1
|
Docherty JR, Alsufyani HA. Pharmacology of Drugs Used as Stimulants. J Clin Pharmacol 2021; 61 Suppl 2:S53-S69. [PMID: 34396557 DOI: 10.1002/jcph.1918] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/22/2021] [Indexed: 12/21/2022]
Abstract
Psychostimulant, cardiovascular, and temperature actions of stimulants involve adrenergic (norepinephrine), dopaminergic (dopamine), and serotonergic (serotonin) pathways. Stimulants such as amphetamine, 3,4-methylenedioxymethamphetamine (MDMA), or mephedrone can act on the neuronal membrane monoamine transporters NET, DAT, and SERT and/or the vesicular monoamine transporter 2 to inhibit reuptake of neurotransmitter or cause release by reverse transport. Stimulants may have additional effects involving pre- and postsynaptic/junctional receptors for norepinephrine, dopamine, and serotonin and other receptors. As a result, stimulants may have a wide range of possible actions. Agents with cocaine or MDMA-like actions can induce serious and potentially fatal adverse events via thermodysregulatory, cardiovascular, or other mechanisms. MDMA-like stimulants may cause hyperthermia that can be life threathening. Recreational users of stimulants should be aware of the dangers of hyperthermia in a rave/club environment.
Collapse
Affiliation(s)
| | - Hadeel A Alsufyani
- Department of Physiology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Docherty JR, Alsufyani HA. Cardiovascular and temperature adverse actions of stimulants. Br J Pharmacol 2021; 178:2551-2568. [PMID: 33786822 DOI: 10.1111/bph.15465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/22/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
The vast majority of illicit stimulants act at monoaminergic systems, causing both psychostimulant and adverse effects. Stimulants can interact as substrates or antagonists at the nerve terminal monoamine transporter that mediates the reuptake of monoamines across the nerve synaptic membrane and at the vesicular monoamine transporter (VMAT-2) that mediates storage of monoamines in vesicles. Stimulants can act directly at presynaptic or postsynaptic receptors for monoamines or have indirect monoamine-mimetic actions due to the release of monoamines. Cocaine and other stimulants can acutely increase the risk of sudden cardiac death. Stimulants, particularly MDMA, in hot conditions, such as that occurring at a "rave," have caused fatalities from the consequences of hyperthermia, often compounding cardiac adverse actions. This review examines the pharmacology of the cardiovascular and temperature adverse actions of stimulants.
Collapse
Affiliation(s)
- James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hadeel A Alsufyani
- Department of Physiology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Aguilar MA, García-Pardo MP, Parrott AC. Of mice and men on MDMA: A translational comparison of the neuropsychobiological effects of 3,4-methylenedioxymethamphetamine ('Ecstasy'). Brain Res 2020; 1727:146556. [PMID: 31734398 DOI: 10.1016/j.brainres.2019.146556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 11/19/2022]
Abstract
MDMA (3,4-methylendioxymethamphetamine), also known as Ecstasy, is a stimulant drug recreationally used by young adults usually in dance clubs and raves. Acute MDMA administration increases serotonin, dopamine and noradrenaline by reversing the action of the monoamine transporters. In this work, we review the studies carried out over the last 30 years on the neuropsychobiological effects of MDMA in humans and mice and summarise the current knowledge. The two species differ with respect to the neurochemical consequences of chronic MDMA, since it preferentially induces serotonergic dysfunction in humans and dopaminergic neurotoxicity in mice. However, MDMA alters brain structure and function and induces hormonal, psychomotor, neurocognitive, psychosocial and psychiatric outcomes in both species, as well as physically damaging and teratogen effects. Pharmacological and genetic studies in mice have increased our knowledge of the neurochemical substrate of the multiple effects of MDMA. Future work in this area may contribute to developing pharmacological treatments for MDMA-related disorders.
