1
|
Babin CP, Catalano NT, Yancey DM, Pearl NZ, Koonce EM, Ahmadzadeh S, Shekoohi S, Cornett EM, Kaye AD. Update on Overactive Bladder Therapeutic Options. Am J Ther 2024; 31:e410-e419. [PMID: 37171410 DOI: 10.1097/mjt.0000000000001637] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND Millions of Americans are burdened by overactive bladder (OAB) syndrome and the psychogenic and economic hardships that accompany it. Several theories attempt to explain OAB as a neurogenic dysfunction, myogenic dysfunction, urothelial dysfunction, or decreased expression of a channel protein secondary to bladder outlet obstruction. Given that the etiology of OAB is a working theory, the management of OAB is also an evolving subject matter in medicine. There are uncertainties surrounding the pathophysiology of OAB, the strength of a clinical diagnosis, and accurate reporting because of the disease's stigma and decreased use of health care. DATA SOURCES This is a narrative review that used PubMed, Google Scholar, Medline, and ScienceDirect to review literature on current and future OAB therapies. RESULTS Currently, first-line treatment for OAB is behavioral therapy that uses lifestyle modifications, bladder-control techniques, and psychotherapy. Second-line therapy includes antimuscarinic agents or beta 3 adrenergic agonists, and studies have shown that combination therapy with antimuscarinics and beta 3 adrenergic agonists provides even greater efficacy than monotherapy. Third-line therapies discussed include onabotulinumtoxinA, posterior tibial nerve stimulation, and sacral neuromodulation. OnabotulinumtoxinA has been FDA-approved as a nonpharmaceutical treatment option for refractory OAB with minimal side effects restricted to the urinary tract. Posterior tibial nerve modulation and sacral neuromodulation are successful in treating refractory OAB, but the costs and complication rates make them high-risk procedures. Therefore, surgical intervention should be a last resort. Estrogen therapy is effective in alleviating urinary incontinence in postmenopausal women, consistent with the association between estrogen deficiency and genitourinary syndrome. Potassium channel activators, voltage-gated calcium channel blockers, and phosphodiesterase inhibitors look to be promising options for the future of OAB management. As new therapies are developed, individuals with OAB can better personalize their treatment to maximize their quality of life and cost-effective care.
Collapse
Affiliation(s)
- Caroline P Babin
- Louisiana State University Health Sciences Center at New Orleans, School of Medicine, New Orleans, LA
| | - Nicole T Catalano
- Louisiana State University Health Sciences Center at New Orleans, School of Medicine, New Orleans, LA
| | - David M Yancey
- Louisiana State University Health Sciences Center at New Orleans, School of Medicine, New Orleans, LA
| | - Nathan Z Pearl
- Louisiana State University Health Sciences Center at New Orleans, School of Medicine, New Orleans, LA
| | - Eleanor M Koonce
- Louisiana State University Health Sciences Center at New Orleans, School of Medicine, New Orleans, LA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Elyse M Cornett
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| |
Collapse
|
2
|
Xie AX, Iguchi N, Malykhina AP. Long-term follow-up of TREK-1 KO mice reveals the development of bladder hypertrophy and impaired bladder smooth muscle contractility with age. Am J Physiol Renal Physiol 2024; 326:F957-F970. [PMID: 38601986 PMCID: PMC11386977 DOI: 10.1152/ajprenal.00382.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Stretch-activated two-pore domain K+ (K2P) channels play important roles in many visceral organs, including the urinary bladder. The TWIK-related K+ channel TREK-1 is the predominantly expressed K2P channel in the urinary bladder of humans and rodents. Downregulation of TREK-1 channels was observed in the urinary bladder of patients with detrusor overactivity, suggesting their involvement in the pathogenesis of voiding dysfunction. This study aimed to characterize the long-term effects of TREK-1 on bladder function with global and smooth muscle-specific TREK-1 knockout (KO) mice. Bladder morphology, bladder smooth muscle (BSM) contractility, and voiding patterns were evaluated up to 12 mo of age. Both sexes were included in this study to probe the potential sex differences. Smooth muscle-specific TREK-1 KO mice were used to distinguish the effects of TREK-1 downregulation in BSM from the neural pathways involved in the control of bladder contraction and relaxation. TREK-1 KO mice developed enlarged urinary bladders (by 60.0% for males and by 45.1% for females at 6 mo; P < 0.001 compared with the age-matched control group) and had a significantly increased bladder capacity (by 137.7% at 12 mo; P < 0.0001) and compliance (by 73.4% at 12 mo; P < 0.0001). Bladder strips isolated from TREK-1 KO mice exhibited decreased contractility (peak force after KCl at 6 mo was 1.6 ± 0.7 N/g compared with 3.4 ± 2.0 N/g in the control group; P = 0.0005). The lack of TREK-1 channels exclusively in BSM did not replicate the bladder phenotype observed in TREK-1 KO mice, suggesting a strong neurogenic origin of TREK-1-related bladder dysfunction.NEW & NOTEWORTHY This study compared voiding function and bladder phenotypes in global and smooth muscle-specific TREK-1 KO mice. We found significant age-related changes in bladder contractility, suggesting that the lack of TREK-1 channel activity might contribute to age-related changes in bladder smooth muscle physiology.
Collapse
Affiliation(s)
- Alison Xiaoqiao Xie
- Division of Urology, Department of SurgeryUniversity of Colorado Anschutz Medical CampusAuroraColoradoUnited States
| | - Nao Iguchi
- Division of Urology, Department of SurgeryUniversity of Colorado Anschutz Medical CampusAuroraColoradoUnited States
| | - Anna P Malykhina
- Division of Urology, Department of SurgeryUniversity of Colorado Anschutz Medical CampusAuroraColoradoUnited States
| |
Collapse
|
3
|
Davis MJ, Zawieja SD. Pacemaking in the lymphatic system. J Physiol 2024. [PMID: 38520402 DOI: 10.1113/jp284752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024] Open
Abstract
Lymphatic collecting vessels exhibit spontaneous phasic contractions that are critical for lymph propulsion and tissue fluid homeostasis. This rhythmic activity is driven by action potentials conducted across the lymphatic muscle cell (LMC) layer to produce entrained contractions. The contraction frequency of a lymphatic collecting vessel displays exquisite mechanosensitivity, with a dynamic range from <1 to >20 contractions per minute. A myogenic pacemaker mechanism intrinsic to the LMCs was initially postulated to account for pressure-dependent chronotropy. Further interrogation into the cellular constituents of the lymphatic vessel wall identified non-muscle cell populations that shared some characteristics with interstitial cells of Cajal, which have pacemaker functions in the gastrointestinal and lower urinary tracts, thus raising the possibility of a non-muscle cell pacemaker. However, recent genetic knockout studies in mice support LMCs and a myogenic origin of the pacemaker activity. LMCs exhibit stochastic, but pressure-sensitive, sarcoplasmic reticulum calcium release (puffs and waves) from IP3R1 receptors, which couple to the calcium-activated chloride channel Anoctamin 1, causing depolarisation. The resulting electrical activity integrates across the highly coupled lymphatic muscle electrical syncytia through connexin 45 to modulate diastolic depolarisation. However, multiple other cation channels may also contribute to the ionic pacemaking cycle. Upon reaching threshold, a voltage-gated calcium channel-dependent action potential fires, resulting in a nearly synchronous calcium global calcium flash within the LMC layer to drive an entrained contraction. This review summarizes the key ion channels potentially responsible for the pressure-dependent chronotropy of lymphatic collecting vessels and various mechanisms of IP3R1 regulation that could contribute to frequency tuning.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
4
|
Kwon J, Kim DY, Cho KJ, Hashimoto M, Matsuoka K, Kamijo T, Wang Z, Karnup S, Robertson AM, Tyagi P, Yoshimura N. Pathophysiology of Overactive Bladder and Pharmacologic Treatments Including β3-Adrenoceptor Agonists -Basic Research Perspectives. Int Neurourol J 2024; 28:12-33. [PMID: 38461853 DOI: 10.5213/inj.2448002.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 03/12/2024] Open
Abstract
Overactive bladder (OAB) is a symptom-based syndrome defined by urinary urgency, frequency, and nocturia with or without urge incontinence. The causative pathology is diverse; including bladder outlet obstruction (BOO), bladder ischemia, aging, metabolic syndrome, psychological stress, affective disorder, urinary microbiome, localized and systemic inflammatory responses, etc. Several hypotheses have been suggested as mechanisms of OAB generation; among them, neurogenic, myogenic, and urothelial mechanisms are well-known hypotheses. Also, a series of local signals called autonomous myogenic contraction, micromotion, or afferent noises, which can occur during bladder filling, may be induced by the leak of acetylcholine (ACh) or urothelial release of adenosine triphosphate (ATP). They can be transmitted to the central nervous system through afferent fibers to trigger coordinated urgency-related detrusor contractions. Antimuscarinics, commonly known to induce smooth muscle relaxation by competitive blockage of muscarinic receptors in the parasympathetic postganglionic nerve, have a minimal effect on detrusor contraction within therapeutic doses. In fact, they have a predominant role in preventing signals in the afferent nerve transmission process. β3-adrenergic receptor (AR) agonists inhibit afferent signals by predominant inhibition of mechanosensitive Aδ-fibers in the normal bladder. However, in pathologic conditions such as spinal cord injury, it seems to inhibit capsaicin-sensitive C-fibers. Particularly, mirabegron, a β3-agonist, prevents ACh release in the BOO-induced detrusor overactivity model by parasympathetic prejunctional mechanisms. A recent study also revealed that vibegron may have 2 mechanisms of action: inhibition of ACh from cholinergic efferent nerves in the detrusor and afferent inhibition via urothelial β3-AR.
