1
|
Bertonnier‐Brouty L, Andersson J, Kaprio T, Hagström J, Bsharat S, Asplund O, Hatem G, Haglund C, Seppänen H, Prasad RB, Artner I. E2F transcription factors promote tumorigenicity in pancreatic ductal adenocarcinoma. Cancer Med 2024; 13:e7187. [PMID: 38686617 PMCID: PMC11058697 DOI: 10.1002/cam4.7187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with limited treatment options, illustrating an urgent need to identify new drugable targets in PDACs. OBJECTIVE Using the similarities between tumor development and normal embryonic development, which is accompanied by rapid cell expansion, we aimed to identify and characterize embryonic signaling pathways that were reinitiated during tumor formation and expansion. METHODS AND RESULTS Here, we report that the transcription factors E2F1 and E2F8 are potential key regulators in PDAC. E2F1 and E2F8 RNA expression is mainly localized in proliferating cells in the developing pancreas and in malignant ductal cells in PDAC. Silencing of E2F1 and E2F8 in PANC-1 pancreatic tumor cells inhibited cell proliferation and impaired cell spreading and migration. Moreover, loss of E2F1 also affected cell viability and apoptosis with E2F expression in PDAC tissues correlating with expression of apoptosis and mitosis pathway genes, suggesting that E2F factors promote cell cycle regulation and tumorigenesis in PDAC cells. CONCLUSION Our findings illustrate that E2F1 and E2F8 transcription factors are expressed in pancreatic progenitor and PDAC cells, where they contribute to tumor cell expansion by regulation of cell proliferation, viability, and cell migration making these genes attractive therapeutic targets and potential prognostic markers for pancreatic cancer.
Collapse
Affiliation(s)
- Ludivine Bertonnier‐Brouty
- Lund Stem Cell CenterLund UniversityLundSweden
- Lund University Diabetes Center, Lund UniversityMalmöSweden
| | | | - Tuomas Kaprio
- Department of SurgeryHelsinki University HospitalHelsinkiFinland
- Translational Cancer Medicine Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- iCAN, Digital Cancer Precision MedicineUniversity of Helsinki and HUS Helsinki University HospitalHelsinkiFinland
| | - Jaana Hagström
- Department of SurgeryHelsinki University HospitalHelsinkiFinland
- Translational Cancer Medicine Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- iCAN, Digital Cancer Precision MedicineUniversity of Helsinki and HUS Helsinki University HospitalHelsinkiFinland
- Department of Oral Pathology and RadiologyUniversity of TurkuTurkuFinland
| | - Sara Bsharat
- Lund Stem Cell CenterLund UniversityLundSweden
- Lund University Diabetes Center, Lund UniversityMalmöSweden
| | - Olof Asplund
- Lund University Diabetes Center, Lund UniversityMalmöSweden
| | - Gad Hatem
- Lund University Diabetes Center, Lund UniversityMalmöSweden
| | - Caj Haglund
- Department of SurgeryHelsinki University HospitalHelsinkiFinland
- Translational Cancer Medicine Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- iCAN, Digital Cancer Precision MedicineUniversity of Helsinki and HUS Helsinki University HospitalHelsinkiFinland
| | - Hanna Seppänen
- Department of SurgeryHelsinki University HospitalHelsinkiFinland
- Translational Cancer Medicine Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- iCAN, Digital Cancer Precision MedicineUniversity of Helsinki and HUS Helsinki University HospitalHelsinkiFinland
| | | | - Isabella Artner
- Lund Stem Cell CenterLund UniversityLundSweden
- Lund University Diabetes Center, Lund UniversityMalmöSweden
| |
Collapse
|
2
|
Segatto NV, Simões LD, Bender CB, Sousa FS, Oliveira TL, Paschoal JDF, Pacheco BS, Lopes I, Seixas FK, Qazi A, Thomas FM, Chaki S, Robertson N, Newsom J, Patel S, Rund LA, Jordan LR, Bolt C, Schachtschneider KM, Schook LB, Collares TV. Oncopig bladder cancer cells recapitulate human bladder cancer treatment responses in vitro. Front Oncol 2024; 14:1323422. [PMID: 38469237 PMCID: PMC10926022 DOI: 10.3389/fonc.2024.1323422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/05/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Bladder cancer is a common neoplasia of the urinary tract that holds the highest cost of lifelong treatment per patient, highlighting the need for a continuous search for new therapies for the disease. Current bladder cancer models are either imperfect in their ability to translate results to clinical practice (mouse models), or rare and not inducible (canine models). Swine models are an attractive alternative to model the disease due to their similarities with humans on several levels. The Oncopig Cancer Model has been shown to develop tumors that closely resemble human tumors. However, urothelial carcinoma has not yet been studied in this platform. Methods We aimed to develop novel Oncopig bladder cancer cell line (BCCL) and investigate whether these urothelial swine cells mimic human bladder cancer cell line (5637 and T24) treatment-responses to cisplatin, doxorubicin, and gemcitabine in vitro. Results Results demonstrated consistent treatment responses between Oncopig and human cells in most concentrations tested (p>0.05). Overall, Oncopig cells were more predictive of T24 than 5637 cell therapeutic responses. Microarray analysis also demonstrated similar alterations in expression of apoptotic (GADD45B and TP53INP1) and cytoskeleton-related genes (ZMYM6 and RND1) following gemcitabine exposure between 5637 (human) and Oncopig BCCL cells, indicating apoptosis may be triggered through similar signaling pathways. Molecular docking results indicated that swine and humans had similar Dg values between the chemotherapeutics and their target proteins. Discussion Taken together, these results suggest the Oncopig could be an attractive animal to model urothelial carcinoma due to similarities in in vitro therapeutic responses compared to human cells.
Collapse
Affiliation(s)
- Natália V. Segatto
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Lucas D. Simões
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Camila B. Bender
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fernanda S. Sousa
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Thais L. Oliveira
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Júlia D. F. Paschoal
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Bruna S. Pacheco
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Isadora Lopes
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana K. Seixas
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Aisha Qazi
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Faith M. Thomas
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Sulalita Chaki
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | | | | | - Shovik Patel
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Laurie A. Rund
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Luke R. Jordan
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
- Sus Clinicals Inc., Chicago, IL, United States
| | - Courtni Bolt
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
- Sus Clinicals Inc., Chicago, IL, United States
| | | | - Lawrence B. Schook
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
- Sus Clinicals Inc., Chicago, IL, United States
| | - Tiago V. Collares
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Yang Y, Zhang Y, Yang J, Zhang M, Tian T, Jiang Y, Liu X, Xue G, Li X, Zhang X, Li S, Huang X, Li Z, Guo Y, Zhao L, Bao H, Zhou Z, Song J, Yang G, Xuan L, Shan H, Zhang Z, Lu Y, Yang B, Pan Z. Interdependent Nuclear Co-Trafficking of ASPP1 and p53 Aggravates Cardiac Ischemia/Reperfusion Injury. Circ Res 2023; 132:208-222. [PMID: 36656967 PMCID: PMC9855749 DOI: 10.1161/circresaha.122.321153] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE ASPP1 (apoptosis stimulating of p53 protein 1) is critical in regulating cell apoptosis as a cofactor of p53 to promote its transcriptional activity in the nucleus. However, whether cytoplasmic ASPP1 affects p53 nuclear trafficking and its role in cardiac diseases remains unknown. This study aims to explore the mechanism by which ASPP1 modulates p53 nuclear trafficking and the subsequent contribution to cardiac ischemia/reperfusion (I/R) injury. METHODS AND RESULTS The immunofluorescent staining showed that under normal condition ASPP1 and p53 colocalized in the cytoplasm of neonatal mouse ventricular cardiomyocytes, while they were both upregulated and translocated to the nuclei upon hypoxia/reoxygenation treatment. The nuclear translocation of ASPP1 and p53 was interdependent, as knockdown of either ASPP1 or p53 attenuated nuclear translocation of the other one. Inhibition of importin-β1 resulted in the cytoplasmic sequestration of both p53 and ASPP1 in neonatal mouse ventricular cardiomyocytes with hypoxia/reoxygenation stimulation. Overexpression of ASPP1 potentiated, whereas knockdown of ASPP1 inhibited the expression of Bax (Bcl2-associated X), PUMA (p53 upregulated modulator of apoptosis), and Noxa, direct apoptosis-associated targets of p53. ASPP1 was also increased in the I/R myocardium. Cardiomyocyte-specific transgenic overexpression of ASPP1 aggravated I/R injury as indicated by increased infarct size and impaired cardiac function. Conversely, knockout of ASPP1 mitigated cardiac I/R injury. The same qualitative data were observed in neonatal mouse ventricular cardiomyocytes exposed to hypoxia/reoxygenation injury. Furthermore, inhibition of p53 significantly blunted the proapoptotic activity and detrimental effects of ASPP1 both in vitro and in vivo. CONCLUSIONS Binding of ASPP1 to p53 triggers their nuclear cotranslocation via importin-β1 that eventually exacerbates cardiac I/R injury. The findings imply that interfering the expression of ASPP1 or the interaction between ASPP1 and p53 to block their nuclear trafficking represents an important therapeutic strategy for cardiac I/R injury.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.).,Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, China (Y.Y.)
| | - Yang Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Jiqin Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Manman Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Tao Tian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Yuan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.).,Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (Y.J.)
| | - Xuening Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Genlong Xue
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Xingda Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Xiaofang Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Shangxuan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Xiang Huang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Zheng Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Yang Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Lexin Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Hairong Bao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Zhiwen Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Jiahui Song
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Guohui Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Lina Xuan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.).,Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, China (H.S.)
