1
|
Adoptive T Cell Therapy Strategies for Viral Infections in Patients Receiving Haematopoietic Stem Cell Transplantation. Cells 2019; 8:cells8010047. [PMID: 30646564 PMCID: PMC6356262 DOI: 10.3390/cells8010047] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/18/2023] Open
Abstract
Adverse outcomes following virus-associated disease in patients receiving allogeneic haematopoietic stem cell transplantation (HSCT) have encouraged strategies to control viral reactivation in immunosuppressed patients. However, despite timely treatment with antiviral medication, some viral infections remain refractory to treatment, which hampers outcomes after HSCT, and are responsible for a high proportion of transplant-related morbidity and mortality. Adoptive transfer of donor-derived lymphocytes aims to improve cellular immunity and to prevent or treat viral diseases after HSCT. Early reports described the feasibility of transferring nonspecific lymphocytes from donors, which led to the development of cell therapy approaches based on virus-specific T cells, allowing a targeted treatment of infections, while limiting adverse events such as graft versus host disease (GvHD). Both expansion and direct selection techniques have yielded comparable results in terms of efficacy (around 70–80%), but efficacy is difficult to predict for individual cases. Generating bespoke products for each donor–recipient pair can be expensive, and there remains the major obstacle of generating products from seronegative or poorly responsive donors. More recent studies have focused on the feasibility of collecting and infusing partially matched third-party virus-specific T cells, reporting response rates of 60–70%. Future development of this approach will involve the broadening of applicability to multiple viruses, the optimization and cost-control of manufacturing, larger multicentred efficacy trials, and finally the creation of cell banks that can provide prompt access to virus-specific cellular product. The aim of this review is to summarise present knowledge on adoptive T cell manufacturing, efficacy and potential future developments.
Collapse
|
2
|
Lee SC, Seo KW, Kim HJ, Kang SW, Choi HJ, Kim A, Kwon BS, Cho HR, Kwon B. Depletion of Alloreactive T-Cells by Anti-CD137-Saporin Immunotoxin. Cell Transplant 2015; 24:1167-81. [DOI: 10.3727/096368914x679327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Depletion of alloreactive T-lymphocytes from allogeneic bone marrow tansplants may prevent graft-versus-host disease (GVHD) without impairing donor cell engraftment, immunity, and the graft-versus-leukemia (GVL) effect. Alloreactive T-cells may be identified by their expression, upon activation, of CD137, a costimulatory receptor and putative surrogate marker for antigen-specific effector T-cells. In this context, we tested the use of anti-CD137-saporin immunotoxin to selectively deplete mouse and human alloreactive T-cells. Anti-CD137 antibodies were internalized by cells within 4 h of binding to the cell surface CD137, and anti-CD137-saporin immunotoxin effectively killed polyclonally activated T-cells or antigen-stimulated T-cells. Transfer of donor T-cells after allodepletion with anti-CD137-saporin immunotoxin failed to induce any evident expression of GVHD; however, a significant GVL effect was observed. Targeting of CD137 with an immunotoxin was also effective in killing polyclonally activated or alloreactive human T-cells. Our results indicate that anti-CD137-saporin immunotoxin may be used to deplete alloreactive T-cells prior to bone marrow transplantation and thereby prevent GVHD and the relapse of leukemia.
