1
|
Yannarelli G, Tsoporis JN, Desjardins JF, Wang XH, Pourdjabbar A, Viswanathan S, Parker TG, Keating A. Donor mesenchymal stromal cells (MSCs) undergo variable cardiac reprogramming in vivo and predominantly co-express cardiac and stromal determinants after experimental acute myocardial infarction. Stem Cell Rev Rep 2014; 10:304-15. [PMID: 24287730 DOI: 10.1007/s12015-013-9483-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We previously showed the emergence of predominantly non-fused murine cells co-expressing cardiac and stromal determinants in co-cultures of murine mesenchymal stromal cells (MSCs) and rat embryonic cardiomyocytes. To determine whether a similar phenotype is detectable in vivo in ischemic myocardium, we infused green fluorescence protein (GFP)-marked MSCs intravenously into wild-type mice in an acute myocardial infarction (AMI) model generated by ischemia/reperfusion (I/R) or fixed coronary artery ligation. We found that infused GFP+ cells were confined strictly to ischemic areas and represented approximately 10% of total cellularity. We showed that over 60% of the cells co-expressed collagen type IV and troponin T or myosin heavy chain, characteristic of MSCs and cardiomyocytes, respectively, and were CD45(-). Nonetheless, up to 25% of the GFP+ donor cells expressed one of two cardiomyocyte markers, either myosin heavy chain or troponin T, in the absence of MSC determinants. We also observed a marked reduction in OCT4 expression in MSCs pre-infusion compared with those lodged in the myocardium, suggesting reduced stem cell properties. Despite the low frequency of lodged donor MSCs, left-ventricular end-diastolic pressure was significantly better in experimental versus saline animals for both AMI (12.10 ± 1.81 vs. 20.50 ± 1.53 mmHg, p < 0.001) and I/R models (8.75 ± 2.95 vs. 17.53 ± 3.85 mmHg, p = 0.004) when measured 21 days after MSC infusion and is consistent with a paracrine effect. Our data indicate that donor MSCs undergo variable degrees of cardiomyocyte reprogramming with the majority co-expressing cardiomyocyte and stromal markers. Further studies are needed to elucidate the factors mediating the extent of cardiomyocyte reprogramming and importance of the cellular changes on tissue repair.
Collapse
Affiliation(s)
- Gustavo Yannarelli
- Cell Therapy Program, Princess Margaret Hospital, University Health Network, University of Toronto, 610 University Ave, Suite 5-303, Toronto, ON, Canada, M5G 2M9
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Degousee N, Kelvin DJ, Geisslinger G, Hwang DM, Stefanski E, Wang XH, Danesh A, Angioni C, Schmidt H, Lindsay TF, Gelb MH, Bollinger J, Payré C, Lambeau G, Arm JP, Keating A, Rubin BB. Group V phospholipase A2 in bone marrow-derived myeloid cells and bronchial epithelial cells promotes bacterial clearance after Escherichia coli pneumonia. J Biol Chem 2011; 286:35650-35662. [PMID: 21849511 PMCID: PMC3195628 DOI: 10.1074/jbc.m111.262733] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/11/2011] [Indexed: 02/05/2023] Open
Abstract
Group V-secreted phospholipase A(2) (GV sPLA(2)) hydrolyzes bacterial phospholipids and initiates eicosanoid biosynthesis. Here, we elucidate the role of GV sPLA(2) in the pathophysiology of Escherichia coli pneumonia. Inflammatory cells and bronchial epithelial cells both express GV sPLA(2) after pulmonary E. coli infection. GV(-/-) mice accumulate fewer polymorphonuclear leukocytes in alveoli, have higher levels of E. coli in bronchoalveolar lavage fluid and lung, and develop respiratory acidosis, more severe hypothermia, and higher IL-6, IL-10, and TNF-α levels than GV(+/+) mice after pulmonary E. coli infection. Eicosanoid levels in bronchoalveolar lavage are similar in GV(+/+) and GV(-/-) mice after lung E. coli infection. In contrast, GV(+/+) mice have higher levels of prostaglandin D(2) (PGD(2)), PGF(2α), and 15-keto-PGE(2) in lung and express higher levels of ICAM-1 and PECAM-1 on pulmonary endothelial cells than GV(-/-) mice after lung infection with E. coli. Selective deletion of GV sPLA(2) in non-myeloid cells impairs leukocyte accumulation after pulmonary E. coli infection, and lack of GV sPLA(2) in either bone marrow-derived myeloid cells or non-myeloid cells attenuates E. coli clearance from the alveolar space and the lung parenchyma. These observations show that GV sPLA(2) in bone marrow-derived myeloid cells as well as non-myeloid cells, which are likely bronchial epithelial cells, participate in the regulation of the innate immune response to pulmonary infection with E. coli.