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China (Z. Zhang, Z.P.)
| | - Yanjie Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Zhenwei Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.).,Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019 Research Unit 070, Harbin, Heilongjiang, China (Z.P.).,NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China (Z. Zhang, Z.P.)
| |
Collapse
|
4
|
Huang J, Wang Y, Liu J, Chu M, Wang Y. TFDP3 as E2F Unique Partner, Has Crucial Roles in Cancer Cells and Testis. Front Oncol 2021; 11:742462. [PMID: 34745961 PMCID: PMC8564135 DOI: 10.3389/fonc.2021.742462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/30/2021] [Indexed: 12/03/2022] Open
Abstract
Transcription factor DP family member 3 (TFDP3) is a cancer-testis antigen, mainly expressed in normal testis and multiple cancers. TFDP3 gene (Gene ID: 51270) is located on the chromosome X and shares a high degree of sequence homology with TFDP1 and TFDP2, which can form heterodimers with E2F family members and enhance DNA-binding activity of E2Fs. In contrast to TFDP1 and TFDP2, TFDP3 downregulates E2F-mediated transcriptional activation. During DNA damage response in cancer cells, TFDP3 is induced and can inhibit E2F1-mediated apoptosis. Moreover, TFDP3 is involved in cell autophagy and epithelial-mesenchymal transition. Regarding cancer therapy opportunity, the transduction of dendritic cells with recombinant adenovirus-encoding TFDP3 can activate autologous cytotoxic T lymphocytes to target hepatoma cells. Here, we review the characterization of TFDP3, with an emphasis on the biological function and molecular mechanism. A better understanding of TFDP3 will provide new insights into the pathological mechanisms and therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Jiahao Huang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yini Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Jinlong Liu
- Department of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yuedan Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| |
Collapse
|
5
|
Örd T, Örd D, Kaikkonen MU, Örd T. Pharmacological or TRIB3-Mediated Suppression of ATF4 Transcriptional Activity Promotes Hepatoma Cell Resistance to Proteasome Inhibitor Bortezomib. Cancers (Basel) 2021; 13:cancers13102341. [PMID: 34066165 PMCID: PMC8150958 DOI: 10.3390/cancers13102341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/17/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Proteasome inhibitors are currently used in the treatment of certain blood cancers, and clinical trials to treat solid tumors, including liver cancer, have also been conducted. However, different malignancies are not equally susceptible to proteasome inhibitors, and resistance to the drug may develop during the therapy. Here, we characterize the molecular mechanisms underlying the resilience of liver cancer cells to the proteasome inhibitor bortezomib. The results demonstrate that the activity of the eIF2α–ATF4 stress response pathway affects the viability of cells treated with bortezomib. We found that the pseudokinase TRIB3, an endogenous regulator of ATF4 and a gene highly expressed in liver cancer, resides predominantly at the same chromatin sites as ATF4 and constrains ATF4 activity. The survival of bortezomib-exposed hepatoma cells proved sensitive to TRIB3 overexpression and inactivation. Thus, TRIB3 is a novel factor contributing to bortezomib resistance of liver cancer cells. Abstract The proteasome is an appealing target for anticancer therapy and the proteasome inhibitor bortezomib has been approved for the treatment of several types of malignancies. However, the molecular mechanisms underlying cancer cell resistance to bortezomib remain poorly understood. In the current article, we investigate how modulation of the eIF2α–ATF4 stress pathway affects hepatoma cell response to bortezomib. Transcriptome profiling revealed that many ATF4 transcriptional target genes are among the most upregulated genes in bortezomib-treated HepG2 human hepatoma cells. While pharmacological enhancement of the eIF2α–ATF4 pathway activity results in the elevation of the activities of all branches of the unfolded protein response (UPR) and sensitizes cells to bortezomib toxicity, the suppression of ATF4 induction delays bortezomib-induced cell death. The pseudokinase TRIB3, an inhibitor of ATF4, is expressed at a high basal level in hepatoma cells and is strongly upregulated in response to bortezomib. To map genome-wide chromatin binding loci of TRIB3 protein, we fused a Flag tag to endogenous TRIB3 in HepG2 cells and performed ChIP-Seq. The results demonstrate that TRIB3 predominantly colocalizes with ATF4 on chromatin and binds to genomic regions containing the C/EBP–ATF motif. Bortezomib treatment leads to a robust enrichment of TRIB3 binding near genes induced by bortezomib and involved in the ER stress response and cell death. Disruption of TRIB3 increases C/EBP–ATF-driven transcription, augments ER stress and cell death upon exposure to bortezomib, while TRIB3 overexpression enhances cell survival. Thus, TRIB3, colocalizing with ATF4 and limiting its transcriptional activity, functions as a factor increasing resistance to bortezomib, while pharmacological over-activation of eIF2α–ATF4 can overcome the endogenous restraint mechanisms and sensitize cells to bortezomib.
Collapse
Affiliation(s)
- Tiit Örd
- Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (T.Ö.); (D.Ö.)
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland;
| | - Daima Örd
- Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (T.Ö.); (D.Ö.)
| | - Minna U. Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland;
| | - Tõnis Örd
- Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (T.Ö.); (D.Ö.)
- Correspondence:
| |
Collapse
|
6
|
Blank-Giwojna A, Postepska-Igielska A, Grummt I. lncRNA KHPS1 Activates a Poised Enhancer by Triplex-Dependent Recruitment of Epigenomic Regulators. Cell Rep 2020; 26:2904-2915.e4. [PMID: 30865882 DOI: 10.1016/j.celrep.2019.02.059] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/14/2018] [Accepted: 02/14/2019] [Indexed: 12/18/2022] Open
Abstract
Transcription of the proto-oncogene SPHK1 is regulated by KHPS1, an antisense RNA that activates SPHK1 expression by forming a triple-helical RNA-DNA-DNA structure at the SPHK1 enhancer. Triplex-mediated tethering of KHPS1 to its target gene is required for recruitment of E2F1 and p300 and transcription of the RNA derived from the SPHK1 enhancer (eRNA-Sphk1). eRNA-Sphk1 evicts CTCF, which insulates the enhancer from the SPHK1 promoter, thus facilitating SPHK1 expression. Genomic deletion of the triplex-forming sequence attenuates SPHK1 expression, leading to decreased cell migration and invasion. Replacement of the triplex-forming region (TFR) of KHPS1 by the TFR of the lncRNA MEG3 tethers KHPS1 to the MEG3 target gene TGFBR1, underscoring the interchangeability and anchoring function of sequences involved in triplex formation. Altogether, the results reveal a triplex-driven feedforward mechanism involving lncRNA-dependent induction of eRNA, which enhances expression of specific target genes.
Collapse
Affiliation(s)
- Alena Blank-Giwojna
- Molecular Biology of the Cell II, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Anna Postepska-Igielska
- Molecular Biology of the Cell II, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Ingrid Grummt
- Molecular Biology of the Cell II, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| |
Collapse
|
7
|
Sun CY, Zhang XP, Wang W. Coordination of miR-192 and miR-22 in p53-Mediated Cell Fate Decision. Int J Mol Sci 2019; 20:ijms20194768. [PMID: 31561425 PMCID: PMC6801623 DOI: 10.3390/ijms20194768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/08/2019] [Accepted: 09/22/2019] [Indexed: 12/14/2022] Open
Abstract
p53-targeted microRNAs (miRNAs) markedly affect cellular response to DNA damage. These miRNAs may contribute to either cell cycle arrest or apoptosis induction. However, how these miRNAs coordinate to modulate the decision between cell survival and death remains less understood. Here, we developed an integrated model of p53 signaling network to investigate how p53-targeted miR-192 and miR-22 modulate cellular outcome in response to DNA damage. By numerical simulations, we found that p53 is activated progressively depending on the extent of DNA damage. Upon moderate damage, p53 rises to medium levels and induces miR-192 to promote its own activation, facilitating p21 induction and cell cycle arrest. Upon severe damage, p53 reaches high levels and is fully activated due to phosphatase and tensin homolog (PTEN) induction. As a result, it transactivates miR-22 to repress p21 expression and activate E2F1, resulting in apoptosis. Therefore, miR-192 promotes primary activation of p53, while miR-22 promotes apoptosis by downregulating p21. This work may advance the understanding of the mechanism for cell fate decision between life and death by p53-inducible miRNAs.
Collapse
Affiliation(s)
- Cheng-Yuan Sun
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Xiao-Peng Zhang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China.
- Institute for Brain Sciences, Nanjing University, Nanjing 210023, China.
| | - Wei Wang
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China.
- Institute for Brain Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
8
|
Dogan Turacli I, Demirtas Korkmaz F, Candar T, Ekmekci A. Flavopiridol's effects on metastasis in KRAS mutant lung adenocarcinoma cells. J Cell Biochem 2018; 120:5628-5635. [PMID: 30317654 DOI: 10.1002/jcb.27846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/17/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND There is still no clinically approved agent for mutant KRAS, which is the most common alteration in non-small-cell lung cancer (NSCLC). Flavopiridol is a semisynthetic flavonoid that inhibits cell growth through cyclin-dependent kinases in G1/S or G2/M of the cell cycle and induces apoptosis. In this study, we evaluated its effect on cellular apoptosis, survival, and metastasis mechanisms on KRAS mutant A549, Calu-1, and H2009 cell lines. METHODS The cytotoxic effects of flavopiridol on NSCLC cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability test. The cells were treated with 200 and 400 nM flavopiridol, and, then, apoptosis, survival, and metastasis-related protein expressions were determined by Western blot analysis. The antimetastatic effects of flavopiridol were assessed by wound healing and Galectin-3 activity assay. RESULTS Flavopiridol drastically affected toxicity in all KRAS mutant NSCLC cells at nanomolar concentrations. Also, it could efficiently inhibit wound healing and Galectin-3 activity in all the cells tested. However, the metastasis-related protein expressions did not reflect these obvious effects on blotting. p-Erk was activated as a cellular survival mechanism to escape apoptosis in all the cells tested. CONCLUSION Although there are many mechanisms that still need to be elucidated, flavopiridol can be used as a metastasis inhibitor and an apoptosis inducer in KRAS mutant NSCLC.
Collapse
Affiliation(s)
- Irem Dogan Turacli
- Department of Medical Biology, Faculty of Medicine, Ufuk University, Ankara, Turkey
| | - Funda Demirtas Korkmaz
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Tuba Candar
- Department of Medical Biochemistry, Faculty of Medicine, Ufuk University, Ankara, Turkey
| | - Abdullah Ekmekci
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
9
|
The Role of JMY in p53 Regulation. Cancers (Basel) 2018; 10:cancers10060173. [PMID: 29857553 PMCID: PMC6025294 DOI: 10.3390/cancers10060173] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 11/17/2022] Open
Abstract
Following the event of DNA damage, the level of tumour suppressor protein p53 increases inducing either cell cycle arrest or apoptosis. Junctional Mediating and Regulating Y protein (JMY) is a transcription co-factor involved in p53 regulation. In event of DNA damage, JMY levels also upregulate in the nucleus where JMY forms a co-activator complex with p300/CREB-binding protein (p300/CBP), Apoptosis-stimulating protein of p53 (ASPP) and Stress responsive activator of p53 (Strap). This co-activator complex then binds to and increases the ability of p53 to induce transcription of proteins triggering apoptosis but not cell cycle arrest. This then suggests that the increase of JMY levels due to DNA damage putatively "directs" p53 activity toward triggering apoptosis. JMY expression is also linked to increased cell motility as it: (1) downregulates the expression of adhesion molecules of the Cadherin family and (2) induces actin nucleation, making cells less adhesive and more mobile, favouring metastasis. All these characteristics taken together imply that JMY possesses both tumour suppressive and tumour metastasis promoting capabilities.