Collapse
Affiliation(s)
- Maria A Aguilar
- Department of Psychobiology, Faculty of Psychology, Valencia University, Valencia, Spain.
| | | | - Andrew C Parrott
- Department of Psychology, Swansea University, Swansea, United Kingdom; Centre for Human Psychopharmacology, Swinburne University, Melbourne, Australia
| |
Collapse
|
4
|
Shorter DI, Zhang X, Domingo CB, Nielsen EM, Kosten TR, Nielsen DA. Doxazosin treatment in cocaine use disorder: pharmacogenetic response based on an alpha-1 adrenoreceptor subtype D genetic variant. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2020; 46:184-193. [PMID: 31914324 DOI: 10.1080/00952990.2019.1674864] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: The α1 antagonist doxazosin reduces cocaine use in individuals with cocaine use disorder (CUD) through a functional polymorphism of the α1 adrenoreceptor. The regulatory role of the α1 adrenoreceptor subtype D (ADRA1D) gene polymorphism in CUD is uncharacterized.Objectives: To study how the genetic variant of ADRA1D gene (T1848A, rs2236554) may affect the treatment efficacy of doxazosin in reducing cocaine use.Methods: This 12-week pilot trial included 76 participants with CUD with ADRA1D (T1848A, rs2236554) AA (N = 40) or AT/TT genotype (N = 36). Participants were randomized to doxazosin (8 mg/day, N = 47) or placebo (N = 29), and followed with thrice weekly urine toxicology and once weekly cognitive behavioral psychotherapy.Results: The AA and the AT/TT groups had comparable baseline rates of cocaine positive urines at weeks 1-2 (~ 76%). In the placebo group, an increase of cocaine positive urines in the AT/TT group was found as compared to the AA group (24% vs. 9%). In the doxazosin group, a greater decrease in cocaine positive urines was found in the AT/TT group relative to the AA group. The difference between the doxazosin and placebo groups in cocaine negative urines became evident at weeks 5-6 and peaked at weeks 9-10 (~35% difference). The AT/TT group demonstrated a significant medication and time by medication effect (p < .001), whereas the AA group did not.Conclusion: The T-allele carriers showed a greater reduction of cocaine use after treatment with doxazosin in participants with the ADRA1D gene polymorphism (T1848A), suggesting that this SNP may serve as a pharmacogenetic marker in pharmacotherapy of CUD.
Collapse
Affiliation(s)
- Daryl I Shorter
- Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Xuefeng Zhang
- Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Coreen B Domingo
- Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Ellen M Nielsen
- Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Thomas R Kosten
- Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - David A Nielsen
- Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
5
|
Heng HL, Chee CF, Thy CK, Tee JT, Chin SP, Herr DR, Buckle MJC, Paterson IC, Doughty SW, Abd Rahman N, Chung LY. In vitro functional evaluation of isolaureline, dicentrine and glaucine enantiomers at 5-HT 2 and α 1 receptors. Chem Biol Drug Des 2018; 93:132-138. [PMID: 30216681 DOI: 10.1111/cbdd.13390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/26/2018] [Accepted: 09/02/2018] [Indexed: 10/28/2022]
Abstract
Compounds with activity at serotonin (5-hydroxytryptamine) 5-HT2 and α1 adrenergic receptors have potential for the treatment of central nervous system disorders, drug addiction or overdose. Isolaureline, dicentrine and glaucine enantiomers were synthesized, and their in vitro functional activities at human 5-HT2 and adrenergic α1 receptor subtypes were evaluated. The enantiomers of isolaureline and dicentrine acted as antagonists at 5-HT2 and α1 receptors with (R)-isolaureline showing the greatest potency (pKb = 8.14 at the 5-HT2C receptor). Both (R)- and (S)-glaucine also antagonized α1 receptors, but they behaved very differently to the other compounds at 5-HT2 receptors: (S)-glaucine acted as a partial agonist at all three 5-HT2 receptor subtypes, whereas (R)-glaucine appeared to act as a positive allosteric modulator at the 5-HT2A receptor.
