients using cannabis, though illegal, achieve symptomatic relief from neuropathic pain and spasticity associated with MS. The discovery of the endogenous cannabinoid (endocannabinoid) system that naturally exists in the body and which responds to cannabinoids to exert their effects has aided research into the therapeutic utility of cannabinoids. The endocannabinoid system consists of two G-protein coupled receptors cannabinoid receptor type-1 (CB1) and CB2. CB1 is mainly expressed in the CNS and CB2 is predominantly found in leukocytes, while an increasing number of potential ligands and endocannabinoid degradation molecules are being isolated. Several studies have highlighted the involvement of this system in regulating neurotransmission and its ability to prevent excessive neurotransmitter release, consistent with a capacity to provide symptomatic relief. In summary, antagonism of the CB1 receptor pathway contributes to neuronal damage in chronic relapsing experimental allergic encephalomyelitis (EAE) and suppresses tremor and spasticity. The addition of exogenous CB1 agonists derived from cannabis also afforded significant neuroprotection from the consequences of inflammatory CNS disease in EAE and experimental allergic uveitis models. Although clear neuroprotective benefits of cannabinoids have been demonstrated, the unwanted psychotropic effects need to be addressed. However, manipulating the endogenous cannabinoid system may be one way of eliciting beneficial effects without some or all of the unwanted side effects.
Collapse
|
13
|
Selective CB2 receptor activation ameliorates EAE by reducing Th17 differentiation and immune cell accumulation in the CNS. Cell Immunol 2013; 287:1-17. [PMID: 24342422 DOI: 10.1016/j.cellimm.2013.11.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/24/2013] [Accepted: 11/06/2013] [Indexed: 12/19/2022]
Abstract
CB2, the cannabinoid receptor expressed primarily on hematopoietic cells and activated microglia, mediates the immunoregulatory functions of cannabinoids. The involvement of CB2 in EAE has been demonstrated by using both endogenous and exogenous ligands. We showed previously that CB2 selective agonists inhibit leukocyte rolling and adhesion to CNS microvasculature and ameliorate clinical symptom in both chronic and remitting-relapsing EAE models. Here we showed that Gp1a, a highly selective CB2 agonist, with a four log higher affinity for CB2 than CB1, reduced clinical scores and facilitated recovery in EAE in conjunction with long term reduction in demyelination and axonal loss. We also established that Gp1a affected EAE through at least two different mechanisms, i.e. an early effect on Th1/Th17 differentiation in peripheral immune organs, and a later effect on the accumulation of pathogenic immune cells in the CNS, associated with reductions in the expression of CNS and T cell chemokine receptors, chemokines and adhesion molecules. This is the first report on the in vivo CB2-mediated Gp1a inhibition of Th17/Th1 differentiation. We also confirmed the Gp1a-induced inhibition of Th17/Th1 differentiation in vitro, both in non-polarizing and polarizing conditions. The CB2-induced inhibition of Th17 differentiation is highly relevant in view of recent studies emphasizing the importance of pathogenic self-reactive Th17 cells in EAE/MS. In addition, the combined effect on Th17 differentiation and immune cell accumulation into the CNS, emphasize the relevance of CB2 selective ligands as potential therapeutic agents in neuroinflammation.
Collapse
|
14
|
Pertwee RG. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities. Philos Trans R Soc Lond B Biol Sci 2013; 367:3353-63. [PMID: 23108552 DOI: 10.1098/rstb.2011.0381] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released 'endocannabinoids' or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive 'multi-targeting'.