Collapse
|
10
|
Wang Y, Sun H, Zhang D, Fan D, Zhang Y, Dong X, Liu S, Yang Z, Ni C, Li Y, Liu F, Zhao X. TP53INP1 inhibits hypoxia-induced vasculogenic mimicry formation via the ROS/snail signalling axis in breast cancer. J Cell Mol Med 2018; 22:3475-3488. [PMID: 29655255 PMCID: PMC6010892 DOI: 10.1111/jcmm.13625] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/05/2018] [Indexed: 12/28/2022] Open
Abstract
Tumour protein p53‐inducible nuclear protein 1 (TP53INP1) is a tumour suppressor associated with malignant tumour metastasis. Vasculogenic mimicry (VM) is a new tumour vascular supply pattern that significantly influences tumour metastasis and contributes to a poor prognosis. However, the molecular mechanism of the relationship between TP53INP1 and breast cancer VM formation is unknown. Here, we explored the underlying mechanism by which TP53INP1 regulates VM formation in vitro and in vivo. High TP53INP1 expression was not only negatively correlated with a poor prognosis but also had a negative relationship with VE‐cadherin, HIF‐1α and Snail expression. TP53INP1 overexpression inhibited breast cancer invasion, migration, epithelial‐mesenchymal transition (EMT) and VM formation; conversely, TP53INP1 down‐regulation promoted these processes in vitro by functional experiments and Western blot analysis. We established a hypoxia model induced by CoCl2 and assessed the effects of TP53INP1 on hypoxia‐induced EMT and VM formation. In addition, we confirmed that a reactive oxygen species (ROS)‐mediated signalling pathway participated in TP53INP1‐mediated VM formation. Together, our results show that TP53INP1 inhibits hypoxia‐induced EMT and VM formation via the ROS/GSK‐3β/Snail pathway in breast cancer, which offers new insights into breast cancer clinical therapy.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Huizhi Sun
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Dan Fan
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Shiqi Liu
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Zhao Yang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Chunsheng Ni
- Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Fang Liu
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
11
|
Hauck L, Stanley-Hasnain S, Fung A, Grothe D, Rao V, Mak TW, Billia F. Cardiac-specific ablation of the E3 ubiquitin ligase Mdm2 leads to oxidative stress, broad mitochondrial deficiency and early death. PLoS One 2017; 12:e0189861. [PMID: 29267372 PMCID: PMC5739440 DOI: 10.1371/journal.pone.0189861] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
The maintenance of normal heart function requires proper control of protein turnover. The ubiquitin-proteasome system is a principal regulator of protein degradation. Mdm2 is the main E3 ubiquitin ligase for p53 in mitotic cells thereby regulating cellular growth, DNA repair, oxidative stress and apoptosis. However, which of these Mdm2-related activities are preserved in differentiated cardiomyocytes has yet to be determined. We sought to elucidate the role of Mdm2 in the control of normal heart function. We observed markedly reduced Mdm2 mRNA levels accompanied by highly elevated p53 protein expression in the hearts of wild type mice subjected to myocardial infarction or trans-aortic banding. Accordingly, we generated conditional cardiac-specific Mdm2 gene knockout (Mdm2f/f;mcm) mice. In adulthood, Mdm2f/f;mcm mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction with early mortality post-tamoxifen. A decreased polyubiquitination of myocardial p53 was observed, leading to its stabilization and activation, in the absence of acute stress. In addition, transcriptomic analysis of Mdm2-deficient hearts revealed that there is an induction of E2f1 and c-Myc mRNA levels with reduced expression of the Pgc-1a/Ppara/Esrrb/g axis and Pink1. This was associated with a significant degree of cardiomyocyte apoptosis, and an inhibition of redox homeostasis and mitochondrial bioenergetics. All these processes are early, Mdm2-associated events and contribute to the development of pathological hypertrophy. Our genetic and biochemical data support a role for Mdm2 in cardiac growth control through the regulation of p53, the Pgc-1 family of transcriptional coactivators and the pivotal antioxidant Pink1.
Collapse
Affiliation(s)
- Ludger Hauck
- Toronto General Research Institute, Toronto, Ontario, Canada
| | | | - Amelia Fung
- Toronto General Research Institute, Toronto, Ontario, Canada
| | - Daniela Grothe
- Toronto General Research Institute, Toronto, Ontario, Canada
| | - Vivek Rao
- Division of Cardiovascular Surgery, UHN, Toronto, Ontario, Canada
| | - Tak W. Mak
- Campbell Family Cancer Research Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Filio Billia
- Toronto General Research Institute, Toronto, Ontario, Canada
- Division of Cardiology, University Health Network (UHN), Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario Canada
- * E-mail:
| |
Collapse
|
12
|
EGR-1/ASPP1 inter-regulatory loop promotes apoptosis by inhibiting cyto-protective autophagy. Cell Death Dis 2017; 8:e2869. [PMID: 28594407 PMCID: PMC5520923 DOI: 10.1038/cddis.2017.268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 01/07/2023]
Abstract
The decrease of ASPP1 (Apoptosis-Stimulating Protein of p53 1), a known p53 activator, has been linked to carcinogenesis and the cytotoxic resistance in various cancers, yet the underlying mechanisms of ASPP1 expression and its complex functions are not yet clear. Here, we report that ASPP1 forms an inter-regulatory loop with Early Growth Response 1 (EGR-1), and promotes apoptosis via inhibiting cyto-protective autophagy, independent of the well-documented p53-dependent mechanisms. We show that ASPP1 mRNA and protein were remarkably elevated by ectopic EGR-1 expression or endogenous EGR-1 activation, in cells with different tissue origins and p53 status. Conversely, RNAi-mediated EGR-1 knockdown suppressed ASPP1. The further mechanism studies revealed that ASPP1 promoter, mapped to -283/+88, which contained three conserved EGR-1 binding sites, was required for both binding and transactivity of EGR-1. In addition, we demonstrate that ASPP1 promoted EGR-1 in a positive feedback loop by preventing proteasome-mediated EGR-1 degradation or promoting EGR-1 nuclear import in response to anticancer natural compound Quercetin. Furthermore, albeit activating p53 in the nucleus is the well-studied function of ASPP1, we found that ASPP1 was predominately localized in the cytoplasm. Interestingly, the cytoplasmic ASPP1 retained its pro-apoptosis capability. Mechanistically, ASPP1 suppressed Atg5-Atg12 and also bound with Atg5-Atg12 to prevent its further complex formation with Atg16, resulting in the inhibition of cyto-protective autophagy. In conclusion, our results provide new insights into EGR-1/ASPP1 regulatory loop in sensitizing Quercetin-induced apoptosis. EGR-1/ASPP1, therefore, may be potentially used as therapeutic targets to improve cancer's response to pro-apoptosis treatments.
Collapse
|
13
|
Modeling the response of a tumor-suppressive network to mitogenic and oncogenic signals. Proc Natl Acad Sci U S A 2017; 114:5337-5342. [PMID: 28484034 DOI: 10.1073/pnas.1702412114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intrinsic tumor-suppressive mechanisms protect normal cells against aberrant proliferation. Although cellular signaling pathways engaged in tumor repression have been largely identified, how they are orchestrated to fulfill their function still remains elusive. Here, we built a tumor-suppressive network model composed of three modules responsible for the regulation of cell proliferation, activation of p53, and induction of apoptosis. Numerical simulations show a rich repertoire of network dynamics when normal cells are subject to serum stimulation and adenovirus E1A overexpression. We showed that oncogenic signaling induces ARF and that ARF further promotes p53 activation to inhibit proliferation. Mitogenic signaling activates E2F activators and promotes Akt activation. p53 and E2F1 cooperate to induce apoptosis, whereas Akt phosphorylates p21 to repress caspase activation. These prosurvival and proapoptotic signals compete to dictate the cell fate of proliferation, cell-cycle arrest, or apoptosis. The cellular outcome is also impacted by the kinetic mode (ultrasensitivity or bistability) of p53. When cells are exposed to serum deprivation and recovery under fixed E1A, the shortest starvation time required for apoptosis induction depends on the terminal serum concentration, which was interpreted in terms of the dynamics of caspase-3 activation and cytochrome c release. We discovered that caspase-3 can be maintained active at high serum concentrations and that E1A overexpression sensitizes serum-starved cells to apoptosis. This work elucidates the roles of tumor repressors and prosurvival factors in tumor repression based on a dynamic network analysis and provides a framework for quantitatively exploring tumor-suppressive mechanisms.
Collapse
|
14
|
Zhang X, Trépanier V, Beaujois R, Viranaicken W, Drobetsky E, DesGroseillers L. The downregulation of the RNA-binding protein Staufen2 in response to DNA damage promotes apoptosis. Nucleic Acids Res 2016; 44:3695-712. [PMID: 26843428 PMCID: PMC4856980 DOI: 10.1093/nar/gkw057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/21/2016] [Indexed: 12/14/2022] Open
Abstract
Staufen2 (Stau2) is an RNA-binding protein involved in cell fate decision by controlling several facets of mRNA processing including localization, splicing, translation and stability. Herein we report that exposure to DNA-damaging agents that generate replicative stress such as camptothecin (CPT), 5-fluoro-uracil (5FU) and ultraviolet radiation (UVC) causes downregulation of Stau2 in HCT116 colorectal cancer cells. In contrast, other agents such as doxorubicin and ionizing radiation had no effect on Stau2 expression. Consistently, Stau2 expression is regulated by the ataxia telangiectasia and Rad3-related (ATR) signaling pathway but not by the DNA-PK or ataxia telangiectasia mutated/checkpoint kinase 2 pathways. Stau2 downregulation is initiated at the level of transcription, independently of apoptosis induction. Promoter analysis identified a short 198 bp region which is necessary and sufficient for both basal and CPT-regulated Stau2 expression. The E2F1 transcription factor regulates Stau2 in untreated cells, an effect that is abolished by CPT treatment due to E2F1 displacement from the promoter. Strikingly, Stau2 downregulation enhances levels of DNA damage and promotes apoptosis in CPT-treated cells. Taken together our results suggest that Stau2 is an anti-apoptotic protein that could be involved in DNA replication and/or maintenance of genome integrity and that its expression is regulated by E2F1 via the ATR signaling pathway.