Collapse
Affiliation(s)
- Hui Li Heng
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chin Fei Chee
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Chun Keng Thy
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Ti Tee
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Department of Oral Biology and Craniofacial Sciences and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Sek Peng Chin
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michael J C Buckle
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ian C Paterson
- Department of Oral Biology and Craniofacial Sciences and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Noorsaadah Abd Rahman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Lip Yong Chung
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Abstract
Phenethylamine-induced hyperthermia can occur following exposure to several different types of illicit stimulants, such as amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine ("Molly"), synthetic cathinones ("bath salts"), and N-methoxybenyl ("NBOMe"), to name a few. Peripheral norepinephrine release mediated by these sympathomimetic agents induces a double-edged sword of heat accumulation through β-adrenoreceptor-dependent activation of uncoupling protein (UCP1 and 3)-regulated thermogenesis and loss of heat dissipation through α1-adrenoreceptor-mediated vasoconstriction. Additionally, thyroid hormones are important determinants of the capacity of thermogenesis induced by phenethylamines through the regulation of free fatty acid release and the transcriptional activation of a host of metabolic genes, including adrenergic receptors and mitochondrial uncoupling proteins. Here, we review the central and peripheral mechanistic "triggers" of phenethylamine-induced hyperthermia and outline potential pharmacologic interventions for managing phenethylamine-induced hyperthermia based on these recently discovered hyperthermia mediators.
Collapse
|
7
|
Alsufyani HA, Docherty JR. Gender differences in the effects of cathinone and the interaction with caffeine on temperature and locomotor activity in the rat. Eur J Pharmacol 2017; 809:203-208. [PMID: 28529142 DOI: 10.1016/j.ejphar.2017.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/01/2017] [Accepted: 05/12/2017] [Indexed: 01/25/2023]
Abstract
We have investigated gender differences in the effects of cathinone and the interaction with caffeine on temperature and movement activity in Wistar rats. Telemetry probes were implanted in rats under isoflurane anaesthesia, and 7 days later, temperature and activity were recorded in conscious unrestrained animals. Caffeine (10mg/lkg) or vehicle, and 30min later, cathinone (5mg/kg) or vehicle, were injected subcutaneously. Cathinone produced significant and marked increases in activity, and the response to cathinone was significantly greater in female animals. The combination of caffeine and cathinone causes a short lived potentiation followed by a prolonged inhibition of the activity response to cathinone. Cathinone alone had minor effects on temperature. However, the combination of caffeine and cathinone produced a significant acute rise in temperature only in male rats in the 90min after cathinone injection. Hence, cathinone caused greater increases in activity in female than in male rats. Secondly, caffeine produced an initial potentiation followed by a prolonged inhibition of the activity response to cathinone. Thirdly, cathinone in combination with caffeine significantly raised temperature acutely in male but not female rats. These differences highlight the need to carry out gender studies of the actions of stimulants.
Collapse
Affiliation(s)
- Hadeel A Alsufyani
- Department of Physiology, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; Department of Physiology, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
8
|
Alawi KM, Aubdool AA, Liang L, Wilde E, Vepa A, Psefteli MP, Brain SD, Keeble JE. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature. FASEB J 2015; 29:4285-98. [PMID: 26136480 PMCID: PMC4650996 DOI: 10.1096/fj.15-272526] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/22/2015] [Indexed: 11/11/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders.
