1
|
Mónico A, Duarte S, Pajares MA, Pérez-Sala D. Vimentin disruption by lipoxidation and electrophiles: Role of the cysteine residue and filament dynamics. Redox Biol 2019; 23:101098. [PMID: 30658903 PMCID: PMC6859561 DOI: 10.1016/j.redox.2019.101098] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 12/17/2022] Open
Abstract
The intermediate filament protein vimentin constitutes a critical sensor for electrophilic and oxidative stress, which induce extensive reorganization of the vimentin cytoskeletal network. Here, we have investigated the mechanisms underlying these effects. In vitro, electrophilic lipids, including 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) and 4-hydroxynonenal (HNE), directly bind to vimentin, whereas the oxidant diamide induces disulfide bond formation. Mutation of the single vimentin cysteine residue (Cys328) blunts disulfide formation and reduces lipoxidation by 15d-PGJ2, but not HNE. Preincubation with these agents differentially hinders NaCl-induced filament formation by wild-type vimentin, with effects ranging from delayed elongation and increased filament diameter to severe impairment of assembly or aggregation. Conversely, the morphology of vimentin Cys328Ser filaments is mildly or not affected. Interestingly, preformed vimentin filaments are more resistant to electrophile-induced disruption, although chemical modification is not diminished, showing that vimentin (lip)oxidation prior to assembly is more deleterious. In cells, electrophiles, particularly diamide, induce a fast and drastic disruption of existing filaments, which requires the presence of Cys328. As the cellular vimentin network is under continuous remodeling, we hypothesized that vimentin exchange on filaments would be necessary for diamide-induced disruption. We confirmed that strategies reducing vimentin dynamics, as monitored by FRAP, including cysteine crosslinking and ATP synthesis inhibition, prevent diamide effect. In turn, phosphorylation may promote vimentin disassembly. Indeed, treatment with the phosphatase inhibitor calyculin A to prevent dephosphorylation intensifies electrophile-induced wild-type vimentin filament disruption. However, whereas a phosphorylation-deficient vimentin mutant is only partially protected from disorganization, Cys328Ser vimentin is virtually resistant, even in the presence of calyculin A. Together, these results indicate that modification of Cys328 and vimentin exchange are critical for electrophile-induced network disruption.
Collapse
Affiliation(s)
- Andreia Mónico
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Sofia Duarte
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; Molecular Hepatology Group, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Eldawud R, Wagner A, Dong C, Stueckle TA, Rojanasakul Y, Dinu CZ. Carbon nanotubes physicochemical properties influence the overall cellular behavior and fate. NANOIMPACT 2018; 9:72-84. [PMID: 31544167 PMCID: PMC6753956 DOI: 10.1016/j.impact.2017.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The unique properties of single walled carbon nanotubes (SWCNTs) make them viable candidates for versatile implementation in the next generation of biomedical devices for targeted delivery of chemotherapeutic agents or cellular-sensing probes. Such implementation requires user-tailored changes in SWCNT's physicochemical characteristics to allow for efficient cellular integration while maintaining nanotubes' functionality. However, isolated reports showed that user-tailoring could induce deleterious effects in exposed cells, from decrease in cellular proliferation, to changes in cellular adhesion, generation of reactive oxygen species or phenotypical variations, just to name a few. Before full implementation of SWCNTs is achieved, their toxicological profiles need to be mechanistically correlated with their physicochemical properties to determine how the induced cellular fate is related to the exposure conditions or samples' characteristics. Our study provides a comprehensive analysis of the synergistic cyto- and genotoxic effects resulted from short-term exposure of human lung epithelial cells to pristine (as manufactured) and user-tailored SWCNTs, as a function of their physicochemical properties. Specifically, through a systematic approach we are correlating the nanotube uptake and nanotube-induced cellular changes to the sample's physicochemical characteristics (e.g., metal impurities, length, agglomerate size, surface area, dispersion, and surface functionalization). By identifying changes in active hallmarks involved in cell-cell connections and maintaining epithelial layer integrity, we also determine the role that short-term exposure to SWCNTs plays in the overall cellular fate and cellular transformation. Lastly, we assess cellular structure-function relationships to identify non-apoptotic pathways induced by SWCNTs exposure that could however lead to changes in cellular behavior and cellular transformation. Our results show that the degree of cell transformation is a function of the physicochemical properties of the SWCNT, with the nanotube with higher length, higher metal content and larger agglomerate size reducing cell viability to a larger extent. Such changes in cell viability are also complemented by changes in cell structure, cycle and cell-cell interactions, all responsible for maintaining cell fate.