Collapse
Affiliation(s)
- Xin Zhang
- Département de Biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit Montréal, QC H3T 1J4, Canada
| | - Véronique Trépanier
- Département de Biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit Montréal, QC H3T 1J4, Canada
| | - Remy Beaujois
- Département de Biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit Montréal, QC H3T 1J4, Canada
| | - Wildriss Viranaicken
- Département de Biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit Montréal, QC H3T 1J4, Canada
| | - Elliot Drobetsky
- Département de Médecine, Université de Montréal and Centre de Recherche, Hôpital Maisonneuve Rosemont, Montréal, Québec, H1T 2M4, Canada
| | - Luc DesGroseillers
- Département de Biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit Montréal, QC H3T 1J4, Canada
| |
Collapse
|
15
|
Saadi H, Seillier M, Carrier A. The stress protein TP53INP1 plays a tumor suppressive role by regulating metabolic homeostasis. Biochimie 2015. [PMID: 26225460 DOI: 10.1016/j.biochi.2015.07.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the recent years, we have provided evidence that Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) is a key stress protein with antioxidant-associated tumor suppressive function. The TP53INP1 gene, which is highly conserved in mammals, is over-expressed during stress responses including inflammation. This gene encodes two protein isoforms with nuclear or cytoplasmic subcellular localization depending on the context. TP53INP1 contributes to stress responses, thus preventing stress-induced dysfunctions leading to pathologies such as cancer. Two major mechanisms by which TP53INP1 functions have been unveiled. First, in the nucleus, TP53INP1 was shown to regulate the transcriptional activity of p53 and p73 by direct interaction, and to mediate the antioxidant activity of p53. Second, independently of p53, TP53INP1 contributes to autophagy and more particularly mitophagy through direct interaction with molecular actors of autophagy. TP53INP1 is thus required for the homeostasis of the mitochondrial compartment, and is therefore involved in the regulation of energetic metabolism. Finally, the antioxidant function of TP53INP1 stems from the control of mitochondrial reactive oxygen species production. In conclusion, TP53INP1 is a multifaceted protein endowed with multiple functions, including metabolic regulation, as is its main functional partner p53.
Collapse
Affiliation(s)
- Houda Saadi
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France
| | - Marion Seillier
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France
| | - Alice Carrier
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France.
| |
Collapse
|
16
|
Kitamura H, Ozono E, Iwanaga R, Bradford AP, Okuno J, Shimizu E, Kurayoshi K, Kugawa K, Toh H, Ohtani K. Identification of novel target genes specifically activated by deregulated E2F in human normal fibroblasts. Genes Cells 2015. [PMID: 26201719 DOI: 10.1111/gtc.12268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The transcription factor E2F is the principal target of the tumor suppressor pRB. E2F plays crucial roles not only in cell proliferation by activating growth-related genes but also in tumor suppression by activating pro-apoptotic and growth-suppressive genes. We previously reported that, in human normal fibroblasts, the tumor suppressor genes ARF, p27(Kip1) and TAp73 are activated by deregulated E2F activity induced by forced inactivation of pRB, but not by physiological E2F activity induced by growth stimulation. In contrast, growth-related E2F targets are activated by both E2F activities, underscoring the roles of deregulated E2F in tumor suppression in the context of dysfunctional pRB. In this study, to further understand the roles of deregulated E2F, we explored new targets that are specifically activated by deregulated E2F using DNA microarray. The analysis identified nine novel targets (BIM, RASSF1, PPP1R13B, JMY, MOAP1, RBM38, ABTB1, RBBP4 and RBBP7), many of which are involved in the p53 and RB tumor suppressor pathways. Among these genes, the BIM gene was shown to be activated via atypical E2F-responsive promoter elements and to contribute to E2F1-mediated apoptosis. Our results underscore crucial roles of deregulated E2F in growth suppression to counteract loss of pRB function.
Collapse
Affiliation(s)
- Hodaka Kitamura
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Eiko Ozono
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Ritsuko Iwanaga
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Andrew P Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Junko Okuno
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Emi Shimizu
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Kenta Kurayoshi
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Kazuyuki Kugawa
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Hiroyuki Toh
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Kiyoshi Ohtani
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
17
|
Abstract
Human T-cell leukemia virus (HTLV)-1 is a human retrovirus and the etiological agent of adult T-cell leukemia/lymphoma (ATLL), a fatal malignancy of CD4/CD25+ T lymphocytes. In recent years, cellular as well as virus-encoded microRNA (miRNA) have been shown to deregulate signaling pathways to favor virus life cycle. HTLV-1 does not encode miRNA, but several studies have demonstrated that cellular miRNA expression is affected in infected cells. Distinct mechanisms such as transcriptional, epigenetic or interference with miRNA processing machinery have been involved. This article reviews the current knowledge of the role of cellular microRNAs in virus infection, replication, immune escape and pathogenesis of HTLV-1.
Collapse
|
18
|
Julian LM, Blais A. Transcriptional control of stem cell fate by E2Fs and pocket proteins. Front Genet 2015; 6:161. [PMID: 25972892 PMCID: PMC4412126 DOI: 10.3389/fgene.2015.00161] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/08/2015] [Indexed: 01/04/2023] Open
Abstract
E2F transcription factors and their regulatory partners, the pocket proteins (PPs), have emerged as essential regulators of stem cell fate control in a number of lineages. In mammals, this role extends from both pluripotent stem cells to those encompassing all embryonic germ layers, as well as extra-embryonic lineages. E2F/PP-mediated regulation of stem cell decisions is highly evolutionarily conserved, and is likely a pivotal biological mechanism underlying stem cell homeostasis. This has immense implications for organismal development, tissue maintenance, and regeneration. In this article, we discuss the roles of E2F factors and PPs in stem cell populations, focusing on mammalian systems. We discuss emerging findings that position the E2F and PP families as widespread and dynamic epigenetic regulators of cell fate decisions. Additionally, we focus on the ever expanding landscape of E2F/PP target genes, and explore the possibility that E2Fs are not simply regulators of general ‘multi-purpose’ cell fate genes but can execute tissue- and cell type-specific gene regulatory programs.
Collapse
Affiliation(s)
- Lisa M Julian
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON Canada
| | - Alexandre Blais
- Ottawa Institute of Systems Biology, Ottawa, ON Canada ; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
19
|
Tavolaro S, Colombo T, Chiaretti S, Peragine N, Fulci V, Ricciardi MR, Messina M, Bonina S, Brugnoletti F, Marinelli M, Di Maio V, Mauro FR, Del Giudice I, Macino G, Foà R, Guarini A. Increased chronic lymphocytic leukemia proliferation upon IgM stimulation is sustained by the upregulation of miR-132 and miR-212. Genes Chromosomes Cancer 2015; 54:222-34. [PMID: 25645730 DOI: 10.1002/gcc.22236] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/25/2022] Open
Abstract
To assess the involvement of microRNAs (miRNAs) in B-cell receptor (BCR) stimulation, we first evaluated miRNA profiling following IgM cross-linking in chronic lymphocytic leukemia (CLL) cells and in normal B lymphocytes. Second, we combined miRNA and gene expression data to identify putative miRNA functional networks. miRNA profiling showed distinctive patterns of regulation after stimulation in leukemic versus normal B lymphocytes and identified a differential responsiveness to BCR engagement in CLL subgroups according to the immunoglobulin heavy chain variable region mutational status and clinical outcome. The most significantly modulated miRNAs in stimulated CLL are miR-132 and miR-212. Notably, these miRNAs appeared regulated in progressive but not in stable CLL. Accordingly, gene profiling showed a significant transcriptional response to stimulation exclusively in progressive CLL. Based on these findings, we combined miRNA and gene expression data to investigate miR-132 and miR-212 candidate interactions in this CLL subgroup. Correlation analysis pointed to a link between these miRNAs and RB/E2F and TP53 cascades with proproliferative effects, as corroborated by functional analyses. Finally, basal levels of miR-132 and miR-212 were measured in an independent cohort of 20 unstimulated CLL cases and both showed lower expression in progressive compared to stable patients, suggesting an association between the expression of these molecules and disease prognosis. Overall, our results support a model involving miR-132 and miR-212 upregulation in sustaining disease progression in CLL. These miRNAs may therefore provide new valuable strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Simona Tavolaro
- Hematology, Department of Cellular Biotechnologies and Hematology, "Sapienza" University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Adighibe O, Turley H, Leek R, Harris A, Coutts AS, La Thangue N, Gatter K, Pezzella F. JMY protein, a regulator of P53 and cytoplasmic actin filaments, is expressed in normal and neoplastic tissues. Virchows Arch 2014; 465:715-22. [PMID: 25280461 DOI: 10.1007/s00428-014-1660-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 01/04/2023]
Abstract
JMY is a p300-binding protein with dual action: by enhancing P53 transcription in the nucleus, it plays an important role in the cellular response to DNA damage, while by promoting actin filament assembly in the cytoplasm; it induces cell motility in vitro. Therefore, it has been argued that, depending of the cellular setting, it might act either as tumor suppressor or as oncogene. In order to further determine its relevance to human cancer, we produced the monoclonal antibody HMY 117 against a synthetic peptide from the N-terminus region and characterized it on two JMY positive cell lines, MCF7 and HeLa, wild type and after transfection with siRNA to switch off JMY expression. JMY was expressed in normal tissues and heterogeneously in different tumor types, with close correlation between cytoplasmic and nuclear expression. Most noticeable was the loss of expression in some infiltrating carcinomas compared to normal tissue and in in situ carcinomas of the breast, which is consistent with a putative suppressor role. However, as in lymph node metastases, expression of JMY was higher than in primary colorectal and head and neck carcinomas, it might also have oncogenic properties depending on the cellular context by increasing motility and metastatic potential.