Collapse
Affiliation(s)
- Joonbeom Kwon
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Leaders Urology Clinic, Daegu, Korea
| | - Duk Yoon Kim
- Department of Urology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Kang Jun Cho
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mamoru Hashimoto
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kanako Matsuoka
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tadanobu Kamijo
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sergei Karnup
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anne M Robertson
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh School of Bioengineering, Pittsburgh, PA, USA
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
6
|
Çakıcı ÖU, Dinçer S. The effect of amino acids on the bladder cycle: a concise review. Amino Acids 2021; 54:13-31. [PMID: 34853916 DOI: 10.1007/s00726-021-03113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/25/2021] [Indexed: 11/26/2022]
Abstract
The human bladder maintains a cycle of filling, storing, and micturating throughout an individual's lifespan. The cycle relies on the ability of the bladder to expand without increasing the intravesical pressure, which is only possible with the controlled relaxation of well-complaint muscles and the congruously organized construction of the bladder wall. A competent bladder outlet, which functions in a synchronous fashion with the bladder, is also necessary for this cycle to be completed successfully without deterioration. In this paper, we aimed to review the contemporary physiological findings on bladder physiology and examine the effects of amino acids on clinical conditions affecting the bladder, with special emphasis on the available therapeutic evidence and possible future roles of the amino acids in the treatment of the bladder-related disorders.
Collapse
Affiliation(s)
- Özer Ural Çakıcı
- Attending Urologist, Private Practice, Ankara, Turkey.
- PhD Candidate in Physiology, Department of Physiology, Gazi University, Ankara, Turkey.
| | - Sibel Dinçer
- Professor in Physiology, Department of Physiology, Gazi University, Ankara, Turkey
| |
Collapse
|
7
|
Mariani P, Zhurakivska K, Santoro R, Laino G, Russo D, Laino L. Hereditary gingival fibromatosis associated with the missense mutation of the KCNK4 gene. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 131:e175-e182. [PMID: 32981868 DOI: 10.1016/j.oooo.2020.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/29/2020] [Accepted: 08/02/2020] [Indexed: 12/30/2022]
Abstract
Hereditary gingival fibromatosis (HGF) is a rare oral condition that may appear as an isolated entity or as part of a genetic disease or syndrome. Molecular and biochemical mechanisms that trigger this pathologic process are not completely understood. In this article, we present a rare case of hereditary gingival fibromatosis in conjunction with a syndromic phenotype, associated with a rare missense mutation of the KCNK4 gene. This mutation induces a change in the structure of the TRAAK channel belonging to the 2-pore potassium channels. The gain of function promoted by the mutation could represent the pathogenetic basis of gingival fibromatosis.
Collapse
Affiliation(s)
- Pierluigi Mariani
- Student in Oral Surgery Specialization, Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Khrystyna Zhurakivska
- PhD student, Department of Clinical and Experimental Medicine, University of Foggia, Foggia
| | - Rossella Santoro
- Researcher in Odontostomatological Disciplines, Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", Naples
| | - Gregorio Laino
- Full Professor of Oral and Maxillofacial Surgery, Dean, Division of Oral Surgery, Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", Naples
| | - Diana Russo
- Student, Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", Naples
| | - Luigi Laino
- Associate Professor of Oral Surgery, Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", Naples
| |
Collapse
|
8
|
Malysz J, Petkov GV. Urinary bladder smooth muscle ion channels: expression, function, and regulation in health and disease. Am J Physiol Renal Physiol 2020; 319:F257-F283. [PMID: 32628539 PMCID: PMC7473901 DOI: 10.1152/ajprenal.00048.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022] Open
Abstract
Urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, forms the bladder wall and ultimately determines the two main attributes of the organ: urine storage and voiding. The two functions are facilitated by UBSM relaxation and contraction, respectively, which depend on UBSM excitability shaped by multiple ion channels. In this review, we summarize the current understanding of key ion channels establishing and regulating UBSM excitability and contractility. They include excitation-enhancing voltage-gated Ca2+ (Cav) and transient receptor potential channels, excitation-reducing K+ channels, and still poorly understood Cl- channels. Dynamic interplay among UBSM ion channels determines the overall level of Cav channel activity. The net Ca2+ influx via Cav channels increases global intracellular Ca2+ concentration, which subsequently triggers UBSM contractility. Here, for each ion channel type, we describe UBSM tissue/cell expression (mRNA and protein) profiles and their role in regulating excitability and contractility of UBSM in various animal species, including the mouse, rat, and guinea pig, and, most importantly, humans. The currently available data reveal certain interspecies differences, which complicate the translational value of published animal research results to humans. This review highlights recent developments, findings on genetic knockout models, pharmacological data, reports on UBSM ion channel dysfunction in animal bladder disease models, and the very limited human studies currently available. Among all gaps in present-day knowledge, the unknowns on expression and functional roles for ion channels determined directly in human UBSM tissues and cells under both normal and disease conditions remain key hurdles in the field.
Collapse
Affiliation(s)
- John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Georgi V Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Urology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
9
|
Wiedmann F, Rinné S, Donner B, Decher N, Katus HA, Schmidt C. Mechanosensitive TREK-1 two-pore-domain potassium (K 2P) channels in the cardiovascular system. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:126-135. [PMID: 32553901 DOI: 10.1016/j.pbiomolbio.2020.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/01/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
TWIK-related K+ channel (TREK-1) two-pore-domain potassium (K2P) channels mediate background potassium currents and regulate cellular excitability in many different types of cells. Their functional activity is controlled by a broad variety of different physiological stimuli, such as temperature, extracellular or intracellular pH, lipids and mechanical stress. By linking cellular excitability to mechanical stress, TREK-1 currents might be important to mediate parts of the mechanoelectrical feedback described in the heart. Furthermore, TREK-1 currents might contribute to the dysregulation of excitability in the heart in pathophysiological situations, such as those caused by abnormal stretch or ischaemia-associated cell swelling, thereby contributing to arrhythmogenesis. In this review, we focus on the functional role of TREK-1 in the heart and its putative contribution to cardiac mechanoelectrical coupling. Its cardiac expression among different species is discussed, alongside with functional evidence for TREK-1 currents in cardiomyocytes. In addition, evidence for the involvement of TREK-1 currents in different cardiac arrhythmias, such as atrial fibrillation or ventricular tachycardia, is summarized. Furthermore, the role of TREK-1 and its interaction partners in the regulation of the cardiac heart rate is reviewed. Finally, we focus on the significance of TREK-1 in the development of cardiac hypertrophy, cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Felix Wiedmann
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - Philipps-University Marburg, Marburg, Germany
| | - Birgit Donner
- Pediatric Cardiology, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - Philipps-University Marburg, Marburg, Germany
| | - Hugo A Katus
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
10
|
Yildiz Ş, Cengiz H, Kural A, Kaya C, Alay İ, Ekin M. Association between overactive bladder and serum nerve growth factor concentrations in women with high-grade uterine prolapse. Int Urogynecol J 2020; 32:345-351. [PMID: 32440884 DOI: 10.1007/s00192-020-04336-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/08/2020] [Indexed: 11/26/2022]
Abstract
INTRODUCTION AND HYPOTHESIS The association between overactive bladder (OAB) and uterine prolapse remains unclear. The extent of the role of serum nerve growth factor (NGF) levels in this relationship is also not known. Therefore, our study evaluated the association among OAB, high-grade uterine prolapse and serum NGF levels. METHODS A total of 90 patients participated in our study and were grouped as follows. Group I included patients with high-grade uterine prolapse and OAB, group II included patients with only high-grade uterine prolapse, and group III included healthy women without uterine prolapse or OAB. Serum NGF level analysis was performed in all groups. RESULTS Serum NGF levels varied greatly among the three groups, with significantly higher levels in group 1 than in groups 2 and 3 (p < 0.001). Serum NGF levels with a cutoff point of 120.49 pg/ml identified women with significant OAB symptoms to discriminate among groups with a sensitivity of 80%, specificity of 86.7%, positive predictive value of 75.0%, negative predictive value of 89.7% and positive likelihood ratio of 6.01 (p < 0.001). CONCLUSIONS Our study showed that NGF-related pathways may play an active role in the pathophysiology of OAB with high-grade uterine prolapse patients based on obstruction hypothesis.