Collapse
Affiliation(s)
- Reem Eldawud
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Alixandra Wagner
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Chenbo Dong
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Todd A. Stueckle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, WV 26506, USA
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
- Department of Pharmaceutical Sciences, West Virginia University, WV 26506, USA
| |
Collapse
|
3
|
Margiotta A, Progida C, Bakke O, Bucci C. Rab7a regulates cell migration through Rac1 and vimentin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:367-381. [PMID: 27888097 DOI: 10.1016/j.bbamcr.2016.11.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 11/09/2016] [Accepted: 11/19/2016] [Indexed: 01/17/2023]
Abstract
Rab7a, a small GTPase of the Rab family, is localized to late endosomes and controls late endocytic trafficking. The discovery of several Rab7a interacting proteins revealed that Rab7a function is closely connected to cytoskeletal elements. Indeed, Rab7a recruits on vesicles RILP and FYCO that are responsible for the movement of Rab7a-positive vesicles and/or organelles on microtubule tracks, but also directly interacts with Rac1, a fundamental regulator of actin cytoskeleton, and with peripherin and vimentin, two intermediate filament proteins. Considering all these interactions and, in particular, the fact that Rac1 and vimentin are key factors for cellular motility, we investigated a possible role of Rab7a in cell migration. We show here that Rab7a is needed for cell migration as Rab7a depletion causes slower migration of NCI H1299 cells affecting cell velocity and directness. Rab7a depletion negatively affects adhesion and spreading onto fibronectin substrates, altering β1-integrin activation, localization and intracellular trafficking, and myosin X localization. In fact, Rab7a-depleted cells show 40% less filopodia and active integrin accumulates at the leading edge of migrating cells. Furthermore, Rab7a depletion decreases the amount of active Rac1 but not its abundance and reduces the number of cells with vimentin filaments facing the wound, indicating that Rab7a has a role in the orientation of vimentin filaments during migration. In conclusion, our results demonstrate a key role of Rab7a in the regulation of different aspects of cell migration.
Collapse
Affiliation(s)
- Azzurra Margiotta
- Department of Biological and Environmental Sciences and Technologies, (DiSTeBA) University of Salento, Via Provinciale Monteroni 165, 73100 Lecce, Italy; Department of Biosciences, Centre for Immune Regulation, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, (DiSTeBA) University of Salento, Via Provinciale Monteroni 165, 73100 Lecce, Italy.
| |
Collapse
|
4
|
Zeindl-Eberhart E, Liebmann S, Jungblut PR, Mattow J, Schmid M, Kerler R, Rabes HM. Influence of RET/PTC1 and RET/PTC3 oncoproteins in radiation-induced papillary thyroid carcinomas on amounts of cytoskeletal protein species. Amino Acids 2010; 41:415-25. [PMID: 20839015 DOI: 10.1007/s00726-010-0733-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
Abstract
Radiation-induced human papillary thyroid carcinomas (PTCs) show a high prevalence of fusions of the RET proto-oncogene to heterologous genes H4 (RET/PTC1) and ELE1 (RET/PTC3), respectively. In contrast to the normal membrane-bound RET protein, aberrant RET fusion proteins are constitutively active oncogenic cytosolic proteins that can lead to malignant transformation of thyroid epithelia. To detect specific tumor-associated protein changes that reflect the effect of RET/PTC fusion proteins, we analyzed normal thyroid tissues, thyroid tumors of the RET/PTC1 and RET/PTC3 type and their respective lymph node metastases by a combination of high-resolution two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-mass spectrometry. PTCs without RET rearrangements served as controls. Several cytoskeletal protein species showed quantitative changes in tumors and lymph node metastases harboring RET/PTC1 or RET/PTC3. We observed prominent C-terminal actin fragments assumedly generated by protease cleavages induced due to enhanced amounts of the active actin-binding protein cofilin-1. In addition, three truncated vimentin species, one of which was proven to be headless, were shown to be highly abundant in tumors and metastases of both RET/PTC types. The observed protein changes are closely connected with the constitutive activation of RET-rearranged oncoproteins and reflect the importance to elucidate disease-related typical signatures on the protein species level.