Collapse
Affiliation(s)
- Omanma Adighibe
- Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
miR-190 is upregulated in Epstein-Barr Virus type I latency and modulates cellular mRNAs involved in cell survival and viral reactivation. Virology 2014; 464-465:184-195. [PMID: 25086243 DOI: 10.1016/j.virol.2014.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 10/25/2013] [Accepted: 06/20/2014] [Indexed: 12/17/2022]
Abstract
Epstein-Barr Virus (EBV) is a prevalent human pathogen infecting over 90% of the population. Much of the success of the virus is attributed to its ability to maintain latency. The detailed mechanisms underlying the establishment and maintenance of EBV latency remain poorly understood. A microRNA profiling study revealed differential expression of many cellular miRNAs between types I and III latency cells, suggesting cellular miRNAs may play roles in regulating EBV latency. mir-190 is the most differentially up-regulated miRNA in type I latency cells as compared with type III latency cells and the up-regulation appears to be attributed to EBER RNAs that express in higher levels in type I latency cells than type III cells. With the aide of a lentiviral overexpression system and microarray analysis, several cellular mRNAs are identified as potential targets of mir-190. By targeting TP53INP1, miR-190 enhances cell survival by preventing apoptosis and relieving G0/G1 cell cycle arrest. Additionally, miR-190 down-regulates NR4A3, a cellular immediate-early gene for EBV reactivation, and inhibits the expression of the viral immediate-early gene bzlf1 and viral lytic DNA replication. Taken together, our data revealed a mechanism that EBV utilizes a cellular microRNA to promote host cell survival and prevent virus from entering lytic life cycle for latency maintenance.
Collapse
|
22
|
Oxidative stress-induced p53 activity is enhanced by a redox-sensitive TP53INP1 SUMOylation. Cell Death Differ 2014; 21:1107-18. [PMID: 24608790 DOI: 10.1038/cdd.2014.28] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 01/08/2014] [Accepted: 01/27/2014] [Indexed: 01/28/2023] Open
Abstract
Tumor Protein p53-Induced Nuclear Protein 1 (TP53INP1) is a tumor suppressor that modulates the p53 response to stress. TP53INP1 is one of the key mediators of p53 antioxidant function by promoting the p53 transcriptional activity on its target genes. TP53INP1 expression is deregulated in many types of cancers including pancreatic ductal adenocarcinoma in which its decrease occurs early during the preneoplastic development. In this work, we report that redox-dependent induction of p53 transcriptional activity is enhanced by the oxidative stress-induced SUMOylation of TP53INP1 at lysine 113. This SUMOylation is mediated by PIAS3 and CBX4, two SUMO ligases especially related to the p53 activation upon DNA damage. Importantly, this modification is reversed by three SUMO1-specific proteases SENP1, 2 and 6. Moreover, TP53INP1 SUMOylation induces its binding to p53 in the nucleus under oxidative stress conditions. TP53INP1 mutation at lysine 113 prevents the pro-apoptotic, antiproliferative and antioxidant effects of TP53INP1 by impairing the p53 response on its target genes p21, Bax and PUMA. We conclude that TP53INP1 SUMOylation is essential for the regulation of p53 activity induced by oxidative stress.
Collapse
|
23
|
Qin J, Luo M, Qian H, Chen W. Upregulated miR-182 increases drug resistance in cisplatin-treated HCC cell by regulating TP53INP1. Gene 2014; 538:342-7. [PMID: 24447717 DOI: 10.1016/j.gene.2013.12.043] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/04/2013] [Accepted: 12/19/2013] [Indexed: 12/19/2022]
Abstract
Chemotherapy plays a crucial role in hepatocellular carcinoma (HCC) treatment especially for patients with advanced HCC. Cisplatin is one of the commonly used chemotherapeutic drugs for the treatment of HCC. However, acquisition of cisplatin resistance is common in patients with HCC, and the underlying mechanism of such resistance is not fully understood. In the study, we focused on identifying the role of miRNAs in chemotherapy resistance after cisplatin-based combination chemotherapy. We assayed the expression level of miR-182 after cisplatin-based chemotherapy in patients with advanced HCC, and defined the biological functions by real-time PCR analysis and CCK-8 assay. We found that miR-182 levels were significantly increased in HCC patients treated with cisplatin-based chemotherapy. miR-182 levels were also higher in cisplatin-resistant HepG2 (HepG2-R) cells than in HepG2 cells. Upregulated miR-182 significantly increased the cell viability, whereas miR-182 knockdown reduced the cell viability during cisplatin treatment. miR-182 inhibition also partially overcame cisplatin resistance in HepG2-R cell. Furthermore, we found that upregulated miR-182 inhibited the expression of tumor suppressor gene TP53INP1 (tumor protein 53-induced nuclear protein 1) in vitro. In vivo, miR-182 and TP53INP1 expression was negatively correlated. We finally demonstrated that miR-182 increased cisplatin resistance of HCC cell, partly by targeting TP53INP1. These data suggest that miR-182/TP53INP1 signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.
Collapse
Affiliation(s)
- Jun Qin
- Department of General Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, China
| | - Meng Luo
- Department of General Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, China
| | - Haixin Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Wei Chen
- Department of General Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, China.
| |
Collapse
|
24
|
Ravillah D, Mohammed A, Qian L, Brewer M, Zhang Y, Biddick L, Steele VE, Rao CV. Chemopreventive effects of an HDAC2-selective inhibitor on rat colon carcinogenesis and APCmin/+ mouse intestinal tumorigenesis. J Pharmacol Exp Ther 2014; 348:59-68. [PMID: 24218540 PMCID: PMC3868878 DOI: 10.1124/jpet.113.208645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/07/2013] [Indexed: 01/08/2023] Open
Abstract
Epigenetic modulators, particularly histone deacetylases (HDACs), are valid targets for cancer prevention and therapy. Recent studies report that HDAC2 overexpression is associated with colon tumor progression and is a potential target for colon cancer prevention. This study tested chemopreventive and dose-response effects of Ohio State University HDAC42 (OSU-HDAC42), a selective HDAC2 inhibitor, using a rat colon carcinogenesis model to assess aberrant crypt foci inhibition and a familial adenomatous polyposis model to assess intestinal tumor inhibition. Colonic aberrant crypt foci were induced by azoxymethane (AOM) (15 mg/kg body weight, once-weekly subcutaneous injections at 8 and 9 weeks age). One week after AOM treatment, groups of rats were fed an AIN-76A diet containing 0, 75, 150, and 300 ppm OSU-HDAC42 for 8 weeks, and colonic aberrant crypt foci were evaluated. To assess the inhibitory effect of OSU-HDAC42 on small-intestinal polyps and colon tumor growth, 6-week-old male C57Bl/6J-APC(min/+)mice were fed an AIN-76A diet containing 150 ppm OSU-HADC42 or 300 ppm pan-HDAC inhibitor suberoylanilide hydroxyamic acid (SAHA) for 80 days. Our results demonstrate that dietary OSU-HDAC42 produced dose-dependent inhibition of AOM-induced colonic aberrant crypt foci formation (13-50%; P < 0.01 to < 0.0001) and reduced multiple crypts with ≥ 4 crypts per focus (25-57%; P < 0.01 to < 0.0001) in F344 rats. Our findings show that 150 ppm OSU-HDAC42 significantly inhibited small-intestinal polyps (>46%; P < 0.001), with polyp size measuring >1 mm (P < 0.001), and colon tumors (>26%) in APC(min/+)mice, whereas 300 ppm SAHA showed nonsignificant inhibition. Mice fed 150 ppm OSU-HDAC42 had significantly decreased HDAC2, proliferating cell nuclear antigen, B cell lymphoma 2, cyclin-dependent kinase 2, and cell division cycle homolog 25C expression levels and increased p53 expression levels. These observations demonstrate the chemopreventive efficacy of OSU-HDAC42 against chemically induced and polyposis models of intestinal tumorigenesis.
Collapse
Affiliation(s)
- Durgadevi Ravillah
- Hematology-Oncology Section, Department of Medicine, Center for Cancer Prevention and Drug Development, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (D.R., A.M., L.Q., M.B., Y.Z., L.B., C.V.R.); and Division of Cancer Prevention, Chemoprevention Agent Development Research Group, National Institutes of Health National Cancer Institute, Bethesda, Maryland (V.E.S.)
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Iosub-Amir A, Friedler A. Protein–protein interactions of ASPP2: an emerging therapeutic target. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00147h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ASPP2 induces apoptosis and is downregulated in many types of cancer, making it a promising target for anti-cancer drugs.
Collapse
Affiliation(s)
- Anat Iosub-Amir
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Safra Campus
- Jerusalem 91904, Israel
| | - Assaf Friedler
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Safra Campus
- Jerusalem 91904, Israel
| |
Collapse
|
26
|
Delkhoshe-Kasmaie F, Malekinejad H, Khoramjouy M, Rezaei-Golmisheh A, Janbaze-Acyabar H. Royal jelly protects from taxol-induced testicular damages via improvement of antioxidant status and up-regulation of E2f1. Syst Biol Reprod Med 2013; 60:80-8. [DOI: 10.3109/19396368.2013.852271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Fatemeh Delkhoshe-Kasmaie
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Urmia University
UrmiaIran
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Urmia University
UrmiaIran
| | - Mona Khoramjouy
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Urmia University
UrmiaIran
| | - Ali Rezaei-Golmisheh
- Research and Development Center, Science Pharmaceutical Laboratories Co.
QazvinIran
| | - Hamed Janbaze-Acyabar
- Department of Comparative Histology, Faculty of Veterinary Medicine, Urmia University
UrmiaIran
| |
Collapse
|
27
|
Birkenkamp-Demtröder K, Hahn SA, Mansilla F, Thorsen K, Maghnouj A, Christensen R, Øster B, Ørntoft TF. Keratin23 (KRT23) knockdown decreases proliferation and affects the DNA damage response of colon cancer cells. PLoS One 2013; 8:e73593. [PMID: 24039993 PMCID: PMC3767798 DOI: 10.1371/journal.pone.0073593] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 07/25/2013] [Indexed: 11/18/2022] Open
Abstract
Keratin 23 (KRT23) is strongly expressed in colon adenocarcinomas but absent in normal colon mucosa. Array based methylation profiling of 40 colon samples showed that the promoter of KRT23 was methylated in normal colon mucosa, while hypomethylated in most adenocarcinomas. Promoter methylation correlated with absent expression, while increased KRT23 expression in tumor samples correlated with promoter hypomethylation, as confirmed by bisulfite sequencing. Demethylation induced KRT23 expression in vitro. Expression profiling of shRNA mediated stable KRT23 knockdown in colon cancer cell lines showed that KRT23 depletion affected molecules of the cell cycle and DNA replication, recombination and repair. In vitro analyses confirmed that KRT23 depletion significantly decreased the cellular proliferation of SW948 and LS1034 cells and markedly decreased the expression of genes involved in DNA damage response, mainly molecules of the double strand break repair homologous recombination pathway. KRT23 knockdown decreased the transcript and protein expression of key molecules as e.g. MRE11A, E2F1, RAD51 and BRCA1. Knockdown of KRT23 rendered colon cancer cells more sensitive to irradiation and reduced proliferation of the KRT23 depleted cells compared to irradiated control cells.