Collapse
Affiliation(s)
- Şükrü Yildiz
- University of Health Sciences Istanbul, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Department of Obstetrics and Gynecology, 34180, Istanbul, Turkey.
| | - Hüseyin Cengiz
- Istanbul Aydin University, Faculty of Medicine, Department of Obstetrics and Gynecology, 34140, Istanbul, Turkey
| | - Alev Kural
- University of Health Sciences Istanbul, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Deparment of Biochemistry, 34180, Istanbul, Turkey
| | - Cihan Kaya
- University of Health Sciences Istanbul, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Department of Obstetrics and Gynecology, 34180, Istanbul, Turkey
| | - İsmail Alay
- University of Health Sciences Istanbul, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Department of Obstetrics and Gynecology, 34180, Istanbul, Turkey
| | - Murat Ekin
- University of Health Sciences Istanbul, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Department of Obstetrics and Gynecology, 34180, Istanbul, Turkey
| |
Collapse
|
11
|
Pineda RH, Hypolite J, Lee S, Carrasco A, Iguchi N, Meacham RB, Malykhina AP. Altered detrusor contractility and voiding patterns in mice lacking the mechanosensitive TREK-1 channel. BMC Urol 2019; 19:40. [PMID: 31113422 PMCID: PMC6528348 DOI: 10.1186/s12894-019-0475-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/13/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previously published results from our laboratory identified a mechano-gated two-pore domain potassium channel, TREK-1, as a main mechanosensor in the smooth muscle of the human urinary bladder. One of the limitations of in vitro experiments on isolated human detrusor included inability to evaluate in vivo effects of TREK-1 on voiding function, as the channel is also expressed in the nervous system, and may modulate micturition via neural pathways. Therefore, in the present study, we aimed to assess the role of TREK-1 channel in bladder function and voiding patterns in vivo by using TREK-1 knockout (KO) mice. METHODS Adult C57BL/6 J wild-type (WT, N = 32) and TREK-1 KO (N = 33) mice were used in this study. The overall phenotype and bladder function were evaluated by gene and protein expression of TREK-1 channel, in vitro contractile experiments using detrusor strips in response to stretch and pharmacological stimuli, and cystometry in unanesthetized animals. RESULTS TREK-1 KO animals had an elevated basal muscle tone and enhanced spontaneous activity in the detrusor without detectable changes in bladder morphology/histology. Stretch applied to isolated detrusor strips increased the amplitude of spontaneous contractions by 109% in the TREK-1 KO group in contrast to a 61% increase in WT mice (p ≤ 0.05 to respective baseline for each group). The detrusor strips from TREK-1 KO mice also generated more contractile force in response to electric field stimulation and high potassium concentration in comparison to WT group (p ≤ 0.05 for both tests). However, cystometric recordings from TREK-1 KO mice revealed a significant increase in the duration of the intermicturition interval, enhanced bladder capacity and increased number of non-voiding contractions in comparison to WT mice. CONCLUSIONS Our results provide evidence that global down-regulation of TREK-1 channels has dual effects on detrusor contractility and micturition patterns in vivo. The observed differences are likely due to expression of TREK-1 channel not only in detrusor myocytes but also in afferent and efferent neural pathways involved in regulation of micturition which may underly the "mixed" voiding phenotype in TREK-1 KO mice.
Collapse
Affiliation(s)
- Ricardo H Pineda
- Division of Urology, Department of Surgery, University of Colorado Denver,Anschutz Medical Campus, 12700 E 19th Ave, M/S C317, Aurora, CO, 80045, USA
| | - Joseph Hypolite
- Division of Urology, Department of Surgery, University of Colorado Denver,Anschutz Medical Campus, 12700 E 19th Ave, M/S C317, Aurora, CO, 80045, USA
| | - Sanghee Lee
- Department of Urology, University of California San Diego, 3855 Health Science Drive, Room 4345, Bay 4LL, La Jolla, CA, 92093, USA
| | - Alonso Carrasco
- Children's Mercy Hospital, 2401 Gillham Rd, Kansas City, MO, 64108, USA
| | - Nao Iguchi
- Division of Urology, Department of Surgery, University of Colorado Denver,Anschutz Medical Campus, 12700 E 19th Ave, M/S C317, Aurora, CO, 80045, USA
| | - Randall B Meacham
- Division of Urology, Department of Surgery, University of Colorado Denver, Academic Office One Bldg., Rm 5602, 12631 East 17th Ave., M/S C319, Aurora, CO, 80045, USA
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver,Anschutz Medical Campus, 12700 E 19th Ave, M/S C317, Aurora, CO, 80045, USA.
| |
Collapse
|
12
|
Nedumaran B, Pineda RH, Rudra P, Lee S, Malykhina AP. Association of genetic polymorphisms in the pore domains of mechano-gated TREK-1 channel with overactive lower urinary tract symptoms in humans. Neurourol Urodyn 2018; 38:144-150. [PMID: 30350878 DOI: 10.1002/nau.23862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022]
Abstract
AIMS Mechanosensitivity of the urinary bladder is regulated by many factors including mechano-gated two-pore domain (K2 P, KCNK) potassium channels. TWIK-related K+ channel, TREK-1, is a predominantly expressed member of K2 P channel family in the human detrusor, and its expression and function are diminished in patients with overactive lower urinary tract symptoms (LUTS). The changes in channel activity may result from spontaneously occurring gene mutations. The aim of this study was to compare single nucleotide polymorphisms (SNPs) in TREK-1 channel between patients with LUTS and healthy donors. METHODS Six SNPs (rs370266806, rs373919966, rs758937019, rs769301539, rs772497750, and rs775158737) in two pore domains of human TREK-1 gene were analyzed using TaqMan SNP genotyping assay with manufacturer-designed primers and allele-specific probes. The screening was done in control bladders and detrusor specimens from patients with overactive LUTS. Statistical analyses were performed using R, Fisher's exact test and Hardy-Weinberg Equilibrium. RESULTS Six SNPs in two pore domains of the human TREK-1 gene were analyzed in human bladder specimens. The frequencies of rs758937019-CT genotype (P = 0.0016) and rs758937019-T allele (P = 0.0022) were significantly higher in the group with overactive LUTS. There was no significant association of rs775158737-GA genotype and rs775158737-A allele with the overactive LUTS, though they were present only in the overactive LUTS group. CONCLUSIONS Our results provide evidence that altered expression and function of TREK-1 channel in patients with overactive LUTS could be due to genetic polymorphisms in the pore domains of TREK-1 channel (rs758937019).