Collapse
Affiliation(s)
- Roger G Pertwee
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK.
| |
Collapse
|
15
|
Kallendrusch S, Hobusch C, Ehrlich A, Nowicki M, Ziebell S, Bechmann I, Geisslinger G, Koch M, Dehghani F. Intrinsic up-regulation of 2-AG favors an area specific neuronal survival in different in vitro models of neuronal damage. PLoS One 2012; 7:e51208. [PMID: 23284665 PMCID: PMC3527460 DOI: 10.1371/journal.pone.0051208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/30/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The endocannabinoid 2-arachidonoyl glycerol (2-AG) acts as a retrograde messenger and modulates synaptic signaling e. g. in the hippocampus. 2-AG also exerts neuroprotective effects under pathological situations. To better understand the mechanism beyond physiological signaling we used Organotypic Entorhino-Hippocampal Slice Cultures (OHSC) and investigated the temporal regulation of 2-AG in different cell subsets during excitotoxic lesion and dendritic lesion of long range projections in the enthorhinal cortex (EC), dentate gyrus (DG) and the cornu ammonis region 1 (CA1). RESULTS 2-AG levels were elevated 24 h after excitotoxic lesion in CA1 and DG (but not EC) and 24 h after perforant pathway transection (PPT) in the DG only. After PPT diacylglycerol lipase alpha (DAGL) protein, the synthesizing enzyme of 2-AG was decreased when Dagl mRNA expression and 2-AG levels were enhanced. In contrast to DAGL, the 2-AG hydrolyzing enzyme monoacylglycerol lipase (MAGL) showed no alterations in total protein and mRNA expression after PPT in OHSC. MAGL immunoreaction underwent a redistribution after PPT and excitotoxic lesion since MAGL IR disappeared in astrocytes of lesioned OHSC. DAGL and MAGL immunoreactions were not detectable in microglia at all investigated time points. Thus, induction of the neuroprotective endocannabinoid 2-AG might be generally accomplished by down-regulation of MAGL in astrocytes after neuronal lesions. CONCLUSION Increase in 2-AG levels during secondary neuronal damage reflects a general neuroprotective mechanism since it occurred independently in both different lesion models. This intrinsic up-regulation of 2-AG is synergistically controlled by DAGL and MAGL in neurons and astrocytes and thus represents a protective system for neurons that is involved in dendritic reorganisation.
Collapse
Affiliation(s)
- Sonja Kallendrusch
- Institut für Anatomie, Universität Leipzig, Leipzig, Germany
- Lipid Signaling Forschungszentrum Frankfurt, Frankfurt, Germany
| | | | - Angela Ehrlich
- Institut für Anatomie, Universität Leipzig, Leipzig, Germany
| | - Marcin Nowicki
- Institut für Anatomie, Universität Leipzig, Leipzig, Germany
| | - Simone Ziebell
- Institut für Pharmakologie, Goethe Universität Frankfurt,Frankfurt, Germany
| | - Ingo Bechmann
- Institut für Anatomie, Universität Leipzig, Leipzig, Germany
| | - Gerd Geisslinger
- Institut für Pharmakologie, Goethe Universität Frankfurt,Frankfurt, Germany
| | - Marco Koch
- Institut für Anatomie, Universität Leipzig, Leipzig, Germany
| | - Faramarz Dehghani
- Institut für Anatomie, Universität Leipzig, Leipzig, Germany
- Institut für Anatomie und Zellbiologie, Martin Luther Universität, Halle-Wittenberg, Halle, Germany
- * E-mail:
| |
Collapse
|
16
|
Schmidt W, Schäfer F, Striggow V, Fröhlich K, Striggow F. Cannabinoid receptor subtypes 1 and 2 mediate long-lasting neuroprotection and improve motor behavior deficits after transient focal cerebral ischemia. Neuroscience 2012; 227:313-26. [PMID: 23069763 DOI: 10.1016/j.neuroscience.2012.09.080] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/24/2012] [Accepted: 09/28/2012] [Indexed: 11/18/2022]
Abstract
The endocannabinoid system is crucially involved in the regulation of brain activity and inflammation. We have investigated the localization of cannabinoid CB1 and CB2 receptors in adult rat brains before and after focal cerebral ischemia due to endothelin-induced transient occlusion of the middle cerebral artery (eMCAO). Using immunohistochemistry, both receptor subtypes were identified in cortical neurons. After eMCAO, neuronal cell death was accompanied by reduced neuronal CB1 and CB2 receptor-linked immunofluorescence. In parallel, CB1 receptor was found in activated microglia/macrophages 3 days post eMCAO and in astroglia cells at days 3 and 7. CB2 receptor labeling was identified in activated microglia/macrophages or astroglia 3 and 7d ays post ischemia, respectively. In addition, immune competent CD45-positive cells were characterized by pronounced CB2 receptor staining 3 and 7 days post eMCAO. KN38-72717, a potent and selective CB1 and CB2 receptor agonist, revealed a significant, dose-dependent and long-lasting reduction of cortical lesion sizes due to eMCAO, when applied consecutively before, during and after eMCAO. In addition, severe motor deficits of animals suffering from eMCAO were significantly improved by KN38-7271. KN38-7271 remained effective, even if its application was delayed up to 6h post eMCAO. Finally, we show that the endocannabinoid system assembles a comprehensive machinery to defend the brain against the devastating consequences of cerebral ischemia. In summary, this study underlines the therapeutic potential of CB1 and/or CB2 receptor agonists against neurodegenerative diseases or injuries involving acute or chronic imbalances of cerebral blood flow and energy consumption.