Collapse
Affiliation(s)
| | - Stephan A. Hahn
- Department of Molecular GI-Oncology, Center of Clinical Research, Ruhr-University Bochum, Bochum, Germany
| | - Francisco Mansilla
- Department of Molecular Medicine MOMA, Aarhus University Hospital, Skejby, Aarhus N, Denmark
| | - Kasper Thorsen
- Department of Molecular Medicine MOMA, Aarhus University Hospital, Skejby, Aarhus N, Denmark
| | - Abdelouahid Maghnouj
- Department of Molecular GI-Oncology, Center of Clinical Research, Ruhr-University Bochum, Bochum, Germany
| | - Rikke Christensen
- Department of Clinical Genetics, Aarhus University Hospital, Skejby, Aarhus N, Denmark
| | - Bodil Øster
- Department of Molecular Medicine MOMA, Aarhus University Hospital, Skejby, Aarhus N, Denmark
| | - Torben Falck Ørntoft
- Department of Molecular Medicine MOMA, Aarhus University Hospital, Skejby, Aarhus N, Denmark
| |
Collapse
|
28
|
Shahbazi J, Lock R, Liu T. Tumor Protein 53-Induced Nuclear Protein 1 Enhances p53 Function and Represses Tumorigenesis. Front Genet 2013; 4:80. [PMID: 23717325 PMCID: PMC3652520 DOI: 10.3389/fgene.2013.00080] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/19/2013] [Indexed: 12/19/2022] Open
Abstract
Tumor protein 53-induced nuclear protein 1 (TP53INP1) is a stress-induced p53-target gene whose expression is modulated by transcription factors such as p53, p73, and E2F1. TP53INP1 gene encodes two isoforms of TP53INP1 proteins, TP53INP1α and TP53INP1β, both of which appear to be key elements in p53 function. In association with homeodomain-interacting protein kinase-2 (HIPK2), TP53INP1 phosphorylates p53 protein at Serine-46. This enhances p53 protein stability and its transcriptional activity, leading to transcriptional activation of p53-target genes such as p21 and PIG3, cell growth arrest and apoptosis upon DNA damage stress. The anti-proliferative and pro-apoptotic activities of TP53INP1 indicate that TP53INP1 has an important role in cellular homeostasis and DNA damage response. Deficiency in TP53INP1 expression results in increased tumorigenesis, whereas TP53INP1 expression is repressed during early stages of cancer by factors such as miR-155. This review aims to summarize the roles of TP53INP1 in blocking tumor progression through p53-dependant and p53-independent pathways, as well as the elements which repress TP53INP1 expression, hence highlighting its potential as a therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Jeyran Shahbazi
- Histone Modification Group, Children's Cancer Institute Australia for Medical Research Randwick, Sydney, NSW, Australia ; Faculty of Science, School of Biotechnology and Biomolecular Sciences, UNSW Science, University of New South Wales Kensington, Sydney, NSW, Australia
| | | | | |
Collapse
|
29
|
Hsu TH, Chu CC, Hung MW, Lee HJ, Hsu HJ, Chang TC. Caffeic acid phenethyl ester induces E2F-1-mediated growth inhibition and cell-cycle arrest in human cervical cancer cells. FEBS J 2013; 280:2581-93. [DOI: 10.1111/febs.12242] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Tzu-Hui Hsu
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei; Taiwan
| | | | - Mei-Whey Hung
- Department of Research and Education; Veteran General Hospital; Taipei; Taiwan
| | - Hwei-Jen Lee
- Department of Biochemistry; National Defense Medical Center; Taipei; Taiwan
| | - Hsien-Jun Hsu
- Department of Biochemistry; National Defense Medical Center; Taipei; Taiwan
| | | |
Collapse
|
30
|
Copper induced immunotoxicity promote differential apoptotic pathways in spleen and thymus. Toxicology 2013; 306:74-84. [DOI: 10.1016/j.tox.2013.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/26/2012] [Accepted: 01/03/2013] [Indexed: 11/17/2022]
|
31
|
Liu Y, Koyutürk M, Barnholtz-Sloan JS, Chance MR. Gene interaction enrichment and network analysis to identify dysregulated pathways and their interactions in complex diseases. BMC SYSTEMS BIOLOGY 2012; 6:65. [PMID: 22694839 PMCID: PMC3426489 DOI: 10.1186/1752-0509-6-65] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/13/2012] [Indexed: 01/10/2023]
Abstract
BACKGROUND The molecular behavior of biological systems can be described in terms of three fundamental components: (i) the physical entities, (ii) the interactions among these entities, and (iii) the dynamics of these entities and interactions. The mechanisms that drive complex disease can be productively viewed in the context of the perturbations of these components. One challenge in this regard is to identify the pathways altered in specific diseases. To address this challenge, Gene Set Enrichment Analysis (GSEA) and others have been developed, which focus on alterations of individual properties of the entities (such as gene expression). However, the dynamics of the interactions with respect to disease have been less well studied (i.e., properties of components ii and iii). RESULTS Here, we present a novel method called Gene Interaction Enrichment and Network Analysis (GIENA) to identify dysregulated gene interactions, i.e., pairs of genes whose relationships differ between disease and control. Four functions are defined to model the biologically relevant gene interactions of cooperation (sum of mRNA expression), competition (difference between mRNA expression), redundancy (maximum of expression), or dependency (minimum of expression) among the expression levels. The proposed framework identifies dysregulated interactions and pathways enriched in dysregulated interactions; points out interactions that are perturbed across pathways; and moreover, based on the biological annotation of each type of dysregulated interaction gives clues about the regulatory logic governing the systems level perturbation. We demonstrated the potential of GIENA using published datasets related to cancer. CONCLUSIONS We showed that GIENA identifies dysregulated pathways that are missed by traditional enrichment methods based on the individual gene properties and that use of traditional methods combined with GIENA provides coverage of the largest number of relevant pathways. In addition, using the interactions detected by GIENA, specific gene networks both within and across pathways associated with the relevant phenotypes are constructed and analyzed.
Collapse
Affiliation(s)
- Yu Liu
- Center for Proteomics & Bioinformatics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mehmet Koyutürk
- Center for Proteomics & Bioinformatics, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Electrical Engineering & Computer Science, Case Western Reserve University, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jill S Barnholtz-Sloan
- Center for Proteomics & Bioinformatics, Case Western Reserve University, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Epidemiology and Biostatistics, Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA
| | - Mark R Chance
- Center for Proteomics & Bioinformatics, Case Western Reserve University, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Genetics, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
32
|
Levy D, Davidovich A, Zirkin S, Frug Y, Cohen AM, Shalom S, Don J. Activation of cell cycle arrest and apoptosis by the proto-oncogene Pim-2. PLoS One 2012; 7:e34736. [PMID: 22506047 PMCID: PMC3323563 DOI: 10.1371/journal.pone.0034736] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 03/07/2012] [Indexed: 12/13/2022] Open
Abstract
Potent survival effects have been ascribed to the serine/threonine kinase proto-oncogene PIM-2. Elevated levels of PIM-2 are associated with various malignancies. In human cells, a single Pim-2 transcript gives rise mainly to two protein isoforms (34, 41 kDa) that share an identical catalytic site but differ at their N-terminus, due to in-frame alternative translation initiation sites. In this study we observed that the 34 kDa PIM-2 isoform has differential nuclear and cytoplasmic forms in all tested cell lines, suggesting a possible role for the balance between these forms for PIM-2's function. To further study the cellular role of the 34 kDa isoform of PIM-2, an N-terminally HA-tagged form of this isoform was transiently expressed in HeLa cells. Surprisingly, this resulted in increased level of G1 arrested cells, as well as of apoptotic cells. These effects could not be obtained by a Flag-tagged form of the 41 kDa isoform. The G1 arrest and apoptotic effects were associated with an increase in T14/Y15 phosphorylation of CDK2 and proteasom-dependent down-regulation of CDC25A, as well as with up-regulation of p57, E2F-1, and p73. No such effects were obtained upon over-expression of a kinase-dead form of the HA-tagged 34 kDa PIM-2. By either using a dominant negative form of p73, or by over-expressing the 34 kDa PIM-2 in p73-silenced cells, we demonstrated that these effects were p73-dependent. These results demonstrate that while PIM-2 can function as a potent survival factor, it can, under certain circumstances, exhibit pro-apoptotic effects as well.
Collapse
Affiliation(s)
- Daphna Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ateret Davidovich
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Shahar Zirkin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yulia Frug
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Amos M. Cohen
- Hemato-Oncology Unit, Davidoff Center, Rabin Medical Center, Petach-Tikva, Israel
| | - Sara Shalom
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Jeremy Don
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail:
| |
Collapse
|
33
|
Yoshihara Y, Wu D, Kubo N, Sang M, Nakagawara A, Ozaki T. Inhibitory role of E2F-1 in the regulation of tumor suppressor p53 during DNA damage response. Biochem Biophys Res Commun 2012; 421:57-63. [DOI: 10.1016/j.bbrc.2012.03.108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
|
34
|
Vigneron AM, Vousden KH. An indirect role for ASPP1 in limiting p53-dependent p21 expression and cellular senescence. EMBO J 2011; 31:471-80. [PMID: 22068052 DOI: 10.1038/emboj.2011.402] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/17/2011] [Indexed: 12/31/2022] Open
Abstract
In addition to acting as a transcriptional cofactor for p53, ASPP1 has been shown to function in the cytoplasm to regulate the nuclear localization and activity of YAP/TAZ. We show here that the ability of ASPP1 to activate YAP results in the decreased expression of LATS2, which lowers the ability of p53 to induce p21, cell-cycle arrest and senescence. ASPP1 expression peaks in S-phase, and down-regulation of ASPP1 leads to a reduction in DNA synthesis and enhanced senescence in response to drugs that impede DNA replication. These activities of cytoplasmic ASPP1 in opposing p53-mediated p21 expression are in contrast to the role of nuclear ASPP1 in cooperating with p53 to induce the expression of apoptotic target genes, and may help to dampen p53 activity in normal cells.