Collapse
Affiliation(s)
- Sang C. Lee
- Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
- Personalized Medicine System R&D Center, Bio-support Co., Ltd., Anyang, Republic of Korea
| | - Kwang W. Seo
- Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
- Department of Internal Medicine, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Hye J. Kim
- Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Sang W. Kang
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Hye-Jeong Choi
- Department of Pathology, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Ansuk Kim
- Department of Anesthesiology and Pain Medicine, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Byoung S. Kwon
- Division of Cell and Immunobiology and Research and Development Center for Cancer Therapeutics, National Cancer Center, Ulsan, Republic of Korea
| | - Hong R. Cho
- Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
- Department of Surgery, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Byungsuk Kwon
- Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| |
Collapse
|
3
|
Overview of T-cell depletion in haploidentical stem cell transplantation. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2012; 10:264-72. [PMID: 22337272 DOI: 10.2450/2012.0106-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/03/2011] [Indexed: 12/22/2022]
|
4
|
Reimann C, Dal Cortivo L, Hacein-Bey-Abina S, Fischer A, André-Schmutz I, Cavazzana-Calvo M. Advances in adoptive immunotherapy to accelerate T-cellular immune reconstitution after HLA-incompatible hematopoietic stem cell transplantation. Immunotherapy 2010; 2:481-96. [PMID: 20636003 DOI: 10.2217/imt.10.36] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although partially HLA-mismatched hematopoietic stem cell transplantation (HSCT) has become an important therapeutic option for children with primary immunodeficiencies, delayed reconstitution of the T-cell compartment remains a major clinical concern. Adoptive immunotherapies to provide recipients with a protective and diverse T-cell repertoire in the months following HSCT are warranted. In order to improve T-cell reconstitution after T-cell-depleted HSCT, different strategies are currently being studied. Some are based on administration of modified mature T cells (e.g., allodepleted T cells or pathogen-specific T cells). Others aim at accelerating de novo thymopoiesis from donor-derived hematopoietic stem cells in vivo via the administration of thymopoietic agents or the transfer of large numbers of T-cell precursors generated ex vivo. The present article will provide a brief summary of recent advances in the field of allodepletion and adoptive transfer of pathogen-specific T cells and a detailed discussion of strategies for enhancing thymopoiesis in vivo.
Collapse
Affiliation(s)
- Christian Reimann
- Institut National de la Santé et de la Recherche Médicale (INSERM), Département de Biothérapie, Hopital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, and Université Paris Descartes 75015 Paris, France
| | | | | | | | | | | |
Collapse
|
5
|
Selective depletion of alloreactive T lymphocytes using patient-derived nonhematopoietic stimulator cells in allograft engineering. Transplantation 2008; 86:1427-35. [PMID: 19034014 DOI: 10.1097/tp.0b013e31818810d6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Selective depletion of alloreactive T cells in vitro results in efficient graft-versus-host disease prophylaxis in allogeneic hematopoietic stem-cell transplantation, but it is accompanied by increased recurrence of leukemia. To spare donor T-cell-mediated graft-versus-leukemia immunity against hematopoiesis-restricted minor histocompatibility (minor-H) antigens, we explored the use of patient-derived nonhematopoietic antigen-presenting cells (APC) as allogeneic stimulators for selective allodepletion in leukemia-reactive donor T-cell lines. METHODS Primary keratinocytes, dermal fibroblasts, and bone marrow fibroblasts were generated from skin biopsies and diagnostic bone marrow aspirates of acute myeloid leukemia patients in vitro. Cell cultures were analyzed for expansion, phenotype, and immunostimulatory capacity in comparison with CD40-activated B cells as professional APC. In addition, nonhematopoietic APCs were used for selective allodepletion in vitro. RESULTS Patient-derived fibroblasts could be reliably expanded to large cell numbers, whereas keratinocytes had limited growth potential. Interferon-gamma-pretreated fibroblasts showed increased expression of human leukocyte antigen (HLA)-class I and II molecules, CD40, and CD54. Fibroblasts and CD40-activated B cells comparably stimulated HLA-A*0301-specific CD8 T cells after transient expression of HLA-A*0301 as a model alloantigen. Finally, fibroblasts could be effectively applied to selectively deplete alloreactivity within leukemia-reactive donor CD8 T-cell lines by targeting the activation-induced antigen CD137. CONCLUSIONS Primary fibroblasts can be efficiently used as allogeneic nonhematopoietic APC for selective depletion of donor T cells reactive to HLA and ubiquitously expressed minor-H antigen disparities in leukemia-stimulated CD8 T-cell lines. Therefore, harnessing alloreactivity to hematopoietic minor-H antigens in addition to leukemia-associated antigens might increase graft-versus-leukemia immunity of donor lymphocyte grafts in allogeneic hematopoietic stem-cell transplantation.