Collapse
Affiliation(s)
- Evelyn Zeindl-Eberhart
- Institute of Pathology, Ludwig-Maximilians-University of Munich, Thalkirchner Strasse 36, 80337, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
5
|
Lahat G, Zhu QS, Huang KL, Wang S, Bolshakov S, Liu J, Torres K, Langley RR, Lazar AJ, Hung MC, Lev D. Vimentin is a novel anti-cancer therapeutic target; insights from in vitro and in vivo mice xenograft studies. PLoS One 2010; 5:e10105. [PMID: 20419128 PMCID: PMC2855704 DOI: 10.1371/journal.pone.0010105] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 03/03/2010] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Vimentin is a ubiquitous mesenchymal intermediate filament supporting mechano-structural integrity of quiescent cells while participating in adhesion, migration, survival, and cell signaling processes via dynamic assembly/disassembly in activated cells. Soft tissue sarcomas and some epithelial cancers exhibiting "epithelial to mesenchymal transition" phenotypes express vimentin. Withaferin-A, a naturally derived bioactive compound, may molecularly target vimentin, so we sought to evaluate its effects on tumor growth in vitro and in vivo thereby elucidating the role of vimentin in drug-induced responses. METHODS AND FINDINGS Withaferin-A elicited marked apoptosis and vimentin cleavage in vimentin-expressing tumor cells but significantly less in normal mesenchymal cells. This proapoptotic response was abrogated after vimentin knockdown or by blockade of caspase-induced vimentin degradation via caspase inhibitors or overexpression of mutated caspase-resistant vimentin. Pronounced anti-angiogenic effects of Withaferin-A were demonstrated, with only minimal effects seen in non-proliferating endothelial cells. Moreover, Withaferin-A significantly blocked soft tissue sarcoma growth, local recurrence, and metastasis in a panel of soft tissue sarcoma xenograft experiments. Apoptosis, decreased angiogenesis, and vimentin degradation were all seen in Withaferin-A treated specimens. CONCLUSIONS In light of these findings, evaluation of Withaferin-A, its analogs, or other anti-vimentin therapeutic approaches in soft tissue sarcoma and "epithelial to mesenchymal transition" clinical contexts is warranted.
Collapse
Affiliation(s)
- Guy Lahat
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Quan-Sheng Zhu
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Kai-Lieh Huang
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Suizhao Wang
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Svetlana Bolshakov
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jeffery Liu
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Keila Torres
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Robert R. Langley
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Alexander J. Lazar
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Mien Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Dina Lev
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
6
|
Intermediate filaments take the heat as stress proteins. Trends Cell Biol 2010; 20:79-91. [PMID: 20045331 DOI: 10.1016/j.tcb.2009.11.004] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/13/2009] [Accepted: 11/17/2009] [Indexed: 11/18/2022]
Abstract
Intermediate filament (IF) proteins and heat shock proteins (HSPs) are large multimember families that share several features, including protein abundance, significant upregulation in response to a variety of stresses, cytoprotective functions, and the phenocopying of several human diseases after IF protein or HSP mutation. We are now coming to understand that these common elements point to IFs as important cellular stress proteins with some roles akin to those already well-characterized for HSPs. Unique functional roles for IFs include protection from mechanical stress, whereas HSPs are characteristically involved in protein folding and as chaperones. Shared IF and HSP cytoprotective roles include inhibition of apoptosis, organelle homeostasis, and scaffolding. In this report, we review data that corroborate the view that IFs function as highly specialized cytoskeletal stress proteins that promote cellular organization and homeostasis.