Collapse
Affiliation(s)
- Arnaud M Vigneron
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | | |
Collapse
|
35
|
Llanos S, Royer C, Lu M, Bergamaschi D, Lee WH, Lu X. Inhibitory member of the apoptosis-stimulating proteins of the p53 family (iASPP) interacts with protein phosphatase 1 via a noncanonical binding motif. J Biol Chem 2011; 286:43039-44. [PMID: 21998301 PMCID: PMC3234852 DOI: 10.1074/jbc.m111.270751] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although kinase mutations have been identified in various human diseases, much less is known about protein phosphatases. Here, we show that all apoptosis-stimulating proteins of p53 (ASPP) family members can bind protein phosphatase 1 (PP1) via two distinct interacting motifs. ASPP2 interacts with PP1 through an RVXF PP1 binding motif, whereas the inhibitory member of the ASPP family (iASPP) interacts with PP1 via a noncanonical motif (RNYF) that is located within its Src homology 3 domain (SH3). Phe-815 is crucial in mediating iASPP/PP1 interaction, and iASPP(F815A) fails to inhibit the transcriptional and apoptotic function of p53. This study identifies iASPP as a new binding partner of PP1, interacting through a noncanonical PP1 binding motif.
Collapse
Affiliation(s)
- Susana Llanos
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
N'guessan P, Pouyet L, Gosset G, Hamlaoui S, Seillier M, Cano CE, Seux M, Stocker P, Culcasi M, Iovanna JL, Dusetti NJ, Pietri S, Carrier A. Absence of tumor suppressor tumor protein 53-induced nuclear protein 1 (TP53INP1) sensitizes mouse thymocytes and embryonic fibroblasts to redox-driven apoptosis. Antioxid Redox Signal 2011; 15:1639-53. [PMID: 21235351 DOI: 10.1089/ars.2010.3553] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The p53-transcriptional target TP53INP1 is a potent stress-response protein promoting p53 activity. We previously showed that ectopic overexpression of TP53INP1 facilitates cell cycle arrest as well as cell death. Here we report a study investigating cell death in mice deficient for TP53INP1. Surprisingly, we found enhanced stress-induced apoptosis in TP53INP1-deficient cells. This observation is underpinned in different cell types in vivo (thymocytes) and in vitro (thymocytes and MEFs), following different types of injury inducing either p53-dependent or -independent cell death. Nevertheless, absence of TP53INP1 is unable to overcome impaired cell death of p53-deficient thymocytes. Stress-induced ROS production is enhanced in the absence of TP53INP1, and antioxidant NAC complementation abolishes increased sensitivity to apoptosis of TP53INP1-deficient cells. Furthermore, antioxidant defenses are defective in TP53INP1-deficient mice in correlation with ROS dysregulation. Finally, we show that autophagy is reduced in TP53INP1-deficient cells both at the basal level and upon stress. Altogether, these data show that impaired ROS regulation in TP53INP1-deficient cells is responsible for their sensitivity to induced apoptosis. In addition, they suggest that this sensitivity could rely on a defect of autophagy. Therefore, these data emphasize the role of TP53INP1 in protection against cell injury.
Collapse
Affiliation(s)
- Prudence N'guessan
- INSERM U624 Stress cellulaire, Case 915 Parc Scientifique de Luminy, Marseille Cedex 9, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Seux M, Peuget S, Montero MP, Siret C, Rigot V, Clerc P, Gigoux V, Pellegrino E, Pouyet L, N'Guessan P, Garcia S, Dufresne M, Iovanna JL, Carrier A, André F, Dusetti NJ. TP53INP1 decreases pancreatic cancer cell migration by regulating SPARC expression. Oncogene 2011; 30:3049-61. [PMID: 21339733 DOI: 10.1038/onc.2011.25] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tumor protein 53 induced nuclear protein 1 (TP53INP1) is a p53 target gene that induces cell growth arrest and apoptosis by modulating p53 transcriptional activity. TP53INP1 interacts physically with p53 and is a major player in the p53-driven oxidative stress response. Previously, we demonstrated that TP53INP1 is downregulated in an early stage of pancreatic cancerogenesis and when restored is able to suppress pancreatic tumor development. TP53INP1 downregulation in pancreas is associated with an oncogenic microRNA miR-155. In the present work, we studied the effects of TP53INP1 on cell migration. We found that TP53INP1 inactivation correlates with increased cell migration both in vivo and in vitro. The impact of TP53INP1 expression on cell migration was studied in different cellular contexts: mouse embryonic fibroblast and different pancreatic cancer cell lines. Its expression decreases cell migration by the transcriptional downregulation of secreted protein acidic and rich in cysteine (SPARC). SPARC is a matrix cellular protein, which governs diverse cellular functions and has a pivotal role in regulating cell-matrix interactions, cellular proliferation and migration. SPARC was also showed to be upregulated in normal pancreas and in pancreatic intraepithelial neoplasia lesions in a pancreatic adenocarcinoma mouse model only in the TP53INP1-deficient animals. This novel TP53INP1 activity on the regulation of SPARC expression could explain in part its tumor suppressor function in pancreatic adenocarcinoma by modulating cellular spreading during the metastatic process.
Collapse
Affiliation(s)
- M Seux
- INSERM, U624 Stress cellulaire, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Olmos Y, Brosens JJ, Lam EWF. Interplay between SIRT proteins and tumour suppressor transcription factors in chemotherapeutic resistance of cancer. Drug Resist Updat 2011; 14:35-44. [DOI: 10.1016/j.drup.2010.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/20/2022]
|
39
|
Gurtner A, Fuschi P, Martelli F, Manni I, Artuso S, Simonte G, Ambrosino V, Antonini A, Folgiero V, Falcioni R, Sacchi A, Piaggio G. Transcription factor NF-Y induces apoptosis in cells expressing wild-type p53 through E2F1 upregulation and p53 activation. Cancer Res 2010; 70:9711-20. [PMID: 20952509 DOI: 10.1158/0008-5472.can-10-0721] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The CCAAT-binding transcription factor NF-Y plays a central role in regulating cellular proliferation by controlling the expression of genes required for cell-cycle progression such as cyclin A, cyclin B1, cyclin B2, cdc25A, cdc25C, and cdk1. Here we show that unrestricted NF-Y activity leads to apoptosis in an E2F1- and wild-type p53 (wtp53)-dependent manner. Unrestricted NF-Y activity induced an increase in E2F1 mRNA and protein levels. Furthermore, NF-Y directly bound the E2F1 promoter and this correlated with the appearance of open chromatin marks. The ability of NF-Y to induce apoptosis was impaired in cells lacking E2F1 and wtp53. Moreover, NF-Y overexpression elicited phosphorylation of wt p53Ser18 in an E2F1-dependent manner. Our findings establish that NF-Y acts upstream of E2F1 in p53-mediated apoptosis.
Collapse
Affiliation(s)
- Aymone Gurtner
- Experimental Oncology Department, Istituto Regina Elena, IRCCS, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tumor necrosis factor receptor-associated protein 1(TRAP1) regulates genes involved in cell cycle and metastases. Cancer Lett 2010; 296:194-205. [DOI: 10.1016/j.canlet.2010.04.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/30/2010] [Accepted: 04/06/2010] [Indexed: 01/15/2023]
|
41
|
Kojima K, Burks JK, Arts J, Andreeff M. The novel tryptamine derivative JNJ-26854165 induces wild-type p53- and E2F1-mediated apoptosis in acute myeloid and lymphoid leukemias. Mol Cancer Ther 2010; 9:2545-57. [PMID: 20736344 DOI: 10.1158/1535-7163.mct-10-0337] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of small-molecule activators of p53 is currently focused on malignancies containing a wild-type p53 genotype, which is present in most leukemias. JNJ-26854165 is one such p53-activating agent, but its mechanism of action remains to be elucidated. Here, we report the effects of JNJ-26854165 in acute leukemias. JNJ-26854165 treatment induced p53-mediated apoptosis in acute leukemia cells with wild-type p53, in which p53 rapidly drives transcription-independent apoptosis followed by activation of a transcription-dependent pathway. JNJ-26854165 accelerated the proteasome-mediated degradation of p21 and antagonized the transcriptional induction of p21 by p53. Interestingly, JNJ-26854165 induced S-phase delay and upregulated E2F1 expression in p53 mutant cells, resulting in apoptosis preferentially of S-phase cells. E2F1 knockdown blocked apoptosis induced by JNJ-26854165 in p53 mutant cells. Apoptotic activity of JNJ-26854165 against primary acute leukemia cells was maintained in leukemia/stroma cocultures, unlike doxorubicin, which has reduced cytrotoxicity in coculture systems. JNJ-26854165 synergizes with 1-β-arabinofuranosylcytosine or doxorubicin to induce p53-mediated apoptosis. Our data suggest that JNJ-26854165 may provide a novel therapeutic approach for the treatment of acute leukemias. The presence of p53-independent apoptotic activity in addition to p53-mediated apoptosis induction, if operational in vivo, may prevent the selection of p53 mutant subclones during therapy.