Collapse
Affiliation(s)
- Norbert Degousee
- Division of Vascular Surgery, Peter Munk Cardiac Centre, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - David J Kelvin
- Division of Experimental Therapeutics, University of Toronto, Toronto, Ontario M5G 2C4, Canada; Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China
| | - Gerd Geisslinger
- Institut für Klinische Pharmakologie, D-60590, Frankfurt am Main, Germany
| | - David M Hwang
- Department of Pathology, Toronto General Hospital Research Institute of the University Health Network and the Heart and Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Eva Stefanski
- Division of Vascular Surgery, Peter Munk Cardiac Centre, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Xing-Hua Wang
- Department of Medical Oncology and Hematology, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Ali Danesh
- Division of Experimental Therapeutics, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Carlo Angioni
- Institut für Klinische Pharmakologie, D-60590, Frankfurt am Main, Germany
| | - Helmut Schmidt
- Institut für Klinische Pharmakologie, D-60590, Frankfurt am Main, Germany
| | - Thomas F Lindsay
- Division of Vascular Surgery, Peter Munk Cardiac Centre, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Michael H Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195
| | - James Bollinger
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195
| | - Christine Payré
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice, Sophia Antipolis et Centre National de la Recherche Scientifique, Sophia Antipolis, 06560 Valbonne, France
| | - Gérard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice, Sophia Antipolis et Centre National de la Recherche Scientifique, Sophia Antipolis, 06560 Valbonne, France
| | - Jonathan P Arm
- Division of Rheumatology, Immunology, and Allergy, and Partners Asthma Center, Brigham and Women's Hospital, Boston Massachusetts 02115
| | - Armand Keating
- Department of Medical Oncology and Hematology, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Barry B Rubin
- Division of Vascular Surgery, Peter Munk Cardiac Centre, University of Toronto, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
4
|
Meyerrose T, Olson S, Pontow S, Kalomoiris S, Jung Y, Annett G, Bauer G, Nolta JA. Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors. Adv Drug Deliv Rev 2010; 62:1167-74. [PMID: 20920540 DOI: 10.1016/j.addr.2010.09.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 09/24/2010] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSC) are a promising tool for cell therapy, either through direct contribution to the repair of bone, tendon and cartilage or as an adjunct therapy through protein production and immune mediation. They are an attractive vehicle for cellular therapies due to a variety of cell intrinsic and environmentally responsive properties. Following transplantation, MSC are capable of systemic migration, are not prone to tumor formation, and appear to tolerize the immune response across donor mismatch. These attributes combine to allow MSC to reside in many different tissue types without disrupting the local microenvironment and, in some cases, responding to the local environment with appropriate protein secretion. We describe work done by our group and others in using human MSC for the sustained in vivo production of supraphysiological levels of cytokines for the support of cotransplanted hematopoietic stem cells and enzymes that are deficient in animal models of lysosomal storage disorders such as MPSVII. In addition, the use of MSC engineered to secrete protein products has been reviewed in several fields of tissue injury repair, including but not limited to revascularization after myocardial infarction, regeneration of intervertebral disc defects and spine therapy, repair of stroke, therapy for epilepsy, skeletal tissue repair, chondrogenesis/knee and joint repair, and neurodegenerative diseases. Genetically engineered MSC have thus proven safe and efficacious in numerous animal models of disease modification and tissue repair and are poised to be tested in human clinical trials. The potential for these interesting cells to secrete endogenous or transgene products in a sustained and long-term manner is highly promising and is discussed in the current review.