Collapse
Affiliation(s)
- W Schmidt
- KeyNeurotek Pharmaceuticals AG, ZENIT Technology Park, Leipziger Straße 44, D-39120 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
17
|
Rational design, synthesis and anti-proliferative properties of new CB2 selective cannabinoid receptor ligands: an investigation of the 1,8-naphthyridin-2(1H)-one scaffold. Eur J Med Chem 2012; 52:284-94. [PMID: 22483967 DOI: 10.1016/j.ejmech.2012.03.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 11/22/2022]
Abstract
CB2 receptor ligands are becoming increasingly attractive drugs due to the potential role of this receptor in several physiopathological processes. Using our previously described series of 1,8-naphthyridin-2(1H)-on-3-carboxamides as a lead class, several nitrogen heterocyclic derivatives, characterized by different central cores, were synthesized and tested for their affinity toward the human CB1 and CB2 cannabinoid receptors. The obtained results suggest that the new series of quinolin-2(1H)-on-3-carboxamides, 4-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamides and 1,2-dihydro-2-oxopyridine-3-carboxamides represent novel scaffolds very suitable for the development of promising CB2 ligands. Furthermore, the newly synthesized CB2 ligands inhibit proliferation of several cancer cell lines. In particular, it was demonstrated that in DU-145 cell line these ligands exert a CB2-mediated anti-proliferative action and decrease the CB2 receptor expression levels.
Collapse
|
18
|
Sánchez A, García-Merino A. Neuroprotective agents: Cannabinoids. Clin Immunol 2012; 142:57-67. [DOI: 10.1016/j.clim.2011.02.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
|
19
|
Adhikary S, Li H, Heller J, Skarica M, Zhang M, Ganea D, Tuma RF. Modulation of inflammatory responses by a cannabinoid-2-selective agonist after spinal cord injury. J Neurotrauma 2011; 28:2417-27. [PMID: 21970496 DOI: 10.1089/neu.2011.1853] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The goal of the current investigation was to evaluate the mechanisms through which administration of a selective cannabinoid-2 (CB2) agonist (O-1966) modifies inflammatory responses and helps to improve function following spinal cord injury. A comparison of motor function, autonomic function, and inflammatory responses was made between animals treated with O-1966 (5 mg/kg IP) and animals treated with vehicle 1 h and 24 h following contusion injury to the spinal cord. Motor function was significantly improved in the treated animals at each time point during the 14 days of evaluation. The percentage of animals able to spontaneously void their bladder was also greater over the entire study period in the group treated with the selective CB2 agonist. Seven days following injury there was a significant reduction in both hematopoietic and myeloid cell invasion of the spinal cord, and a reduction in the number of immunoreactive microglia. The results of the evaluation of chemokine/cytokine expression and inflammatory cell invasion also demonstrated a significant effect of treatment on inflammatory reactions following injury. Two days after injury, animals treated with O-1966 had significant reductions in CXCL-9 and CXCL-11, and dramatic reductions in IL-23p19 expression and its receptor IL-23r. Treatment with O-1966 also caused inhibition of toll-like receptor expression (TLR1, TLR4, TLR6 and TLR7) following injury. These results demonstrate that the improvement in motor and autonomic function resulting from treatment with a selective CB2 agonist is associated with a significant effect on inflammatory responses in the spinal cord following injury.