Collapse
Affiliation(s)
- Khadija M Alawi
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| | - Aisah A Aubdool
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| | - Lihuan Liang
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| | - Elena Wilde
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| | - Abhinav Vepa
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| | - Maria-Paraskevi Psefteli
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| | - Susan D Brain
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| | - Julie E Keeble
- *Institute of Pharmaceutical Science and British Heart Foundation Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Docherty JR, Bexis S. Influence of ketanserin on the effects of methylenedioxymethamphetamine on body temperature in the mouse. AUTONOMIC & AUTACOID PHARMACOLOGY 2013; 33:35-41. [PMID: 23906337 DOI: 10.1111/aap.12009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/18/2013] [Accepted: 05/13/2013] [Indexed: 06/02/2023]
Abstract
(1) We have investigated the ability of the 5HT2 -receptor antagonist ketanserin to affect the hyperthermia produced by methylenedioxymethamphetamine (MDMA) in conscious mice and examined whether α1 -adrenoceptor antagonist actions are involved. (2) Mice were implanted with intra-abdominal temperature probes under anaesthesia and allowed 2 weeks recovery. MDMA (20 mg kg(-1) ) was administered subcutaneously 30 min after vehicle or test antagonist and effects on body temperature monitored by telemetry. (3) Following vehicle, MDMA produced a slowly developing hyperthermia, reaching a maximum increase of 1.24 °C at 150 min postinjection. Ketanserin (0.5 mg kg(-1) ) revealed a significant and marked early hypothermia to MDMA, an effect that is mimicked by the α1 -adrenoceptor antagonist prazosin (0.1 mg kg(-1) ). (4) Functional studies revealed antagonist actions of ketanserin at α1 -adrenoceptors in rat aorta and rat vas deferens in vitro indicative of α1 -adrenoceptor antagonist actions at the concentration used in vivo. (5) In conclusion, ketanserin (0.5 mg kg(-1) ) modulates the hyperthermic actions of MDMA in mice. Although we cannot rule out additional actions at 5HT2 -receptors, the actions of ketanserin are consistent with α1 -adrenoceptor antagonism. There is no clear evidence from this study that 5HT2-receptors mediate the hyperthermic response to MDMA.
Collapse
Affiliation(s)
- J R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin, Ireland
| | | |
Collapse
|
10
|
3,4-Methylenedioxymethamphetamine induces a hyperthermic and hypermetabolic crisis in pigs with and without a genetic disposition for malignant hyperthermia. Eur J Anaesthesiol 2013; 30:29-37. [PMID: 23138574 DOI: 10.1097/eja.0b013e32835a1127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Clinical symptoms of acute 3,4-methylenedioxymethamphetamine (MDMA) intoxication and malignant hyperthermia have many similarities. At present, however, there is contradictory evidence concerning the malignant hyperthermia trigger potency of MDMA. OBJECTIVE This study was designed to investigate whether MDMA has malignant hyperthermia trigger potential and leads to malignant hyperthermia in pigs with or without a genetic predisposition to the condition. In addition, the therapeutic effectiveness of a new dantrolene sodium suspension was examined. DESIGN Experimental study, using an animal model of Piétrain pigs. SETTINGS Institute for Research in Operative Medicine, University of Witten/Herdecke, Hospital Cologne Merheim, Cologne, Germany, October 2006 to February 2007. Trigger-free anaesthesia was performed on seven malignant hyperthermia-susceptible and six malignant hyperthermia-normal Piétrain pigs, and cumulative doses of MDMA were administered to each animal. INTERVENTIONS After achieving predefined malignant hyperthermia criteria, standardised therapy was initiated; dantrolene sodium suspension (5 mg kg(-1)) was administered and the injection was repeated after 24 min. MAIN OUTCOME MEASURES The malignant hyperthermia trigger potency of MDMA was analysed by monitoring pH, PaCO2 and temperature. In addition, concentrations of thyroid hormone, mitochondrial uncoupling protein 3, noradrenaline and free fatty acids during administration of MDMA and dantrolene sodium suspension were analysed. RESULTS MDMA administration led to fulminant hypermetabolic and hyperthermic responses in malignant hyperthermia-susceptible and malignant hyperthermia-normal pigs, with significant decreases in pH (susceptible: pH 7.21 ± 0.11, normal: pH 7.21 ± 0.07), severe hypercapnia (susceptible: paCO2 10.3 ± 3.5 kPa, normal: paCO2 9.8 ± 1.7 kPa), and hyperthermia (susceptible: 40.6 ± 2.0°C, normal: 40.1 ± 0.4°C). There were no significant differences in changes in clinical and laboratory variables between groups. The dantrolene therapy regimen was effective in treating the MDMA-induced metabolic crises. CONCLUSION MDMA is not a classic trigger for the development of malignant hyperthermia reactions in pigs. MDMA intoxication leads to severe, long-lasting hyperthermia and hypermetabolism in both malignant hyperthermia-susceptible and hyperthermia-normal pigs, with life-threatening malignant hyperthermia-like symptoms which are responsive to supportive treatment and dantrolene sodium suspension.