Collapse
Affiliation(s)
- Balachandar Nedumaran
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado.,Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Ricardo H Pineda
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Pratyaydipta Rudra
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Sanghee Lee
- Department of Urology, University of California San Diego, La Jolla, California
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
13
|
Djillani A, Pietri M, Mazella J, Heurteaux C, Borsotto M. Fighting against depression with TREK-1 blockers: Past and future. A focus on spadin. Pharmacol Ther 2018; 194:185-198. [PMID: 30291907 DOI: 10.1016/j.pharmthera.2018.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Depression is a devastating mood disorder and a leading cause of disability worldwide. Depression affects approximately one in five individuals in the world and represents heavy economic and social burdens. The neurobiological mechanisms of depression are not fully understood, but evidence highlights the role of monoamine neurotransmitter balance. Several antidepressants (ADs) are marketed to treat depression and related mood disorders. However, despite their efficacy, they remain nonspecific and unsafe because they trigger serious adverse effects. Therefore, developing new molecules for new targets in depression has become a real necessity. Eight years ago, spadin was described as a natural peptide with AD properties. This 17-amino acid peptide blocks TREK-1 channels, an original target in depression. Compared to the classical AD drugs such as fluoxetine, which requires 3-4 weeks for the AD effect to manifest, spadin acts rapidly within only 4 days of treatment. The AD properties are associated with increased neurogenesis and synaptogenesis in the brain. Despite the advantages of this fast-acting AD, the in vivo stability is weak and does not last for >7 h. The present review summarizes different strategies such as retro-inverso strategy, cyclization, and shortening the spadin sequence that has led to the development and optimization of spadin as an AD. Shortened spadin analogs present increased inhibition potency for TREK-1, an improved AD activity, and prolonged in vivo bioavailability. Finally, we also discuss about other inhibitors of TREK-1 channels with a proven efficacy in treating depression in the clinic, such as fluoxetine.
Collapse
Affiliation(s)
- Alaeddine Djillani
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France
| | - Mariel Pietri
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France
| | - Jean Mazella
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France
| | - Catherine Heurteaux
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France
| | - Marc Borsotto
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France.
| |
Collapse
|
14
|
Pineda RH, Nedumaran B, Hypolite J, Pan XQ, Wilson S, Meacham RB, Malykhina AP. Altered expression and modulation of the two-pore-domain (K 2P) mechanogated potassium channel TREK-1 in overactive human detrusor. Am J Physiol Renal Physiol 2017; 313:F535-F546. [PMID: 28539337 DOI: 10.1152/ajprenal.00638.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/10/2017] [Accepted: 05/18/2017] [Indexed: 01/25/2023] Open
Abstract
Detrusor overactivity (DO) is the abnormal response of the urinary bladder to physiological stretch during the filling phase of the micturition cycle. The mechanisms of bladder smooth muscle compliance upon the wall stretch are poorly understood. We previously reported that the function of normal detrusor is regulated by TREK-1, a member of the mechanogated subfamily of two-pore-domain potassium (K2P) channels. In the present study, we aimed to identify the changes in expression and function of TREK-1 channels under pathological conditions associated with DO, evaluate the potential relationship between TREK-1 channels and cytoskeletal proteins in the human bladder, and test the possibility of modulation of TREK-1 channel expression by small RNAs. Expression of TREK-1 channels in DO specimens was 2.7-fold decreased compared with control bladders and was associated with a significant reduction of the recorded TREK-1 currents. Isolated DO muscle strips failed to relax when exposed to a TREK-1 channel opener. Immunocytochemical labeling revealed close association of TREK-1 channels with cell cytoskeletal proteins and caveolins, with caveolae microdomains being severely disrupted in DO specimens. Small activating RNA (saRNA) tested in vitro provided evidence that expression of TREK-1 protein could be partially upregulated. Our data confirmed a significant downregulation of TREK-1 expression in human DO specimens and provided evidence of close association between the channel, cell cytoskeleton, and caveolins. Upregulation of TREK-1 expression by saRNA could be a future step for the development of in vivo pharmacological and genetic approaches to treat DO in humans.
Collapse
Affiliation(s)
- Ricardo H Pineda
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Balachandar Nedumaran
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Joseph Hypolite
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Xiao-Qing Pan
- Division of Urology, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shandra Wilson
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Randall B Meacham
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| |
Collapse
|
15
|
Radulovic M, Anand P, Korsten MA, Gong B. Targeting Ion Channels: An Important Therapeutic Implication in Gastrointestinal Dysmotility in Patients With Spinal Cord Injury. J Neurogastroenterol Motil 2015; 21:494-502. [PMID: 26424038 PMCID: PMC4622131 DOI: 10.5056/jnm15061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 06/10/2015] [Accepted: 07/06/2015] [Indexed: 01/04/2023] Open
Abstract
Gastrointestinal (GI) dysmotility is a severe, and common complication in patients with spinal cord injury (SCI). Current therapeutic methods using acetylcholine analogs or laxative agents have unwanted side effects, besides often fail to have desired effect. Various ion channels such as ATP-sensitive potassium (KATP) channel, calcium ions (Ca2+)-activated potassium ions (K+) channels, voltage-sensitive Ca2+ channels and chloride ion (Cl−) channels are abundantly expressed in GI tissues, and play an important role in regulating GI motility. The release of neurotransmitters from the enteric nerve terminal, innervating GI interstitial cells of Cajal (ICC), and smooth muscle cells (SMC), causes inactivation of K+ and Cl− channels, increasing Ca2+ influx into cytoplasm, resulting in membrane depolarization and smooth muscle contraction. Thus, agents directly regulating ion channels activity either in ICC or in SMC may affect GI peristalsis and would be potential therapeutic target for the treatment of GI dysmotility with SCI.
Collapse
Affiliation(s)
- Miroslav Radulovic
- Department of Medicine Icahn School of Medicine at Mount Sinai, New York, NY, USA.,National Center of Excellence for the Medical Consequences of SCI, James J Peters Veteran Affairs Medical Center, Bronx, NY, USA
| | - Preeti Anand
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark A Korsten
- Department of Medicine Icahn School of Medicine at Mount Sinai, New York, NY, USA.,National Center of Excellence for the Medical Consequences of SCI, James J Peters Veteran Affairs Medical Center, Bronx, NY, USA
| | - Bing Gong
- Department of Medicine Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
16
|
Brohawn SG. How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2. Ann N Y Acad Sci 2015; 1352:20-32. [PMID: 26332952 DOI: 10.1111/nyas.12874] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to sense and respond to mechanical forces is essential for life and cells have evolved a variety of systems to convert physical forces into cellular signals. Within this repertoire are the mechanosensitive ion channels, proteins that play critical roles in mechanosensation by transducing forces into ionic currents across cellular membranes. Understanding how these channels work, particularly in animals, remains a major focus of study. Here, I review the current understanding of force gating for a family of metazoan mechanosensitive ion channels, the two-pore domain K(+) channels (K2Ps) TRAAK, TREK1, and TREK2. Structural and functional insights have led to a physical model for mechanical activation of these channels. This model of force sensation by K2Ps is compared to force sensation by bacterial mechanosensitive ion channels MscL and MscS to highlight principles shared among these evolutionarily unrelated channels, as well as differences of potential functional relevance. Recent advances address fundamental questions and stimulate new ideas about these unique mechanosensors.
Collapse
Affiliation(s)
- Stephen G Brohawn
- Laboratory of Molecular Neurobiology and Biophysics and Howard Hughes Medical Institute, The Rockefeller University, New York, New York
| |
Collapse
|
17
|
Ali TY, Broughton Pipkin F, Khan RN. The effect of pH and ion channel modulators on human placental arteries. PLoS One 2014; 9:e114405. [PMID: 25490401 PMCID: PMC4260857 DOI: 10.1371/journal.pone.0114405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 11/06/2014] [Indexed: 12/31/2022] Open
Abstract
Chorionic plate arteries (CPA) are located at the maternofetal interface where they are able to respond to local metabolic changes. Unlike many other types of vasculature, the placenta lacks nervous control and requires autoregulation for controlling blood flow. The placental circulation, which is of low-resistance, may become hypoxic easily leading to fetal acidosis and fetal distress however the role of the ion channels in these circumstances is not well-understood. Active potassium channel conductances that are subject to local physicochemical modulation may serve as pathways through which such signals are transduced. The aim of this study was to investigate the modulation of CPA by pH and the channels implicated in these responses using wire myography. CPA were isolated from healthy placentae and pre-contracted with U46619 before testing the effects of extracellular pH using 1 M lactic acid over the pH range 7.4 - 6.4 in the presence of a variety of ion channel modulators. A change from pH 7.4 to 7.2 produced a 29±3% (n = 9) relaxation of CPA which increased to 61±4% at the lowest pH of 6.4. In vessels isolated from placentae of women with pre-eclampsia (n = 6), pH responses were attenuated. L-methionine increased the relaxation to 67±7% (n = 6; p<0.001) at pH 6.4. Similarly the TASK 1/3 blocker zinc chloride (1 mM) gave a maximum relaxation of 72±5% (n = 8; p<0.01) which compared with the relaxation produced by the TREK-1 opener riluzole (75±5%; n = 6). Several other modulators induced no significant changes in vascular responses. Our study confirmed expression of several ion channel subtypes in CPA with our results indicating that extracellular pH within the physiological range has an important role in controlling vasodilatation in the human term placenta.