Collapse
|
6
|
Mielke S, Rezvani K, Savani BN, Nunes R, Yong ASM, Schindler J, Kurlander R, Ghetie V, Read EJ, Solomon SR, Vitetta ES, Barrett AJ. Reconstitution of FOXP3+ regulatory T cells (Tregs) after CD25-depleted allotransplantation in elderly patients and association with acute graft-versus-host disease. Blood 2007; 110:1689-97. [PMID: 17478639 PMCID: PMC1975850 DOI: 10.1182/blood-2007-03-079160] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 05/01/2007] [Indexed: 12/12/2022] Open
Abstract
Selective depletion (SD) of host-reactive donor T cells from allogeneic stem-cell transplants (SCTs) using an anti-CD25 immunotoxin (IT) is a strategy to prevent acute graft-versus-host disease (aGvHD). There is concern that concurrent removal of regulatory T cells (T(regs)) with incomplete removal of alloactivated CD25(+) T cells could increase the risk of aGvHD. We therefore measured T(regs) in the blood of 16 patients receiving a T-cell-depleted allograft together with anti-CD25-IT-treated SD lymphocytes, in 13 of their HLA-identical donors, and in 10 SD products. T(regs) were characterized by intracellular staining for forkhead box protein 3 (FOXP3) and by quantitative reverse-transcription-polymerase chain reaction (qRT-PCR) for FOXP3 gene in CD4(+) cells. Patients received a median of 1.0 x 10(8)/kg SD T cells and a stem cell product containing a median of 0.25 x 10(4)/kg residual T cells. T(regs) reconstituted promptly after SCT and underwent further expansion. Of the CD4(+) T cells in SD products, 1.5% to 4.8% were CD25(-) T(regs). Acute GvHD (>or= grade II) was restricted to 5 patients whose donors had significantly (P = .019) fewer T(regs) compared with those without clinically significant aGvHD. These results suggest that rapid T(reg) reconstitution can occur following SD allografts, either from CD25(-) T(regs) escaping depletion, or from residual CD25(-) and CD25(+) T(regs) contained in the stem-cell product that expand after transplantation and may confer additional protection against GvHD.
Collapse
Affiliation(s)
- Stephan Mielke
- Allotransplantation Section, Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1202, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sathe A, Ortega SB, Mundy DI, Collins RH, Karandikar NJ. In vitro methotrexate as a practical approach to selective allodepletion. Biol Blood Marrow Transplant 2007; 13:644-54. [PMID: 17531774 DOI: 10.1016/j.bbmt.2007.01.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 01/21/2007] [Indexed: 01/24/2023]
Abstract
Graft-versus-host disease (GVHD) is a major cause of transplant-related morbidity and mortality in recipients of allogeneic hematopoietic stem cell transplantation. As GVHD is mediated predominantly by alloreactive donor T cells, selective allodepletion from the graft may alleviate GVHD, whereas potentially maintaining other advantages conferred by donor T cells, such as graft survival, antiviral immunity, and graft-versus-leukemia effect. In this study, we evaluated the ability of methotrexate, a clinically approved antimetabolite drug, to deplete alloreactive T cells in HLA-mismatched mixed lymphocyte reactions (MLR). We observed that methotrexate could inhibit the proliferation of alloreactive T cells in primary in vitro MLR. On reexposure of methotrexate-treated cells to the same allostimulus, a significant reduction in the alloreactive immune response was observed, whereas responses to third-party allostimuli and viral antigens were preserved. Thus, our results provide preclinical evidence that in vitro methotrexate treatment results in specific allodepletion and may be used as an effective agent for preventing GVHD.
Collapse
Affiliation(s)
- Atul Sathe
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9072, USA
| | | | | | | | | |
Collapse
|
8
|
Wehler TC, Nonn M, Brandt B, Britten CM, Gröne M, Todorova M, Link I, Khan SA, Meyer RG, Huber C, Hartwig UF, Herr W. Targeting the activation-induced antigen CD137 can selectively deplete alloreactive T cells from antileukemic and antitumor donor T-cell lines. Blood 2006; 109:365-73. [PMID: 16931626 DOI: 10.1182/blood-2006-04-014100] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In HLA-incompatible hematopoietic stem cell transplantation, alloreactive donor T cells recognizing recipient mismatch HLA cause severe graft-versus-host disease (GVHD). Strategies allowing the selective depletion of alloreactive T cells as well as the enhancement of graft-versus-malignancy immunity would be beneficial. We generated donor CD8 T-cell lines in vitro using allogeneic recipient cells mismatched at a single HLA class I allele or haplotype as stimulators. Recipient cells were obtained from acute myeloid leukemias, renal-cell carcinomas, and CD40L-induced B lymphoblasts. Resulting alloreactive T cells were activated by incubating day 21 T-cell cultures with HLA-mismatch transfected K562 cells or recipient-derived fibroblasts. Selective allodepletion (SAD) was subsequently performed by a newly developed immunomagnetic depletion approach targeting the tumor necrosis factor receptor molecule CD137 (4-1BB). Compared with other activation-induced antigens, CD137 showed a superior performance based on a consistently low baseline expression and a rapid up-regulation following alloantigen stimulation. In 15 different SAD experiments, the frequency of alloreactive CD8 T cells was reduced to a median of 9.5% compared with undepleted control populations. The allodepleted T-cell subsets maintained significant antitumor and antiviral CD8 responses. In vitro expansion of tumor-reactive T cells followed by CD137-mediated SAD might enhance the antitumor efficacy of T-cell allografts with lower risk of inducing GVHD.