Collapse
|
11
|
Hysek C, Schmid Y, Rickli A, Simmler LD, Donzelli M, Grouzmann E, Liechti ME. Carvedilol inhibits the cardiostimulant and thermogenic effects of MDMA in humans. Br J Pharmacol 2012; 166:2277-88. [PMID: 22404145 DOI: 10.1111/j.1476-5381.2012.01936.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND PURPOSE The use of ± 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') is associated with cardiovascular complications and hyperthermia. EXPERIMENTAL APPROACH We assessed the effects of the α(1) - and β-adrenoceptor antagonist carvedilol on the cardiostimulant, thermogenic and subjective responses to MDMA in 16 healthy subjects. Carvedilol (50 mg) or placebo was administered 1 h before MDMA (125 mg) or placebo using a randomized, double-blind, placebo-controlled, four-period crossover design. KEY RESULTS Carvedilol reduced MDMA-induced elevations in blood pressure, heart rate and body temperature. Carvedilol did not affect the subjective effects of MDMA including MDMA-induced good drug effects, drug high, drug liking, stimulation or adverse effects. Carvedilol did not alter the plasma exposure to MDMA. CONCLUSIONS AND IMPLICATIONS α(1) - and β-Adrenoceptors contribute to the cardiostimulant and thermogenic effects of MDMA in humans but not to its psychotropic effects. Carvedilol could be useful in the treatment of cardiovascular and hyperthermic complications associated with ecstasy use.
Collapse
Affiliation(s)
- Cm Hysek
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Internal Medicine, University Hospital and University of Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
12
|
Genetic deletion of trace amine 1 receptors reveals their role in auto-inhibiting the actions of ecstasy (MDMA). J Neurosci 2012; 31:16928-40. [PMID: 22114263 DOI: 10.1523/jneurosci.2502-11.2011] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
"Ecstasy" [3,4-methylenedioxymetamphetamine (MDMA)] is of considerable interest in light of its prosocial properties and risks associated with widespread recreational use. Recently, it was found to bind trace amine-1 receptors (TA(1)Rs), which modulate dopaminergic transmission. Accordingly, using mice genetically deprived of TA(1)R (TA(1)-KO), we explored their significance to the actions of MDMA, which robustly activated human adenylyl cyclase-coupled TA(1)R transfected into HeLa cells. In wild-type (WT) mice, MDMA elicited a time-, dose-, and ambient temperature-dependent hypothermia and hyperthermia, whereas TA(1)-KO mice displayed hyperthermia only. MDMA-induced increases in dialysate levels of dopamine (DA) in dorsal striatum were amplified in TA(1)-KO mice, despite identical levels of MDMA itself. A similar facilitation of the influence of MDMA upon dopaminergic transmission was acquired in frontal cortex and nucleus accumbens, and induction of locomotion by MDMA was haloperidol-reversibly potentiated in TA(1)-KO versus WT mice. Conversely, genetic deletion of TA(1)R did not affect increases in DA levels evoked by para-chloroamphetamine (PCA), which was inactive at hTA(1) sites. The TA(1)R agonist o-phenyl-3-iodotyramine (o-PIT) blunted the DA-releasing actions of PCA both in vivo (dialysis) and in vitro (synaptosomes) in WT but not TA(1)-KO animals. MDMA-elicited increases in dialysis levels of serotonin (5-HT) were likewise greater in TA(1)-KO versus WT mice, and 5-HT-releasing actions of PCA were blunted in vivo and in vitro by o-PIT in WT mice only. In conclusion, TA(1)Rs exert an inhibitory influence on both dopaminergic and serotonergic transmission, and MDMA auto-inhibits its neurochemical and functional actions by recruitment of TA(1)R. These observations have important implications for the effects of MDMA in humans.