Collapse
Affiliation(s)
- Tayyba Y Ali
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, United Kingdom
| | - Fiona Broughton Pipkin
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, United Kingdom
| | - Raheela N Khan
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Anderson UA, Carson C, Johnston L, Joshi S, Gurney AM, McCloskey KD. Functional expression of KCNQ (Kv7) channels in guinea pig bladder smooth muscle and their contribution to spontaneous activity. Br J Pharmacol 2014; 169:1290-304. [PMID: 23586426 PMCID: PMC3746117 DOI: 10.1111/bph.12210] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 03/15/2013] [Accepted: 03/26/2013] [Indexed: 12/30/2022] Open
Abstract
Background and Purpose The aim of the study was to determine whether KCNQ channels are functionally expressed in bladder smooth muscle cells (SMC) and to investigate their physiological significance in bladder contractility. Experimental Approach KCNQ channels were examined at the genetic, protein, cellular and tissue level in guinea pig bladder smooth muscle using RT-PCR, immunofluorescence, patch-clamp electrophysiology, calcium imaging, detrusor strip myography, and a panel of KCNQ activators and inhibitors. Key Results KCNQ subtypes 1–5 are expressed in bladder detrusor smooth muscle. Detrusor strips typically displayed TTX-insensitive myogenic spontaneous contractions that were increased in amplitude by the KCNQ channel inhibitors XE991, linopirdine or chromanol 293B. Contractility was inhibited by the KCNQ channel activators flupirtine or meclofenamic acid (MFA). The frequency of Ca2+-oscillations in SMC contained within bladder tissue sheets was increased by XE991. Outward currents in dispersed bladder SMC, recorded under conditions where BK and KATP currents were minimal, were significantly reduced by XE991, linopirdine, or chromanol, and enhanced by flupirtine or MFA. XE991 depolarized the cell membrane and could evoke transient depolarizations in quiescent cells. Flupirtine (20 μM) hyperpolarized the cell membrane with a simultaneous cessation of any spontaneous electrical activity. Conclusions and Implications These novel findings reveal the role of KCNQ currents in the regulation of the resting membrane potential of detrusor SMC and their important physiological function in the control of spontaneous contractility in the guinea pig bladder.
Collapse
Affiliation(s)
- U A Anderson
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | | | | | | | | |
Collapse
|
19
|
Lei Q, Pan XQ, Chang S, Malkowicz SB, Guzzo TJ, Malykhina AP. Response of the human detrusor to stretch is regulated by TREK-1, a two-pore-domain (K2P) mechano-gated potassium channel. J Physiol 2014; 592:3013-30. [PMID: 24801307 DOI: 10.1113/jphysiol.2014.271718] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mechanisms of mechanosensitivity underlying the response of the human bladder to stretch are poorly understood. Animal data suggest that stretch-activated two-pore-domain (K2P) K(+) channels play a critical role in bladder relaxation during the filling phase. The objective of this study was to characterize the expression and function of stretch-activated K2P channels in the human bladder and to clarify their physiological role in bladder mechanosensitivity. Gene and protein analysis of the K2P channels TREK-1, TREK-2 and TRAAK in the human bladder revealed that TREK-1 is the predominantly expressed member of the mechano-gated subfamily of K2P channels. Immunohistochemical labelling of bladder wall identified higher levels of expression of TREK-1 in detrusor smooth muscle cells in comparison to bladder mucosa. Functional characterization and biophysical properties of the predominantly expressed member of the K2P family, the TREK-1 channel, were evaluated by in vitro organ bath studies and the patch-clamp technique. Electrophysiological recordings from single smooth muscle cells confirmed direct activation of TREK-1 channels by mechanical stretch and negative pressure applied to the cell membrane. Inhibition of TREK-1 channels in the human detrusor significantly delayed relaxation of the stretched bladder smooth muscle strips and triggered small-amplitude spontaneous contractions. Application of negative pressure to cell-attached patches (-20 mmHg) caused a 19-fold increase in the open probability (NPo) of human TREK-1 channels. l-Methionine (1 mm), a specific TREK-1 inhibitor, dramatically decreased the NPo of TREK-1 channels from 0.045 ± 0.003 to 0.008 ± 0.001 (n = 8, P ≤ 0.01). Subsequent addition of arachidonic acid (10 μm), a channel opener, increased the open probability of methionine-inhibited unitary currents up to 0.43 ± 0.05 at 0 mV (n = 9, P ≤ 0.05). The results of our study provide direct evidence that the response of the human detrusor to mechanical stretch is regulated by activation of mechano-gated TREK-1 channels. Impaired mechanosensation and mechanotransduction associated with the changes in stretch-activated K2P channels may underlie myogenic bladder dysfunction in humans.
Collapse
Affiliation(s)
- Qi Lei
- Division of Urology, Department of Surgery, University of Pennsylvania, PA, USA
| | - Xiao-Qing Pan
- Division of Urology, Department of Surgery, University of Pennsylvania, PA, USA
| | | | - S Bruce Malkowicz
- Division of Urology, Department of Surgery, University of Pennsylvania, PA, USA
| | - Thomas J Guzzo
- Division of Urology, Department of Surgery, University of Pennsylvania, PA, USA
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Pennsylvania, PA, USA
| |
Collapse
|
20
|
Tyagi P, Kashyap MP, Kawamorita N, Yoshizawa T, Chancellor M, Yoshimura N. Intravesical liposome and antisense treatment for detrusor overactivity and interstitial cystitis/painful bladder syndrome. ISRN PHARMACOLOGY 2014; 2014:601653. [PMID: 24527221 PMCID: PMC3914518 DOI: 10.1155/2014/601653] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/24/2013] [Indexed: 11/18/2022]
Abstract
Purpose. The following review focuses on the recent advancements in intravesical drug delivery, which brings added benefit to the therapy of detrusor overactivity and interstitial cystitis/painful bladder syndrome (IC/PBS). Results. Intravesical route is a preferred route of administration for restricting the action of extremely potent drugs like DMSO for patients of interstitial cystitis/painful bladder syndrome (IC/PBS) and botulinum toxin for detrusor overactivity. Patients who are either refractory to oral treatment or need to mitigate the adverse effects encountered with conventional routes of administration also chose this route. Its usefulness in some cases can be limited by vehicle (carrier) toxicity or short duration of action. Efforts have been underway to overcome these limitations by developing liposome platform for intravesical delivery of biotechnological products including antisense oligonucleotides. Conclusions. Adoption of forward-thinking approaches can achieve advancements in drug delivery systems targeted to future improvement in pharmacotherapy of bladder diseases. Latest developments in the field of nanotechnology can bring this mode of therapy from second line of treatment for refractory cases to the forefront of disease management.
Collapse
Affiliation(s)
- Pradeep Tyagi
- Department of Urology, University of Pittsburgh, PA 15213, USA
| | | | | | | | - Michael Chancellor
- Department of Urology, William Beaumont School of Medicine, Royal oak, MI 48073, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh, PA 15213, USA
| |
Collapse
|
21
|
Lu L, Wang W, Peng Y, Li J, Wang L, Wang X. Electrophysiology and pharmacology of tandem domain potassium channel TREK-1 related BDNF synthesis in rat astrocytes. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:303-12. [PMID: 24402080 DOI: 10.1007/s00210-013-0952-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/18/2013] [Indexed: 01/06/2023]
Abstract
In the present study, the functional properties and pharmacology of two-pore domain potassium channel (K2P) TREK-1 in primary cultured rat brain astrocytes were investigated. Western blot, patch clamping techniques, and ELISA were used to detect the distribution and function of TREK-1 as well as the expression of brain-derived neurotrophic factor (BDNF) on the primary cultured astrocytes. It was shown that TREK-1 protein expressed in astrocytes was 2.4-fold higher than it was expressed in microglia. Single channel recording via patch clamping showed that the TREK-1 outward currents in astrocytes could be activated by arachidonic acid (AA) or chloroform with the conductance of 113 ± 14 and 120 ± 13 pS, respectively. The current was also sensitive to mechanical stretch and intracellular acidification. Negative pressure (-30 cm H2O) and acidification of intracellular solution (pH 6.8 or 6.3) both enhanced TREK-1 channel open probability significantly. Further pharmacological studies showed that TREK-1 antagonist penfluridol inhibited AA-induced currents, and both penfluridol and methionine (TREK-1 blockers) significantly increased BDNF level in astrocytes by 50 %. These results indicated that TREK-1 channel current was a major component of K2P currents in astrocytes. TREK-1 channels might play important roles in regulating the function of astrocytes and might be used as a drug target for neuroprotection.