Collapse
|
5
|
Rose RA, Jiang H, Wang X, Helke S, Tsoporis JN, Gong N, Keating SCJ, Parker TG, Backx PH, Keating A. Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells 2008; 26:2884-92. [PMID: 18687994 DOI: 10.1634/stemcells.2008-0329] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although bone marrow-derived mesenchymal stromal cells (MSCs) may be beneficial in treating heart disease, their ability to transdifferentiate into functional cardiomyocytes remains unclear. Here, bone marrow-derived MSCs from adult female transgenic mice expressing green fluorescent protein (GFP) under the control of the cardiac-specific alpha-myosin heavy chain promoter were cocultured with male rat embryonic cardiomyocytes (rCMs) for 5-15 days. After 5 days in coculture, 6.3% of MSCs became GFP(+) and stained positively for the sarcomeric proteins troponin I and alpha-actinin. The mRNA expression for selected cardiac-specific genes (atrial natriuretic factor, Nkx2.5, and alpha-cardiac actin) in MSCs peaked after 5 days in coculture and declined thereafter. Despite clear evidence for the expression of cardiac genes, GFP(+) MSCs did not generate action potentials or display ionic currents typical of cardiomyocytes, suggesting retention of a stromal cell phenotype. Detailed immunophenotyping of GFP(+) MSCs demonstrated expression of all antigens used to characterize MSCs, as well as the acquisition of additional markers of cardiomyocytes with the phenotype CD45(-)-CD34(+)-CD73(+)-CD105(+)-CD90(+)-CD44(+)-SDF1(+)-CD134L(+)-collagen type IV(+)-vimentin(+)-troponin T(+)-troponin I(+)-alpha-actinin(+)-connexin 43(+). Although cell fusion between rCMs and MSCs was detectable, the very low frequency (0.7%) could not account for the phenotype of the GFP(+) MSCs. In conclusion, we have identified an MSC population displaying plasticity toward the cardiomyocyte lineage while retaining mesenchymal stromal cell properties, including a nonexcitable electrophysiological phenotype. The demonstration of an MSC population coexpressing cardiac and stromal cell markers may explain conflicting results in the literature and indicates the need to better understand the effects of MSCs on myocardial injury. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Robert A Rose
- Department of Physiology, Heart and Stroke/Richard Lewar Centre, University Health Network, Princess Margaret Hospital, Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Fazel SS, Chen L, Angoulvant D, Li SH, Weisel RD, Keating A, Li RK. Activation of c-kit is necessary for mobilization of reparative bone marrow progenitor cells in response to cardiac injury. FASEB J 2007; 22:930-40. [PMID: 17967925 DOI: 10.1096/fj.07-8636com] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiovascular disease is the number-one cause of mortality in the developed world. The aim of this study is to define the mechanisms by which bone marrow progenitor cells are mobilized in response to cardiac ischemic injury. We used a closed-chest model of murine cardiac infarction/reperfusion, which segregated the surgical thoracotomy from the induction of cardiac infarction, so that we could study isolated fluctuations in cytokines without the confounding impact of surgery. We show here that bone marrow activation of the c-kit tyrosine kinase receptor in response to released soluble KitL is necessary for bone marrow progenitor cell mobilization after ischemic cardiac injury. We also show that release of KitL and c-kit activation require the activity of matrix metalloproteinase-9 within the bone marrow compartment. Finally, we demonstrate that mice with c-kit dysfunction develop cardiac failure after myocardial infarction and that bone marrow transplantation rescues the failing cardiac phenotype. In light of the ongoing trials of progenitor cell therapy for heart disease, our study outlines the endogenous repair mechanisms that are invoked after cardiac injury. Amplification of this pathway may aid in restoration of cardiac function after myocardial infarction.
Collapse
Affiliation(s)
- Shafie S Fazel
- Division of Cardiac Surgery, Department of Surgery, Toronto General Hospital Research Institute, Toronto, ON, Canada, M5G 1L7
| | | | | | | | | | | | | |
Collapse
|