Collapse
|
13
|
Arthur S, Cantor LB. Update on the role of alpha-agonists in glaucoma management. Exp Eye Res 2011; 93:271-83. [PMID: 21524649 DOI: 10.1016/j.exer.2011.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/03/2011] [Accepted: 04/04/2011] [Indexed: 11/19/2022]
Abstract
Glaucoma is the second most common cause of world blindness (following cataract) with estimated cases reaching 79.6 million by 2020. Although the etiology of glaucoma is multi-factorial, intraocular pressure (IOP) is the only modifiable factor in glaucoma management proven to alter the natural course of the disease. Among various classes of IOP-lowering medications currently available, alpha-adrenergic receptor agonists are used either as monotherapy, as second-line therapy, or in fixed combination with beta-blockers. Non-selective adrenergic agonists such as epinephrine and dipivefrin are infrequently used today for the treatment of glaucoma or ocular hypertension, and have been replaced by the alpha-2-selective agonists. The use of apraclonidine for IOP reduction in glaucoma or OHT is limited due to a high rate of follicular conjunctivitis. The alpha-2-selective agonist in use today is brimonidine. The brimonidine-purite formulations are preferred to brimonidine-benzalkonium chloride (BAC) formulations due better tolerability while maintaining similar efficacy. Brimonidine is also effective when used in combination with a beta-blocker. Using brimonidine-timolol fixed combination (BTFC) as first-line therapy has an added potential for neuroprotection. This would be a valuable strategy for glaucoma treatment, for patients who are intolerant of prostaglandin analogs, or for patients where prostaglandin analogues are contraindicated as first-line therapy, such as in patients with inflammatory glaucoma.
Collapse
Affiliation(s)
- Stella Arthur
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 702 Rotary Circle, Indianapolis, IN 46202, USA
| | | |
Collapse
|
14
|
Docherty JR, Green AR. The role of monoamines in the changes in body temperature induced by 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and its derivatives. Br J Pharmacol 2010; 160:1029-44. [PMID: 20590597 DOI: 10.1111/j.1476-5381.2010.00722.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hyperthermia is probably the most widely known acute adverse event that can follow ingestion of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) by recreational users. The effect of MDMA on body temperature is complex because the drug has actions on all three major monoamine neurotransmitters [5-hydroxytryptamine (5-HT), dopamine and noradrenaline], both by amine release and by direct receptor activation. Hyperthermia and hypothermia can be induced in laboratory animals by MDMA, depending on the ambient temperature, and involve both central thermoregulation and peripheral changes in blood flow and thermogenesis. Acute 5-HT release is not directly responsible for hyperthermia, but 5-HT receptors are involved in modulating the hyperthermic response. Impairing 5-HT function with a neurotoxic dose of MDMA or p-chlorophenylalanine alters the subsequent MDMA-induced hyperthermic response. MDMA also releases dopamine, and evidence suggests that this transmitter is involved in both the hyperthermic and hypothermic effects of MDMA in rats. The noradrenergic system is also involved in the hyperthermic response to MDMA. MDMA activates central alpha(2A)-adrenoceptors and peripheral alpha(1)-adrenoceptors to produce cutaneous vasoconstriction to restrict heat loss, and beta(3)-adrenoceptors in brown adipose tissue to increase heat generation. The hyperthermia occurring in recreational users of MDMA can be fatal, but data reviewed here indicate that it is unlikely that any single pharmaceutical agent will be effective in reversing the hyperthermia, so careful body cooling remains the principal clinical approach. Crucially, educating recreational users about the potential dangers of hyperthermia and the control of ambient temperature should remain key approaches to prevent this potentially fatal problem.