Collapse
|
7
|
Kim YM, Lee EJ, Park SY, Cho KH, Kim JY, Pyo H. Cyclooxygenase-2 up-regulates ataxia telangiectasia and Rad3 related through extracellular signal-regulated kinase activation. Mol Cancer Res 2009; 7:1158-68. [PMID: 19584262 DOI: 10.1158/1541-7786.mcr-08-0493] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclooxygenase-2 (COX-2) overexpression caused prolonged G2 arrest after exposure to ionizing radiation (IR) in our previous study. We were therefore interested in investigating the function of COX-2 in the G2 checkpoint pathway. Interestingly, we found that cells in which COX-2 is overexpressed showed up-regulated ataxia telangiectasia and Rad3 related (ATR) expression compared with control cells. In this study, we investigated the mechanism of ATR up-regulation by COX-2 and tested our hypothesis that COX-2-induced extracellular signal-regulated kinase (ERK) activation mediates up-regulation of ATR by COX-2. To investigate the relationship between COX-2 and ATR, we used two stable COX-2-overexpressing cancer cell lines (HCT116-COX-2 and H460-COX-2), a COX-2 knockdown A549 lung cancer cell line (AS), and an ATR knockdown HCT116 cell line. Cells were treated with various drugs [celecoxib, prostaglandin E2 (PGE2), PD98059, U0126, and hydroxyurea] and were then analyzed using reverse transcription-PCR, confocal microscopy, Western blotting, and clonogenic assay. COX-2-overexpressing cells were shown to have increased ERK phosphorylation and ATR expression compared with control cells, whereas AS cells were shown to have decreased levels of phospho-ERK and ATR. In addition, exogenously administered PGE2 increased ERK phosphorylation. Inhibition of ERK phosphorylation decreased ATR expression in both HCT116-COX-2 and A549 cells. HCT116-COX-2 cells were resistant to IR or hydroxyurea compared with HCT116-Mock cells, whereas administration of ATR shRNA showed the opposite effect. COX-2 stimulates ERK phosphorylation via PGE2. This COX-2-induced ERK activation seems to increase ATR expression and activity in endogenous COX-2-overexpressing cancer cells as well as in COX-2-overexpressing stable cell lines.
Collapse
Affiliation(s)
- Young Mee Kim
- Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi, Republic of Korea
| | | | | | | | | | | |
Collapse
|
8
|
Lee SC, Sim N, Clement MV, Yadav SK, Pervaiz S. Dominant negative Rac1 attenuates paclitaxel-induced apoptosis in human melanoma cells through upregulation of heat shock protein 27: A functional proteomic analysis. Proteomics 2007; 7:4112-22. [DOI: 10.1002/pmic.200700386] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Stamatakis K, Sánchez-Gómez FJ, Pérez-Sala D. Identification of novel protein targets for modification by 15-deoxy-Delta12,14-prostaglandin J2 in mesangial cells reveals multiple interactions with the cytoskeleton. J Am Soc Nephrol 2005; 17:89-98. [PMID: 16291835 DOI: 10.1681/asn.2005030329] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The cyclopentenone prostaglandin 15-deoxy-Delta12,14-PGJ2 (15d-PGJ2) has been shown to display protective effects against renal injury or inflammation. In cultured mesangial cells (MC), 15d-PGJ2 inhibits the expression of proinflammatory genes and modulates cell proliferation. Therefore, cyclopentenone prostaglandins (cyPG) have been envisaged as a promise in the treatment of renal disease. The effects of 15d-PGJ2 may be dependent on or independent from its role as a peroxisome proliferator-activated receptor agonist. It was shown recently that an important determinant for the peroxisome proliferator-activated receptor-independent effects of 15d-PGJ2 is the capacity to modify proteins covalently and alter their function. However, a limited number of protein targets have been identified to date. Herein is shown that a biotinylated derivative of 15d-PGJ2 recapitulates the effects of 15d-PGJ2 on the stress response and inhibition of inducible nitric oxide synthase levels and forms stable adducts with proteins in intact MC. Biotinylated 15d-PGJ2 was then used to identify proteins that potentially are involved in cyPG biologic effects. Extracts from biotinylated 15d-PGJ2-treated MC were separated by two-dimensional electrophoresis, and the spots of interest were analyzed by mass spectrometry. Identified targets include proteins that are regulated by oxidative stress, such as heat-shock protein 90 and nucleoside diphosphate kinase, as well as proteins that are involved in cytoskeletal organization, such as actin, tubulin, vimentin, and tropomyosin. Biotinylated 15d-PGJ2 binding to several targets was confirmed by avidin pull-down. Consistent with these findings, 15d-PGJ2 induced early reorganization of vimentin and tubulin in MC. The cyclopentenone moiety and the presence of cysteine were important for vimentin rearrangement. These studies may contribute to the understanding of the mechanism of action and therapeutic potential of cyPG.