Collapse
Affiliation(s)
- Li Lu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xiannongtan Street, Xicheng District, Beijing, 100050, China
| | | | | | | | | | | |
Collapse
|
22
|
Heyman NS, Cowles CL, Barnett SD, Wu YY, Cullison C, Singer CA, Leblanc N, Buxton ILO. TREK-1 currents in smooth muscle cells from pregnant human myometrium. Am J Physiol Cell Physiol 2013; 305:C632-42. [PMID: 23804201 PMCID: PMC3761174 DOI: 10.1152/ajpcell.00324.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 06/24/2013] [Indexed: 01/05/2023]
Abstract
The mechanisms governing maintenance of quiescence during pregnancy remain largely unknown. The current study characterizes a stretch-activated, tetraethylammonium-insensitive K(+) current in smooth muscle cells isolated from pregnant human myometrium. This study hypothesizes that these K(+) currents can be attributed to TREK-1 and that upregulation of this channel during pregnancy assists with the maintenance of a negative cell membrane potential, conceivably contributing to uterine quiescence until full term. The results of this study demonstrate that, in pregnant human myometrial cells, outward currents at 80 mV increased from 4.8 ± 1.5 to 19.4 ± 7.5 pA/pF and from 3.0 ± 0.8 to 11.8 ± 2.7 pA/pF with application of arachidonic acid (AA) and NaHCO3, respectively, causing intracellular acidification. Similarly, outward currents were inhibited following application of 10 μM fluphenazine by 51.2 ± 9.8% after activation by AA and by 73.9 ± 4.2% after activation by NaHCO3. In human embryonic kidney (HEK-293) cells stably expressing TREK-1, outward currents at 80 mV increased from 91.0 ± 23.8 to 247.5 ± 73.3 pA/pF and from 34.8 ± 8.9 to 218.6 ± 45.0 pA/pF with application of AA and NaHCO3, respectively. Correspondingly, outward currents were inhibited 89.5 ± 2.3% by 10 μM fluphenazine following activation by AA and by 91.6 ± 3.4% following activation by NaHCO3. Moreover, currents in human myometrial cells were activated by stretch and were reduced by transfection with small interfering RNA or extracellular acidification. Understanding gestational regulation of expression and gating of TREK-1 channels could be important in determining appropriate maintenance of uterine quiescence during pregnancy.
Collapse
Affiliation(s)
- Nathanael S Heyman
- Department of Pharmacology, Center for Molecular Medicine, University of Nevada School of Medicine, Reno, Nevada
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Nishikawa N, Kanematsu A, Negoro H, Imamura M, Sugino Y, Okinami T, Yoshimura K, Hashitani H, Ogawa O. PTHrP is endogenous relaxant for spontaneous smooth muscle contraction in urinary bladder of female rat. Endocrinology 2013; 154:2058-68. [PMID: 23546599 DOI: 10.1210/en.2012-2142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Acute bladder distension causes various morphologic and functional changes, in part through altered gene expression. We aimed to investigate the physiologic role of PTHrP, which is up-regulated in an acute bladder distension model in female rats. In the control Empty group, bladders were kept empty for 6 hours, and in the Distension group, bladders were kept distended for 3 hours after an artificial storing-voiding cycle for 3 hours. In the Distention group bladder, up-regulation of transcripts was noted for 3 genes reported to be up-regulated by stretch in the cultured bladder smooth muscle cells in vitro. Further transcriptome analysis by microarray identified PTHrP as the 22nd highest gene up-regulated in Distension group bladder, among more than 27,000 genes. Localization of PTHrP and its functional receptor, PTH/PTHrP receptor 1 (PTH1R), were analyzed in the untreated rat bladders and cultured bladder cells using real-time RT-PCR and immunoblotting, which revealed that PTH1R and PTHrP were more predominantly expressed in smooth muscle than in urothelium. Exogenous PTHrP peptide (1-34) increased intracellular cAMP level in cultured bladder smooth muscle cells. In organ bath study using bladder strips, the PTHrP peptide caused a marked reduction in the amplitude of spontaneous contraction but caused only modest suppression for carbachol-induced contraction. In in vivo functional study by cystometrogram, the PTHrP peptide decreased voiding pressure and increased bladder compliance. Thus, PTHrP is a potent endogenous relaxant of bladder contraction, and autocrine or paracrine mechanism of the PTHrP-PTH1R axis is a physiologically relevant pathway functioning in the bladder.
Collapse
MESH Headings
- Animals
- Carbachol/pharmacology
- Cells, Cultured
- Cholinergic Agonists/pharmacology
- Cyclic AMP/metabolism
- Female
- Gene Expression Profiling
- Immunoblotting
- In Vitro Techniques
- Muscle Contraction/genetics
- Muscle Contraction/physiology
- Muscle, Smooth/metabolism
- Muscle, Smooth/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Oligonucleotide Array Sequence Analysis
- Parathyroid Hormone-Related Protein/genetics
- Parathyroid Hormone-Related Protein/metabolism
- Parathyroid Hormone-Related Protein/physiology
- Peptide Fragments/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptor, Parathyroid Hormone, Type 1/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Urinary Bladder/metabolism
- Urinary Bladder/physiopathology
- Urinary Retention/genetics
- Urinary Retention/metabolism
- Urinary Retention/physiopathology
Collapse
Affiliation(s)
- Nobuyuki Nishikawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gil V, Gallego D, Moha Ou Maati H, Peyronnet R, Martínez-Cutillas M, Heurteaux C, Borsotto M, Jiménez M. Relative contribution of SKCa and TREK1 channels in purinergic and nitrergic neuromuscular transmission in the rat colon. Am J Physiol Gastrointest Liver Physiol 2012; 303:G412-23. [PMID: 22636169 DOI: 10.1152/ajpgi.00040.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Purinergic and nitrergic neurotransmission predominantly mediate inhibitory neuromuscular transmission in the rat colon. We studied the sensitivity of both purinergic and nitrergic pathways to spadin, a TWIK-related potassium channel 1 (TREK1) inhibitor, apamin, a small-conductance calcium-activated potassium channel blocker and 1H-[1,2,4]oxadiazolo[4,3-α]quinoxalin-1-one (ODQ), a specific inhibitor of soluble guanylate cyclase. TREK1 expression was detected by RT-PCR in the rat colon. Patch-clamp experiments were performed on cells expressing hTREK1 channels. Spadin (1 μM) reduced currents 1) in basal conditions 2) activated by stretch, and 3) with arachidonic acid (AA; 10 μM). l-Methionine (1 mM) or l-cysteine (1 mM) did not modify currents activated by AA. Microelectrode and muscle bath studies were performed on rat colon samples. l-Methionine (2 mM), apamin (1 μM), ODQ (10 μM), and N(ω)-nitro-l-arginine (l-NNA; 1 mM) depolarized smooth muscle cells and increased motility. These effects were not observed with spadin (1 μM). Purinergic and nitrergic inhibitory junction potentials (IJP) were studied by incubating the tissue with l-NNA (1 mM) or MRS2500 (1 μM). Both purinergic and nitrergic IJP were unaffected by spadin. Apamin reduced both IJP with a different potency and maximal effect for each. ODQ concentration dependently abolished nitrergic IJP without affecting purinergic IJP. Similar effects were observed in hyperpolarizations induced by sodium nitroprusside (1 μM) and nitrergic relaxations induced by electrical stimulation. We propose a pharmacological approach to characterize the pathways and function of purinergic and nitrergic neurotransmission. Nitrergic neurotransmission, which is mediated by cyclic guanosine monophosphate, is insensitive to spadin, an effective TREK1 channel inhibitor. Both purinergic and nitrergic neurotransmission are inhibited by apamin but with different relative sensitivity.