Collapse
Affiliation(s)
- J R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, Ireland.
| | | |
Collapse
|
15
|
Shioda K, Nisijima K, Yoshino T, Kato S. Effect of risperidone on acute methamphetamine-induced hyperthermia in rats. Drug Alcohol Depend 2010; 111:241-9. [PMID: 20541333 DOI: 10.1016/j.drugalcdep.2010.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/27/2010] [Accepted: 05/03/2010] [Indexed: 11/16/2022]
Abstract
The abuse of methamphetamine (METH) is popular in many parts of the world. The number of fatal cases related to METH-induced hyperthermia is increasing, but no definitive therapy has yet been found. In the present study, we investigated the ability of risperidone to attenuate acute METH-induced hyperthermia and the mechanism of its action. When administered before and after a single high METH dose (10 mg/kg), risperidone significantly suppressed acute METH-induced hyperthermia in a dose-dependent manner. The same effect was produced by dopamine-1 (DA(1)) and serotonin-2A (5-HT(2A)) receptor blockers, but not by D₂, 5-HT(1A), 5-HT(2B/2C), or 5-HT(2C) receptor blockers, demonstrating that risperidone suppressed METH-induced hyperthermia by blocking the D(1) and 5-HT(2A) receptors. A microdialysis study showed that when METH (10 mg/kg) was subcutaneously injected into rats, the levels of DA, 5-HT, glutamate, and the nitric oxide (NO) metabolites NOx (NO₂⁻+ NO₃⁻) in the anterior hypothalamus increased. Risperidone pretreatment significantly attenuated increases in the levels of DA, 5-HT, glutamate, and NOx. The present study indicates that risperidone may be an effective drug for treating METH-induced hyperthermia in humans and that METH influences the DA and 5-HT neuron systems as well as other neuron systems, including the glutamate and NO systems.
Collapse
|
16
|
Docherty JR. Subtypes of functional alpha1-adrenoceptor. Cell Mol Life Sci 2010; 67:405-17. [PMID: 19862476 PMCID: PMC11115521 DOI: 10.1007/s00018-009-0174-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/11/2009] [Accepted: 10/05/2009] [Indexed: 11/29/2022]
Abstract
In this review, subtypes of functional alpha1-adrenoceptor are discussed. These are cell membrane receptors, belonging to the seven-transmembrane-spanning G-protein-linked family of receptors, which respond to the physiological agonist noradrenaline. alpha1-Adrenoceptors can be divided into alpha1A-, alpha1B- and alpha1D-adrenoceptors, all of which mediate contractile responses involving Gq/11 and inositol phosphate turnover. A fourth alpha1-adrenoceptor, the alpha1L-, represents a functional phenotype of the alpha1A-adrenoceptor. alpha1-Adrenoceptor subtype knock-out mice have refined our knowledge of the functions of alpha-adrenoceptor subtypes, particuarly as subtype-selective agonists and antagonists are not available for all subtypes. alpha1-Adrenoceptors function as stimulatory receptors involved particularly in smooth muscle contraction, especially contraction of vascular smooth muscle, both in local vasoconstriction and in the control of blood pressure and temperature, and contraction of the prostate and bladder neck. Central actions are now being elucidated.