Collapse
Affiliation(s)
- Sabina Adhikary
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Atwood BK, Mackie K. CB2: a cannabinoid receptor with an identity crisis. Br J Pharmacol 2010. [PMID: 20590558 DOI: 10.1111/j.1476-5381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
CB(2) was first considered to be the 'peripheral cannabinoid receptor'. This title was bestowed based on its abundant expression in the immune system and presumed absence from the central nervous system. However, multiple recent reports question the absence of CB(2) from the central nervous system. For example, it is now well accepted that CB(2) is expressed in brain microglia during neuroinflammation. However, the extent of CB(2) expression in neurons has remained controversial. There have been studies claiming either extreme-its complete absence to its widespread expression-as well as everything in between. This review will discuss the reported tissue distribution of CB(2) with a focus on CB(2) in neurons, particularly those in the central nervous system as well as the implications of that presence. As CB(2) is an attractive therapeutic target for pain management and immune system modulation without overt psychoactivity, defining the extent of its presence in neurons will have a significant impact on drug discovery. Our recommendation is to encourage cautious interpretation of data that have been presented for and against CB(2)'s presence in neurons and to encourage continued rigorous study.
Collapse
Affiliation(s)
- Brady K Atwood
- The Gill Center and the Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
21
|
Abstract
CB(2) was first considered to be the 'peripheral cannabinoid receptor'. This title was bestowed based on its abundant expression in the immune system and presumed absence from the central nervous system. However, multiple recent reports question the absence of CB(2) from the central nervous system. For example, it is now well accepted that CB(2) is expressed in brain microglia during neuroinflammation. However, the extent of CB(2) expression in neurons has remained controversial. There have been studies claiming either extreme-its complete absence to its widespread expression-as well as everything in between. This review will discuss the reported tissue distribution of CB(2) with a focus on CB(2) in neurons, particularly those in the central nervous system as well as the implications of that presence. As CB(2) is an attractive therapeutic target for pain management and immune system modulation without overt psychoactivity, defining the extent of its presence in neurons will have a significant impact on drug discovery. Our recommendation is to encourage cautious interpretation of data that have been presented for and against CB(2)'s presence in neurons and to encourage continued rigorous study.
Collapse
Affiliation(s)
- Brady K Atwood
- The Gill Center and the Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
22
|
Zhang M, Martin BR, Adler MW, Razdan RJ, Kong W, Ganea D, Tuma RF. Modulation of cannabinoid receptor activation as a neuroprotective strategy for EAE and stroke. J Neuroimmune Pharmacol 2009; 4:249-59. [PMID: 19255856 PMCID: PMC2855650 DOI: 10.1007/s11481-009-9148-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 02/04/2009] [Indexed: 12/25/2022]
Abstract
Recognition of the importance of the endocannabinoid system in both homeostasis and pathologic responses raised interest recently in the development of therapeutic agents based on this system. The CB(2) receptor, a component of the endocannabinoid system, has significant influence on immune function and inflammatory responses. Inflammatory responses are major contributors to central nervous system (CNS) injury in a variety of diseases. In this report, we present evidence that activation of CB(2) receptors, by selective CB(2) agonists, reduces inflammatory responses that contribute to CNS injury. The studies demonstrate neuroprotective effects in experimental autoimmune encephalomyelitis, a model of multiple sclerosis, and in a murine model of cerebral ischemia/reperfusion injury. In both cases, CB(2) receptor activation results in reduced white cell rolling and adhesion to cerebral microvessels, a reduction in immune cell invasion, and improved neurologic function after insult. In addition, administration of the CB(1) antagonist SR141716A reduces infarct size following ischemia/reperfusion injury. Administration of both a selective CB(2) agonist and a CB(1) antagonist has the unique property of increasing blood flow to the brain during the occlusion period, suggesting an effect on collateral blood flow. In summary, selective CB(2) receptor agonists and CB(1) receptor antagonists have significant potential for neuroprotection in animal models of two devastating diseases that currently lack effective treatment options.