Collapse
Affiliation(s)
- Thomas C Wehler
- Department of Medicine III, Hematology, and Oncology, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Vaclavkova P, Cao Y, Wu LK, Michalek J, Vitetta ES. A comparison of an anti-CD25 immunotoxin, Ontak and anti-CD25 microbeads for their ability to deplete alloreactive T cells in vitro. Bone Marrow Transplant 2006; 37:559-67. [PMID: 16444279 DOI: 10.1038/sj.bmt.1705286] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ex vivo depletion of alloreactive CD25(+) T cells from a stem cell transplant (SCT) can reduce the incidence of graft-versus-host disease (GVHD) while preserving antimicrobial and perhaps antileukemia activity. However, the most effective methods for allodepleting T cells prior to transplant have not been determined. In this study, we have compared three agents that deplete CD25(+) activated, alloreactive T cells. These included Ontak (Denileukin Diftitox), an IL-2 fusion toxin, anti-CD25 microbeads (MACS), an anti-CD25 immunotoxin (IT) and a combination of the IT and MACS. Peripheral blood mononuclear cells (PBMCs) activated in a primary mixed lymphocyte reaction (MLR) were allodepleted using optimal amounts of each agent, and the cells were then analyzed by flow cytometry. The treated cells were examined both for remaining alloreactivity and for the preservation of third party reactivity by testing them in a secondary MLR. Our data demonstrate that both the anti-CD25 IT and the anti-CD25 MACS were equally effective in depleting CD4(+)CD25(+) cells and in sparing T cells that were reactive with third party cells. The anti-CD25 IT was, however, superior in depleting alloreactive CD8(+)CD25(+) cells. In contrast, Ontak did not eliminate alloreactive cells and the Ontak-treated cells retained significant reactivity against the original stimulator cells.
Collapse
Affiliation(s)
- P Vaclavkova
- The Cancer Immunobiology Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | |
Collapse
|
10
|
Mielke S, Solomon SR, Barrett AJ. Selective depletion strategies in allogeneic stem cell transplantation. Cytotherapy 2005; 7:109-15. [PMID: 16040390 DOI: 10.1080/14653240510018172] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Despite improved prophylaxis and treatment, GvHD remains a major limitation to optimal allogeneic stem cell transplantation. Ex vivo selective depletion (SD) is a strategy to prevent GvHD, in which host-reactive donor lymphocytes are selectively eliminated from a PBSC allograft while useful donor immune function is preserved. The elimination of alloreactive and thereby GvHD-mediating T cells has been shown to be feasible in both pre-clinical and more recently clinical studies. However, SD techniques and the translational research needed for clinical application are still under development. Here we summarize and discuss the following aspects of the SD approach: selection of an appropriate allogeneic stimulator; the responder population; the alloresponse; methods for removal of alloreacting T cells; product testing; clinical considerations. Our review highlights the diversity of possible approaches and the need to develop different techniques for specific clinical applications.