Collapse
MESH Headings
- Animals
- Blood Pressure/physiology
- Body Temperature Regulation
- Drug Inverse Agonism
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Inositol Phosphates/metabolism
- Mice
- Mice, Knockout
- Muscle, Smooth/physiology
- Muscle, Smooth, Vascular/physiology
- Receptors, Adrenergic, alpha-1/classification
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-1/physiology
- Second Messenger Systems/physiology
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, 123, St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
17
|
Legendre O, Pecic S, Chaudhary S, Zimmerman SM, Fantegrossi WE, Harding WW. Synthetic studies and pharmacological evaluations on the MDMA ('Ecstasy') antagonist nantenine. Bioorg Med Chem Lett 2009; 20:628-31. [PMID: 19963380 DOI: 10.1016/j.bmcl.2009.11.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 11/11/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
Abstract
The naturally occurring aporphine alkaloid nantenine, has been shown to antagonize behavioral and physiological effects of MDMA in mice. We have synthesized (+/-)-nantenine via an oxidative cyclization reaction with PIFA and evaluated its binding profile against a panel of CNS targets. To begin to understand the importance of the chiral center of nantenine with regards to its capacity to antagonize the effects of MDMA in vivo, (R)- and (S)-nantenine were prepared and evaluated in a food-reinforced operant task in rats. Pretreatment with either nantenine enantiomer (0.3mg/kg ip) completely blocked the behavioral suppression induced upon administration of 3.0mg/kg MDMA. (+/-)-Nantenine displayed high affinity and selectivity for the alpha(1A) adrenergic receptor among several other receptors suggesting that this alpha(1) subtype may be significantly involved in the anti-MDMA effects of the enantiomers.
Collapse
Affiliation(s)
- Onica Legendre
- Department of Chemistry, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
18
|
Bexis S, Docherty JR. Role of alpha 1- and beta 3-adrenoceptors in the modulation by SR59230A of the effects of MDMA on body temperature in the mouse. Br J Pharmacol 2009; 158:259-66. [PMID: 19422394 PMCID: PMC2795232 DOI: 10.1111/j.1476-5381.2009.00186.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 01/07/2009] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE We have investigated the ability of the beta(3)-adrenoceptor antagonist 1-(2-ethylphenoxy)-3-[[(1S)-1,2,3,4,-tetrahydro-1-naphthalenyl]amino]-(2S)-2-propanol hydrochloride (SR59230A) to affect the hyperthermia produced by methylenedioxymethamphetamine (MDMA) in conscious mice and whether alpha(1)-adrenoceptor antagonist actions are involved. EXPERIMENTAL APPROACH Mice were implanted with temperature probes under anaesthesia, and allowed 2 week recovery. MDMA (20 mg x kg(-1)) was administered subcutaneously 30 min after vehicle or test antagonist and effects on body temperature monitored by telemetry. KEY RESULTS Following vehicle, MDMA produced a slowly developing hyperthermia, reaching a maximum increase of 1.8 degrees C at 130 min post injection. A low concentration of SR59230A (0.5 mg x kg(-1)) produced a small but significant attenuation of the slowly developing hyperthermia to MDMA. A high concentration of SR59230A (5 mg x kg(-1)) revealed a significant and marked early hypothermic reaction to MDMA, an effect that was mimicked by the alpha(1)-adrenoceptor antagonist prazosin. Functional and ligand binding studies revealed actions of SR59230A at alpha(1)-adrenoceptors. CONCLUSIONS AND IMPLICATIONS 1-(2-ethylphenoxy)-3-[[(1S)-1,2,3,4,-tetrahydro-1-naphthalenyl]amino]-(2S)-2-propanol hydrochloride in high concentrations modulates the hyperthermic actions of MDMA in mice in two ways: by blocking an early alpha(1)-adrenoceptor-mediated component to reveal a hypothermia, and by a small attenuation of the later hyperthermic component which may possibly be beta(3)-adrenoceptor-mediated (this seen with the low concentration of SR59230A). Hence, the major actions of SR59230A in modulating the actions of MDMA on temperature involve alpha(1)-adrenoceptor antagonism.
Collapse
Affiliation(s)
- Sotiria Bexis
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | |
Collapse
|
19
|
Capela JP, Carmo H, Remião F, Bastos ML, Meisel A, Carvalho F. Molecular and Cellular Mechanisms of Ecstasy-Induced Neurotoxicity: An Overview. Mol Neurobiol 2009; 39:210-71. [DOI: 10.1007/s12035-009-8064-1] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 02/27/2009] [Indexed: 11/29/2022]
|