Collapse
Affiliation(s)
- Konstantinos Stamatakis
- Departamento de Estructura y Función de Proteínas, Centro de Investigaciones Biológicas, C.S.I.C., Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | |
Collapse
|
10
|
Kim HJ, Song EJ, Lee KJ. Proteomic analysis of protein phosphorylations in heat shock response and thermotolerance. J Biol Chem 2002; 277:23193-207. [PMID: 11886868 DOI: 10.1074/jbc.m201007200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heat shock (HS) induces a wide variety of biological processes, including inhibition of protein synthesis, elevated expression of heat shock proteins, induction of thermotolerance, and apoptotic cell death in a dose-dependent manner. We compared phosphorylated proteins in heat-shocked and thermotolerant cells using proteome analysis. After HS treatment of control RIF-1 and their thermotolerant derivatives, TR-RIF-1 cells, cellular proteins were separated by two-dimensional gel electrophoresis and the phosphorylated proteins were detected with the anti-phosphotyrosine antibodies. We found that 93 proteins showed significant changes in phosphorylation between control and thermotolerant cells as a function of recovery time after HS; we identified 81 of these proteins with peptide mass fingerprinting using MALDI-TOF MS after in-gel trypsin digestion. These phosphorylated proteins exhibit various cellular functions, including chaperones, ion channels, signaling molecules, in transcription and translation processes, in amino acid biosynthesis, oxidoreduction, energy metabolism, and cell motility or structure, suggesting that HS turns on the various signaling pathways by activating protein-tyrosine kinases (PTKs). Of these, 20 proteins were previously identified phosphorylated proteins and 64 were newly identified. These proteins can be grouped into three families: 1) proteins highly phosphorylated in TR-RIF-1 cells at basal level and phosphorylated more significantly by HS in RIF-1 than TR-RIF-1; 2) proteins highly phosphorylated in control RIF-1 cells at basal level and phosphorylated more easily by HS in TR-RIF-1 than in RIF-1 cells; and 3) proteins with a similar basal phosphorylation level in both RIF-1 and TR-RIF-1 cells and responding to HS similarly in both cells. Most of the phosphorylated proteins are presumably involved in HS signaling in different ways, with the first and second families of proteins influencing thermotolerance. The possible tyrosine phosphorylation sites, the possible PTKs phosphorylating these proteins, and the proteins binding to these phosphorylated sites were predicted by the Netphos, ScanProsite, and Scansite programs. These results suggest that HS can activate various PTKs and HS responses can be regulated by phosphorylations of proteins having various functions.
Collapse
Affiliation(s)
- Hee-Jung Kim
- Center for Cell Signaling Research, Division of Molecular Life Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | | | | |
Collapse
|
11
|
Kim HJ, Lee KJ. Heat shock and ceramide have different apoptotic pathways in radiation induced fibrosarcoma (RIF) cells. Mol Cell Biochem 2002; 229:139-51. [PMID: 11936839 DOI: 10.1023/a:1017941131744] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Heat shock induces various cellular responses including inhibition of protein synthesis, production of heat shock proteins (HSPs) and induction of thermotolerance. The molecular mechanisms of the processes have not been well understood. It has been proposed that ceramide formation during heat shock mediates heat shock induced apoptosis. We examined whether C2-ceramide mimicked the cellular response to heat shock in RIF-1 cells and their thermotolerant derivative TR-RIF-1 cells. Discernible effects between heat shock and C2-ceramide treatments were observed in cellular changes such as total protein synthesis, HSP synthesis, stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) activity and PARP cleavage. Heat shock immediately inhibited cellular protein synthesis, which was recovered by synthesizing HSPs first and then whole proteins later. Heat shock also activated SAPK/JNK and increased PARP cleavage in dose-dependent manner. Thermotolerant TR-RIF-1 cells responded to heat shock more insensitively than RIF-1 cells. On the other hand, C2-ceramide treatment did not accompany any changes induced by heat shock. No discernible differences between RIF-1 and TR-RIF-1 cells were observed by C2-ceramide treatment. We tried to figure out how C2-ceramide interacts with cellular membrane and found that exogenous C2-ceramide was incorporated into the outer monolayer and flipped into the inner monolayer of human erythrocytes in ATP-dependent manner. However, the rate of C2-ceramide incorporation was similar in control and thermotolerant cells. In summary, thermotolerant cells are resistant to heat shock induced apoptotic signaling but not resistant, rather sensitive to membrane disturbing C2-ceramide mediated apoptosis. These results suggest that heat shock and ceramide have different signal transduction pathways.
Collapse
Affiliation(s)
- Hee-Jung Kim
- Center for Cell Signaling Research, Division of Molecular Life Sciences and College of Pharmacy, Ewha Womans University, Seoul, Korea
| | | |
Collapse
|