Collapse
Affiliation(s)
- Ming Zhang
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Billy R. Martin
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Martin W. Adler
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | - Weimin Kong
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Doina Ganea
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Ronald F. Tuma
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
23
|
Pertwee RG. Emerging strategies for exploiting cannabinoid receptor agonists as medicines. Br J Pharmacol 2009; 156:397-411. [PMID: 19226257 DOI: 10.1111/j.1476-5381.2008.00048.x] [Citation(s) in RCA: 321] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Medicines that activate cannabinoid CB(1) and CB(2) receptor are already in the clinic. These are Cesamet (nabilone), Marinol (dronabinol; Delta(9)-tetrahydrocannabinol) and Sativex (Delta(9)-tetrahydrocannabinol with cannabidiol). The first two of these medicines can be prescribed to reduce chemotherapy-induced nausea and vomiting. Marinol can also be prescribed to stimulate appetite, while Sativex is prescribed for the symptomatic relief of neuropathic pain in adults with multiple sclerosis and as an adjunctive analgesic treatment for adult patients with advanced cancer. One challenge now is to identify additional therapeutic targets for cannabinoid receptor agonists, and a number of potential clinical applications for such agonists are mentioned in this review. A second challenge is to develop strategies that will improve the efficacy and/or the benefit-to-risk ratio of a cannabinoid receptor agonist. This review focuses on five strategies that have the potential to meet either or both of these objectives. These are strategies that involve: (i) targeting cannabinoid receptors located outside the blood-brain barrier; (ii) targeting cannabinoid receptors expressed by a particular tissue; (iii) targeting up-regulated cannabinoid receptors; (iv) targeting cannabinoid CB(2) receptors; or (v) 'multi-targeting'. Preclinical data that justify additional research directed at evaluating the clinical importance of each of these strategies are also discussed.
Collapse
Affiliation(s)
- Roger G Pertwee
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, UK.
| |
Collapse
|
24
|
|
25
|
Romero-Sandoval EA, Horvath RJ, DeLeo JA. Neuroimmune interactions and pain: focus on glial-modulating targets. CURRENT OPINION IN INVESTIGATIONAL DRUGS (LONDON, ENGLAND : 2000) 2008; 9:726-734. [PMID: 18600578 PMCID: PMC2696046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chronic pain is the most difficult type of pain to treat. Previously, the development of analgesics has focused on neuronal targets; however, current analgesics are only modestly effective, have significant side effects and do not provide universal efficacy. New strategies are needed for the development of more effective analgesics. Glial cells have integral roles in CNS homeostasis, and chronic pain etiology and progression. In this review, the role of glia in neuropathic pain and opioid administration is described, as well as the potential superior efficacy and wider therapeutic indices provided by drugs that modulate specific glial function via novel targets.
Collapse
Affiliation(s)
- Edgar Alfonso Romero-Sandoval
- Department of Anesthesiology, Dartmouth-Hitchcock Medical Center, HB 7125, One Medical Center Drive, Lebanon, NH 03756, USA
- Neuroscience Center at Dartmouth
| | - Ryan J Horvath
- Neuroscience Center at Dartmouth
- Department of Pharmacology and Toxicology, Dartmouth-Hitchcock Medical Center, Dartmouth College, One Medical Center Drive, Hanover, NH 03755, USA
| | - Joyce A DeLeo
- Department of Anesthesiology, Dartmouth-Hitchcock Medical Center, HB 7125, One Medical Center Drive, Lebanon, NH 03756, USA
- Neuroscience Center at Dartmouth
- Department of Pharmacology and Toxicology, Dartmouth-Hitchcock Medical Center, Dartmouth College, One Medical Center Drive, Hanover, NH 03755, USA
| |
Collapse
|