Collapse
Affiliation(s)
- V Gil
- Department of Cell Biology, Physiology and Immunology and Neuroscience Institute, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The tunica muscularis of the gastrointestinal (GI) tract contains two layers of smooth muscle cells (SMC) oriented perpendicular to each other. SMC express a variety of voltage-dependent and voltage-independent ionic conductance(s) that develop membrane potential and control excitability. Resting membrane potentials (RMP) vary through the GI tract but generally are within the range of -80 to -40 mV. RMP sets the 'gain' of smooth muscle and regulates openings of voltage-dependent Ca(2+) channels. A variety of K(+) channels contribute to setting RMP of SMC. In most regions, RMP is considerably less negative than the K(+) equilibrium potential, due to a finely tuned balance between background K(+) channels and non-selective cation channels (NSCC). Variations in expression patterns and openings of K(+) channels and NSCC account for differences of the RMP in different regions of the GI tract. Smooth muscle excitability is also regulated by interstitial cells (interstitial cells of Cajal (ICC) and PDGFRα(+) cells) that express additional conductances and are electrically coupled to SMC. Thus, 'myogenic' activity results from the integrated behavior of the SMC/ICC/PDGFRα(+) cell (SIP) syncytium. Inputs from excitatory and inhibitory motor neurons are required to produce the complex motor patterns of the gut. Motor neurons innervate three cell types in the SIP, and receptors, second messenger pathways, and ion channels in these cells mediate postjunctional responses. Studies of isolated SIP cells have begun to unravel the mechanisms responsible for neural responses. This review discusses ion channels that set and regulate RMP of SIP cells and how neurotransmitters regulate membrane potential.
Collapse
Affiliation(s)
- Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89558, USA.
| | | | | |
Collapse
|
26
|
Wu X, Liang Y, Zhang Z, Cao M, Liang W. Downregulation of TWIK-related arachidonic acid-activated K+ channel in the spinal cord of rats after complete bladder outlet obstruction. Int J Urol 2012; 19:944-50. [PMID: 22709279 DOI: 10.1111/j.1442-2042.2012.03072.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To study the altered expression of TWIK-related arachidonic acid-activated K(+) channel in the L6-S1 spinal cord of rats after complete bladder outlet obstruction, and to investigate the role of TWIK-related arachidonic acid-activated K(+) channel in the neurogenic mechanism of bladder dysfunction. METHODS Female Sprague-Dawley rats were randomly divided into a complete bladder outlet obstruction group and a sham-operated control group. Cystometry was carried out and tissues of L6-S1 spinal cord were obtained for detection of TWIK-related arachidonic acid-activated K(+) channel mRNA and protein by real-time polymerase chain reaction, western blot and immunohistochemistry. RESULTS The bladder outlet obstruction rat model was established. Real-time polymerase chain reaction, western blot and immunohistochemistry showed that the expression of TWIK-related arachidonic acid-activated K(+) channel was lower in the L6-S1 spinal cord of the bladder outlet obstruction rats, compared with the control rats. CONCLUSIONS Downregulation of TWIK-related arachidonic acid-activated K(+) channel might enhance the excitability of the neurons and increase the sensitivity of the bladder, probably providing a new study model of overactive bladder secondary to bladder outlet obstruction.
Collapse
Affiliation(s)
- Xilian Wu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | | | | | | | | |
Collapse
|
27
|
MENG E, LIN WY, LEE WC, CHUANG YC. Pathophysiology of Overactive Bladder. Low Urin Tract Symptoms 2012; 4 Suppl 1:48-55. [DOI: 10.1111/j.1757-5672.2011.00122.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Petkov GV. Role of potassium ion channels in detrusor smooth muscle function and dysfunction. Nat Rev Urol 2011; 9:30-40. [PMID: 22158596 DOI: 10.1038/nrurol.2011.194] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Contraction and relaxation of the detrusor smooth muscle (DSM), which makes up the wall of the urinary bladder, facilitates the storage and voiding of urine. Several families of K(+) channels, including voltage-gated K(+) (K(V)) channels, Ca(2+)-activated K(+) (K(Ca)) channels, inward-rectifying ATP-sensitive K(+) (K(ir), K(ATP)) channels, and two-pore-domain K(+) (K(2P)) channels, are expressed and functional in DSM. They control DSM excitability and contractility by maintaining the resting membrane potential and shaping the action potentials that determine the phasic nature of contractility in this tissue. Defects in DSM K(+) channel proteins or in the molecules involved in their regulatory pathways may underlie certain forms of bladder dysfunction, such as overactive bladder. K(+) channels represent an opportunity for novel pharmacological manipulation and therapeutic intervention in human DSM. Modulation of DSM K(+) channels directly or indirectly by targeting their regulatory mechanisms has the potential to control urinary bladder function. This Review summarizes our current state of knowledge of the functional role of K(+) channels in DSM in health and disease, with special emphasis on current advancements in the field.
Collapse
Affiliation(s)
- Georgi V Petkov
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Coker Life Sciences Building, Room 609D, 715 Sumter Street, Columbia, SC 29208, USA.
| |
Collapse
|
29
|
Noël J, Sandoz G, Lesage F. Molecular regulations governing TREK and TRAAK channel functions. Channels (Austin) 2011; 5:402-9. [PMID: 21829087 DOI: 10.4161/chan.5.5.16469] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
K+ channels with two-pore domain (K2p) form a large family of hyperpolarizing channels. They produce background currents that oppose membrane depolarization and cell excitability. They are involved in cellular mechanisms of apoptosis, vasodilatation, anesthesia, pain, neuroprotection and depression. This review focuses on TREK-1, TREK-2 and TRAAK channels subfamily and on the mechanisms that contribute to their molecular heterogeneity and functional regulations. Their molecular diversity is determined not only by the number of genes but also by alternative splicing and alternative initiation of translation. These channels are sensitive to a wide array of biophysical parameters that affect their activity such as unsaturated fatty acids, intra- and extracellular pH, membrane stretch, temperature, and intracellular signaling pathways. They interact with partner proteins that influence their activity and their plasma membrane expression. Molecular heterogeneity, regulatory mechanisms and protein partners are all expected to contribute to cell specific functions of TREK currents in many tissues.
Collapse
Affiliation(s)
- Jacques Noël
- Université de Nice Sophia Antipolis, UFR Sciences, Nice, France.
| | | | | |
Collapse
|
30
|
La JH, Gebhart GF. Colitis decreases mechanosensitive K2P channel expression and function in mouse colon sensory neurons. Am J Physiol Gastrointest Liver Physiol 2011; 301:G165-74. [PMID: 21512155 PMCID: PMC3129930 DOI: 10.1152/ajpgi.00417.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
TREK-1, TREK-2 and TRAAK are mechanosensitive two-pore domain K(+) (K(2P)) channels thought to be involved in the attenuation of mechanotransduction. Because colon inflammation is associated with colon mechanohypersensitivity, we hypothesized that the role of these channels in colon sensory (dorsal root ganglion, DRG) neurons would be reduced by colon inflammation. Accordingly, we studied the functional expression of mechanosensitive K(2P) channels in colon sensory neurons in both thoracolumbar (TL) and lumbosacral (LS) DRG that represent the splanchnic and pelvic nerve innervations of the colon, respectively. In colon DRG neurons identified by retrograde tracer previously injected into the colon wall, 62% of TL neurons and 83% of LS neurons expressed at least one of three K(2P) channel mRNAs; the proportion of neurons expressing the TREK-1 gene was greater in LS than in TL DRG. In electrophysiological studies, single-channel activities of TREK-1a, TREK-1b, TREK-2, and TRAAK-like channels were detected in cultured colon DRG neuronal membranes. After trinitrobenzene sulfonic acid-induced colon inflammation, we observed significant decreases in the amount of TREK-1 mRNA, in the response of TREK-2-like channels to membrane stretch, and in the whole cell outward current during osmotic stretch in LS colon DRG neurons. These findings document that the majority of DRG neurons innervating the mouse colon express mechanosensitive K(2P) channels and suggest that a decrease in their expression and activities contributes to the increased colon mechanosensitivity that develops in inflammatory bowel conditions.