Collapse
Affiliation(s)
- S Mielke
- Stem Cell Allogeneic Transplantation Section, National Heart, Lung & Blood Institute/NIH, Bldg. 10 CRC Room 3-5288, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
11
|
Perotti C, Del Fante C, Viarengo GL, Bergamaschi P, Tinelli C, Bellotti L, Marchesi A, Parisi C, Salvaneschi L. Impact of leukapheresis cell composition on immunomagnetic cell selection with the Baxter Isolex 300i device: a statistical analysis. Stem Cells Dev 2005; 13:350-6. [PMID: 15345128 DOI: 10.1089/scd.2004.13.350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Immunomagnetic cell selection (ICS) of CD34(+) cells is increasingly adopted in allogeneic and autologous transplant settings. Because many variables can affect the final results of ICS, we focused our study toward the influence exerted by the leukapheresis (LKF) cell composition on recovery, purity, and log of T and B depletion of the immunoselected cells. A total of 39 consecutive CD34(+) ICS were performed with the Isolex 300i (Baxter) device on 39 LKF from 9 HLA haploidentical donors and 20 patients. Flow cytometric analysis was performed both on the leukapheresis content and on the immunoselected cells. The statistical analysis was performed utilizing the Pearson's correlation test and the Mann-Whitney U test. The median purity and recovery of the immunoselected CD34(+) cells were 95.3% (IR: 93.0-99.0) and 55.1% (IR: 41.8-68.2), respectively. The median log of T and B depletion were 3.87 (IR: 3.5-4.3) and 2.9 (IR: 2.5-3.5), respectively. Our data indicate that not only the CD34(+) cell load but also the ratio among the cells belonging to the starting fraction can influence the results of ICS. LKF collection protocols have to be addressed to collect an high number of CD34(+) cells (>500 x 10(6)) without taking care of the contaminating cells when the Baxter Isolex 300i device is employed.
Collapse
Affiliation(s)
- C Perotti
- Servizio di Immunoematologia, Medicina Trasfusionale, Centro di Immunologia dei Trapianti, Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Reich-Zeliger S, Bachar-Lustig E, Gan J, Reisner Y. Tolerance induction by veto CTLs in the TCR transgenic 2C mouse model. I. Relative reactivity of different veto cells. THE JOURNAL OF IMMUNOLOGY 2005; 173:6654-9. [PMID: 15557156 DOI: 10.4049/jimmunol.173.11.6654] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several bone marrow cells and lymphocyte subpopulations, known as veto cells, were shown to induce transplantation tolerance across major histocompatibility Ags. Due to the low frequency of the effector T cells against which the veto cells inhibitory activity is aimed, the fate of the effector cells was traditionally followed indirectly by functional limiting dilution assays, which are cumbersome and depend on numerous parameters. In the present study the fate of the effector T cells was monitored directly by FACS, using TCR transgenic mouse CD8(+) T cells in which the transgene is directed against H-2(d) (the 2C model). This assay is validated by demonstrating the potency, selectivity, radiation sensitivity, and contact dependency of anti-third-party CTLs previously demonstrated by the limiting dilution assay. In contrast to veto CTLs, nonactivated CD8(+) T cells lack veto activity. Comparison by FACS in the 2C model revealed a hierarchy of veto cells, in the order of veto CTLs activated NK cells, activated CD4(+) T cells, and activated B cells. The latter cells as well as nonactivated CD4(+) or NK cells were shown to be completely devoid of veto activity.
Collapse
MESH Headings
- Animals
- Cell Communication/genetics
- Cell Communication/immunology
- Cell Communication/radiation effects
- Cells, Cultured
- Cytotoxicity Tests, Immunologic
- Cytotoxicity, Immunologic/genetics
- Cytotoxicity, Immunologic/radiation effects
- Female
- Flow Cytometry
- Gamma Rays
- Immune Tolerance/genetics
- Lymphocyte Activation/genetics
- Lymphocyte Activation/radiation effects
- Lymphocyte Culture Test, Mixed
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Transgenic
- Models, Animal
- Receptors, Antigen, T-Cell/genetics
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/radiation effects
Collapse
|
13
|
Depletion of alloreactive T cells: which cell? Blood 2004. [DOI: 10.1182/blood-2004-09-3476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Zöller M. Immunotherapy of cancer by active vaccination: does allogeneic bone marrow transplantation after non-myeloablative conditioning provide a new option? Technol Cancer Res Treat 2003; 2:237-60. [PMID: 12779354 DOI: 10.1177/153303460300200307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The critical role of antigen-specific T cells in cancer immunotherapy has been amply demonstrated in many model systems. Though success of clinical trials still remains far behind expectation, the continuous improvement in our understanding of the biology of the immune response will provide the basis of optimized cancer vaccines and allow for new modalities of cancer treatment. This review focuses on the current status of active therapeutic vaccination and future prospects. The latter will mainly be concerned with allogeneic bone marrow cell transplantation after non-myeloablative conditioning, because it is my belief that this approach could provide a major breakthrough in cancer immunotherapy. Concerning active vaccination protocols the following aspects will be addressed: i) the targets of immunotherapeutic approaches; ii) the response elements needed for raising a therapeutically successful immune reaction; iii) ways to achieve an optimal confrontation of the immune system with the tumor and iv) supportive regimen of immunomodulation. Hazards which one is most frequently confronted with in trials to attack tumors with the inherent weapon of immune defense will only be briefly mentioned. Many question remain to be answered in the field of allogeneic bone marrow transplantation after non-myeloablative conditioning to optimize the therapeutic setting for this likely very powerful tool of cancer therapy. Current considerations to improve engraftment and to reduce graft versus host disease while strengthening graft versus tumor reactivity will be briefly reviewed. Finally, I will discuss whether tumor-reactive T cells can be "naturally" maintained during the process of T cell maturation in the allogeneic host. Provided this hypothesis can be substantiated, a T cell vaccine will meet a pool of virgin T cells in the allogeneically reconstituted host, which are tolerant towards the host, but not anergised towards tumor antigens presented by MHC molecules of the host.
Collapse
Affiliation(s)
- Margot Zöller
- Dept. of Tumor Progression & Immune Defense, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Nguyen P, Geiger TL. Antigen-specific targeting of CD8+ T cells with receptor-modified T lymphocytes. Gene Ther 2003; 10:594-604. [PMID: 12646865 DOI: 10.1038/sj.gt.3301932] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chimeric receptors that link ligand recognition domains, such as antibody Fv fragments, with TCR signaling domains can redirect T lymphocytes against MHC-unrestricted targets. Such receptor-modified T lymphocytes have shown promise in the treatment of infectious diseases and cancer. We hypothesized that receptor-modified T lymphocytes may also be designed to target antigen-specific T cells. We synthesized chimeric receptors consisting of the extracellular and transmembrane domains of the class I MHC H-2K(b) molecule linked to the signaling domains of either TCR-zeta, CD28 and zeta, or CD28, zeta, and lck. T lymphocytes modified to express these receptors and pulsed with antigenic peptide specifically killed precursor CTL. Cytolysis was efficient, even at effector:target ratios of less than one, and specific, selectively killing antigen-specific precursor CTL among a mixed population of T cells. Cytolysis required activation of the receptor-modified T cells, and did not occur with a signaling-deficient chimeric receptor. In contrast to precursor CTL, differentiated CTL proved resistant to lysis by the receptor-modified T cells. These data demonstrate the feasibility of redirecting T lymphocytes against antigen-specific T cells. Receptor-modified T cells expressing chimeric MHC receptors have potential application in autoimmune and alloimmune diseases.
Collapse
Affiliation(s)
- P Nguyen
- Department of Pathology, St Jude Children's Research Hospital, 332 N Lauderdale St, DT-4047 Memphis, TN 38105, USA
| | | |
Collapse
|
16
|
Devine SM, Adkins DR, Khoury H, Brown RA, Vij R, Blum W, DiPersio JF. Recent advances in allogeneic hematopoietic stem-cell transplantation. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2003; 141:7-32. [PMID: 12518165 DOI: 10.1067/mlc.2003.5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Steven M Devine
- Division of Oncology, Section of Bone Marrow Transplantation and Leukemia, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine,
| | | | | | | | | | | | | |
Collapse
|
17
|
Hummel S, Wilms D, Vitacolonna M, Zöller M. Donor T cell and host NK depletion improve the therapeutic efficacy of allogeneic bone marrow cell reconstitution in the nonmyeloablatively conditioned tumor‐bearing host. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.5.898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Susanne Hummel
- Department of Tumor Progression and Tumor Defense, German Cancer Research Center, Heidelberg; and
| | - Daniela Wilms
- Department of Tumor Progression and Tumor Defense, German Cancer Research Center, Heidelberg; and
| | - Mario Vitacolonna
- Department of Tumor Progression and Tumor Defense, German Cancer Research Center, Heidelberg; and
| | - Margot Zöller
- Department of Tumor Progression and Tumor Defense, German Cancer Research Center, Heidelberg; and
- Department of Applied Genetics, University of Karlsruhe, Germany
| |
Collapse
|
18
|
Ho VT, Soiffer RJ. The history and future of T-cell depletion as graft-versus-host disease prophylaxis for allogeneic hematopoietic stem cell transplantation. Blood 2001; 98:3192-204. [PMID: 11719354 DOI: 10.1182/blood.v98.12.3192] [Citation(s) in RCA: 311] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- V T Ho
- Department of Adult Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|