Collapse
Affiliation(s)
- Jun-Ho La
- Center for Pain Research, Department of Anesthesiology, University of Pittsburgh, Pennsylvania, USA.
| | | |
Collapse
|
31
|
Monaghan K, Baker SA, Dwyer L, Hatton WC, Sik Park K, Sanders KM, Koh SD. The stretch-dependent potassium channel TREK-1 and its function in murine myometrium. J Physiol 2011; 589:1221-33. [PMID: 21224218 DOI: 10.1113/jphysiol.2010.203869] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Smooth muscle of the uterus stays remarkably quiescent during normal pregnancy to allow sufficient time for development of the fetus. At present the mechanisms leading to uterine quiescence during pregnancy and how the suppression of activity is relieved at term are poorly understood. Myometrial excitability is governed by ion channels, and a major hypothesis regarding the regulation of contractility during pregnancy has been that expression of certain channels is regulated by hormonal influences. We have explored the expression and function of stretch-dependent K+ (SDK) channels, which are likely to be due to TREK channels, in murine myometrial tissues and myocytes using PCR, Western blots, patch clamp, intracellular microelectrode and isometric force measurements. TREK-1 is more highly expressed than TREK-2 in myometrium, and there was no detectable expression of TRAAK. Expression of TREK-1 transcripts and protein was regulated during pregnancy and delivery. SDK channels were activated in response to negative pressure applied to patches. SDK channels were insensitive to a broad-spectrum of K+ channel blockers, including tetraethylammonium and 4-aminopyridine, and insensitive to intracellular Ca2+. SDK channels were activated by stretch and arachidonic acid and inhibited by reagents that block TREK-1 channels, l-methionine and/or methioninol. Our data suggest that uterine excitability and contractility during pregnancy is regulated by the expression of SDK/TREK-1 channels. Up-regulation of these channels stabilizes membrane potential and controls contraction during pregnancy and down-regulation of these channels induces the onset of delivery.
Collapse
Affiliation(s)
- Kevin Monaghan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Buxton ILO, Singer CA, Tichenor JN. Expression of stretch-activated two-pore potassium channels in human myometrium in pregnancy and labor. PLoS One 2010; 5:e12372. [PMID: 20811500 PMCID: PMC2928262 DOI: 10.1371/journal.pone.0012372] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 07/30/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND We tested the hypothesis that the stretch-activated, four-transmembrane domain, two pore potassium channels (K2P), TREK-1 and TRAAK are gestationally-regulated in human myometrium and contribute to uterine relaxation during pregnancy until labor. METHODOLOGY We determined the gene and protein expression of K2P channels in non-pregnant, pregnant term and preterm laboring myometrium. We employed both molecular biological and functional studies of K2P channels in myometrial samples taken from women undergoing cesarean delivery of a fetus. PRINCIPAL FINDINGS TREK-1, but not TREK-2, channels are expressed in human myometrium and significantly up-regulated during pregnancy. Down-regulation of TREK-1 message was seen by Q-PCR in laboring tissues consistent with a role for TREK-1 in maintaining uterine quiescence prior to labor. The TRAAK channel was unregulated in the same women. Blockade of stretch-activated channels with a channel non-specific tarantula toxin (GsMTx-4) or the more specific TREK-1 antagonist L-methionine ethyl ester altered contractile frequency in a dose-dependent manner in pregnant myometrium. Arachidonic acid treatment lowered contractile tension an effect blocked by fluphenazine. Functional studies are consistent with a role for TREK-1 in uterine quiescence. CONCLUSIONS We provide evidence supporting a role for TREK-1 in contributing to uterine quiescence during gestation and hypothesize that dysregulation of this mechanism may underlie certain cases of spontaneous pre-term birth.
Collapse
Affiliation(s)
- Iain L O Buxton
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Nevada, United States of America.
| | | | | |
Collapse
|
33
|
Enyedi P, Czirják G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 2010; 90:559-605. [PMID: 20393194 DOI: 10.1152/physrev.00029.2009] [Citation(s) in RCA: 677] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Two-pore domain K(+) (K(2P)) channels give rise to leak (also called background) K(+) currents. The well-known role of background K(+) currents is to stabilize the negative resting membrane potential and counterbalance depolarization. However, it has become apparent in the past decade (during the detailed examination of the cloned and corresponding native K(2P) channel types) that this primary hyperpolarizing action is not performed passively. The K(2P) channels are regulated by a wide variety of voltage-independent factors. Basic physicochemical parameters (e.g., pH, temperature, membrane stretch) and also several intracellular signaling pathways substantially and specifically modulate the different members of the six K(2P) channel subfamilies (TWIK, TREK, TASK, TALK, THIK, and TRESK). The deep implication in diverse physiological processes, the circumscribed expression pattern of the different channels, and the interesting pharmacological profile brought the K(2P) channel family into the spotlight. In this review, we focus on the physiological roles of K(2P) channels in the most extensively investigated cell types, with special emphasis on the molecular mechanisms of channel regulation.
Collapse
Affiliation(s)
- Péter Enyedi
- Department of Physiology, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
34
|
Fry C, Meng E, Young J. The physiological function of lower urinary tract smooth muscle. Auton Neurosci 2010; 154:3-13. [DOI: 10.1016/j.autneu.2009.10.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Revised: 10/25/2009] [Accepted: 10/27/2009] [Indexed: 11/15/2022]
|
35
|
Baker SA, Hatton WJ, Han J, Hennig GW, Britton FC, Koh SD. Role of TREK-1 potassium channel in bladder overactivity after partial bladder outlet obstruction in mouse. J Urol 2010; 183:793-800. [PMID: 20022044 DOI: 10.1016/j.juro.2009.09.079] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Indexed: 11/19/2022]
Abstract
PURPOSE Mouse models of partial bladder outlet obstruction cause bladder hypertrophy. Expression of a number of ion channels is altered in hypertrophic detrusor muscle, resulting in bladder dysfunction. We determined whether mechanosensitive TREK-1 channels are present in the murine bladder and whether their expression is altered in partial bladder outlet obstruction, resulting in abnormal filling responses. MATERIALS AND METHODS Partial bladder outlet obstruction was surgically induced in CD-1 mice and the mice recovered for 14 days. Cystometry was done to evaluate bladder pressure responses during filling at 25 microl per minute in partial bladder outlet obstruction mice and sham operated controls. TREK-1 channel expression was determined at the mRNA and protein levels by quantitative reverse transcriptase-polymerase chain reaction and Western blotting, respectively, and localized in the bladder wall using immunohistochemistry. RESULTS Obstructed bladders showed about a 2-fold increase in weight vs sham operated bladders. TREK-1 channel protein expression on Western blots from bladder smooth muscle strip homogenates was significantly decreased in obstructed mice. Immunohistochemistry revealed a significant decrease in TREK-1 channel immunoreactivity in detrusor smooth muscle in obstructed mice. On cystometry the TREK-1 channel blocker L-methioninol induced a significant increase in premature contractions during filling in sham operated mice. L-methioninol had no significant effect in obstructed mice, which showed an overactive detrusor phenotype. CONCLUSIONS TREK-1 channel down-regulation in detrusor myocytes is associated with bladder overactivity in a murine model of partial bladder outlet obstruction.
Collapse
Affiliation(s)
- Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | | | | | |
Collapse
|
36
|
Lloyd EE, Marrelli SP, Namiranian K, Bryan RM. Characterization of TWIK-2, a two-pore domain K+ channel, cloned from the rat middle cerebral artery. Exp Biol Med (Maywood) 2009; 234:1493-502. [PMID: 19934370 DOI: 10.3181/0903-rm-110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
TWIK-2, a member of the Two-Pore Domain K channel family, is expressed in a number of mammalian tissues including the vascular system. The function of TWIK-2 is not known. The purpose of this study was to clone the TWIK-2 channel from the rat middle cerebral artery, express it in CHO cells, and characterize the channel's electrical properties. In light of the fact that there are no specific TWIK-2 inhibitors or activators, a better characterization of the channel should enhance our understanding of its role in the vascular system. TWIK-2 was cloned from the rat middle cerebral artery and expressed with an N-terminal green fluorescence protein (GFP) in CHO cells. We report that rTWIK-2-GFP currents were relatively linear at physiological K(+) concentrations but become slightly inwardly rectifying in symmetrical K(+). rTWIK-2-GFP was insensitive to 10 mM TEA, 3 mM 4-aminopyridine, and 10 microM glibenclamide. However, rTWIK-2-GFP was inhibited by Ba(2+) with 50% of the current being blocked at 80 microM. rTWIK-2-GFP activity was enhanced 60% by 100 microM arachidonic acid. The electrophysiological characteristics of TWIK-2 indicate that it could serve an important role in ion homeostasis and regulation of the membrane potential in arteries and arterioles.
Collapse
Affiliation(s)
- Eric E Lloyd
- Department of Anesthesiology, Room 434D, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|