Collapse
Affiliation(s)
- Kensuke Kojima
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, M.D. Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
42
|
Zhang XP, Liu F, Wang W. Coordination between cell cycle progression and cell fate decision by the p53 and E2F1 pathways in response to DNA damage. J Biol Chem 2010; 285:31571-80. [PMID: 20685653 DOI: 10.1074/jbc.m110.134650] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
After DNA damage, cells must decide between different fates including growth arrest, DNA repair, and apoptosis. Both p53 and E2F1 are transcription factors involved in the decision process. However, the mechanism for cross-talk between the p53 and E2F1 pathways still remains unclear. Here, we proposed a four-module kinetic model of the decision process and explored the interplay between these two pathways in response to ionizing radiation via computer simulation. In our model the levels of p53 and E2F1 separately exhibit pulsatile and switching behaviors. Upon DNA damage, p53 is first activated, whereas E2F1 is inactivated, leading to cell cycle arrest in the G(1) phase. We found that the ultimate decision between cell life and death is determined by the number of p53 pulses depending on the extent of DNA damage. For repairable DNA damage, the cell can survive and reenter the S phase because of the activation of E2F1 and inactivation of p53. For irreparable DNA damage, growth arrest is overcome by growth factors, and activated p53 and E2F1 cooperate to initiate apoptosis. We showed that E2F1 promotes apoptosis by up-regulating the proapoptotic cofactors of p53 and procaspases. It was also revealed that deregulated E2F1 by oncogene activation can make cells sensitive to DNA damage even in low serum medium. Our model consistently recapitulates the experimental observations of the intricate relationship between p53 and E2F1 in the DNA damage response. This work underscores the significance of E2F1 in p53-mediated cell fate decision and may provide clues to cancer therapy.
Collapse
Affiliation(s)
- Xiao-Peng Zhang
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | | | | |
Collapse
|
43
|
de Bruijn MT, Raats DAE, Hoogwater FJH, van Houdt WJ, Cameron K, Medema JP, Borel Rinkes IHM, Kranenburg O. Oncogenic KRAS sensitises colorectal tumour cells to chemotherapy by p53-dependent induction of Noxa. Br J Cancer 2010; 102:1254-64. [PMID: 20354524 PMCID: PMC2856010 DOI: 10.1038/sj.bjc.6605633] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Oxaliplatin and 5-fluorouracil (5-FU) currently form the backbone of conservative treatment in patients with metastatic colorectal cancer. Tumour responses to these agents are highly variable, but the underlying mechanisms are poorly understood. Our previous results have indicated that oncogenic KRAS in colorectal tumour cells sensitises these cells to chemotherapy. Methods: FACS analysis was used to determine cell-cycle distribution and the percentage of apoptotic and mitotic cells. A multiplexed RT–PCR assay was used to identify KRAS-controlled apoptosis regulators after exposure to 5-FU or oxaliplatin. Lentiviral expression of short-hairpin RNAs was used to suppress p53 or Noxa. Results: Oncogenic KRAS sensitised colorectal tumour cells to oxaliplatin and 5-FU in a p53-dependent manner and promoted p53 phosphorylation at Ser37 and Ser392, without affecting p53 stabilisation, p21 induction, or cell-cycle arrest. Chemotherapy-induced expression of the p53 target gene Noxa was selectively enhanced by oncogenic KRAS. Suppression of Noxa did not affect p21 induction or cell-cycle arrest, but reduced KRAS/p53-dependent apoptosis after exposure to chemotherapy in vitro and in tumour xenografts. Noxa suppression did not affect tumour growth per se, but strongly reduced the response of these tumours to chemotherapy. Conclusion: Oncogenic KRAS determines the cellular response to p53 activation by oxaliplatin or 5-FU, by facilitating apoptosis induction through Noxa.
Collapse
Affiliation(s)
- M T de Bruijn
- Department of Surgery, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
During tumour development cells sustain mutations that disrupt normal mechanisms controlling proliferation. Remarkably, the Rb-E2f and MDM2-p53 pathways are both defective in most, if not all, human tumours, which underscores the crucial role of these pathways in regulating cell cycle progression and viability. A simple interpretation of the observation that both pathways are deregulated is that they function independently in the control of cell fate. However, a large body of evidence indicates that, in addition to their independent effects on cell fate, there is extensive crosstalk between these two pathways, and specifically between the transcription factors E2F1 and p53, which influences vital cellular decisions. This Review discusses the molecular mechanisms that underlie the intricate interactions between E2f and p53.
Collapse
Affiliation(s)
- Shirley Polager
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| | | |
Collapse
|
45
|
Rayburn ER, Ezell SJ, Zhang R. Recent advances in validating MDM2 as a cancer target. Anticancer Agents Med Chem 2009; 9:882-903. [PMID: 19538162 PMCID: PMC6728151 DOI: 10.2174/187152009789124628] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 05/14/2008] [Indexed: 12/26/2022]
Abstract
The MDM2 oncogene is overexpressed in various human cancers. Its expression correlates with the phenotypes of high-grade, late-stage, and more resistant tumors. The auto-regulatory loop between MDM2 and the tumor suppressor p53 has long been considered the epitome of a rational target for cancer therapy. As such, many novel agents have been generated to interfere with the interaction of the two proteins, which results in the activation of p53. Among these agents are several small molecule inhibitors synthesized based upon the crystal structures of the MDM2-p53 complex. With use of high-throughput screening, several specific and effective agents for inhibition of the protein-protein interaction were discovered. Recent investigations, however, have demonstrated that many proteins regulate the MDM2-p53 interaction, and that MDM2 may have p53-independent oncogenic functions. In order for novel MDM2 inhibitors to be translated to the clinic, it is necessary to obtain a better understanding of the regulation of MDM2 and of the MDM2-p53 interaction. In particular, the implications of various interactions between certain regulator(s) and MDM2/p53 under different circumstances need to be elucidated to determine which pathway(s) represent the best targets for therapy. Targeting both MDM2 itself and regulators of MDM2 and the MDM2-p53 interaction, or use of MDM2 inhibitors in combination with conventional treatments, may improve prospects for tumor eradication.
Collapse
Affiliation(s)
- Elizabeth R. Rayburn
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, USA
| | - Scharri J. Ezell
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, USA
| | - Ruiwen Zhang
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, USA
| |
Collapse
|
46
|
Liontos M, Niforou K, Velimezi G, Vougas K, Evangelou K, Apostolopoulou K, Vrtel R, Damalas A, Kontovazenitis P, Kotsinas A, Zoumpourlis V, Tsangaris GT, Kittas C, Ginsberg D, Halazonetis TD, Bartek J, Gorgoulis VG. Modulation of the E2F1-driven cancer cell fate by the DNA damage response machinery and potential novel E2F1 targets in osteosarcomas. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:376-91. [PMID: 19541929 PMCID: PMC2708823 DOI: 10.2353/ajpath.2009.081160] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2009] [Indexed: 12/30/2022]
Abstract
Osteosarcoma is the most common primary bone cancer. Mutations of the RB gene represent the most frequent molecular defect in this malignancy. A major consequence of this alteration is that the activity of the key cell cycle regulator E2F1 is unleashed from the inhibitory effects of pRb. Studies in animal models and in human cancers have shown that deregulated E2F1 overexpression possesses either "oncogenic" or "oncosuppressor" properties, depending on the cellular context. To address this issue in osteosarcomas, we examined the status of E2F1 relative to cell proliferation and apoptosis in a clinical setting of human primary osteosarcomas and in E2F1-inducible osteosarcoma cell line models that are wild-type and deficient for p53. Collectively, our data demonstrated that high E2F1 levels exerted a growth-suppressing effect that relied on the integrity of the DNA damage response network. Surprisingly, induction of p73, an established E2F1 target, was also DNA damage response-dependent. Furthermore, a global proteome analysis associated with bioinformatics revealed novel E2F1-regulated genes and potential E2F1-driven signaling networks that could provide useful targets in challenging this aggressive neoplasm by innovative therapies.
Collapse
Affiliation(s)
- Michalis Liontos
- Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wu Z, Zheng S, Yu Q. The E2F family and the role of E2F1 in apoptosis. Int J Biochem Cell Biol 2009; 41:2389-97. [PMID: 19539777 DOI: 10.1016/j.biocel.2009.06.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/02/2009] [Accepted: 06/08/2009] [Indexed: 12/22/2022]
Abstract
The E2F family of transcription factors plays a pivotal role in the regulation of cellular proliferation and differentiation. Although the deregulation of E2Fs is considered an oncogenic event that predisposes immortalized cells to transformation, paradoxically, E2F1 is also equipped with an ability to induce apoptosis under certain cellular contexts. It has become evident that E2Fs, in particular E2F1, participate in many aspects of the apoptotic process, either by acting alone or in cooperation with other factors, such as p53, to protect organisms from tumor development in the face of oncogenic lesions. Given the frequent inactivation of p53 in human cancers, the E2F1-induced apoptosis pathway is rapidly gaining attention as a key mechanism to compensate the loss of p53 in human tumors. In this review, we will focus on the recent progress in our understanding of E2F1-mediated apoptosis and discuss how these discoveries can be translated into potential therapeutic intervention.
Collapse
Affiliation(s)
- Zhenlong Wu
- Cancer Biology and Pharmacology, Genome Institute of Singapore, A*Star (Agency for Science, Technology and Research), Biopolis 02-01, Singapore 138672, Singapore
| | | | | |
Collapse
|
48
|
Chatterjee S, Kundu S, Sengupta S, Bhattacharyya A. Divergence to apoptosis from ROS induced cell cycle arrest: effect of cadmium. Mutat Res 2009; 663:22-31. [PMID: 19475715 DOI: 10.1016/j.mrfmmm.2008.12.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recently, the role of cadmium (Cd) in immunosupression has gained importance. Nevertheless, the signaling pathways underlying cadmium-induced immune cell death remains largely unclear. In accordance to our previous in vivo report, and to evaluate the further details of the mechanism, we have investigated the effects of cadmium (CdCl(2), H(2)O) on cell cycle regulation and apoptosis in splenocytes in vitro. Our results have revealed that reactive oxygen species (ROS) and p21 are involved in cell cycle arrest in a p53 independent manner but late hour apoptotic response was accompanied by the p53 up-regulation, loss of mitochondrial transmembrane potential (MTP), down-regulation of Bcl-xl, activation of caspase-3 and release of cytochrome c (Cyt c). However, pifithrin alfa (PFT-alpha), an inhibitor of p53, fails to rescue the cells from the cadmium-induced cell cycle arrest but prevents Bcl-xl down-regulation and loss of Deltapsi(m), which indicates that there is an involvement of p53 in apoptosis. In contrast, treatment with N-acetyl cysteine (NAC) can prevent cell cycle arrest and p21 up-regulation at early hours. Although it is clear that, NAC has no effect on apoptosis, p53 expression and MPT changes at late stage events. Taken together, we have demonstrated that cadmium promotes ROS generation, which potently initiates the cell cycle arrest at early hours and finally induces p53-dependent apoptosis at later part of the event.
Collapse
Affiliation(s)
- Soumya Chatterjee
- Department of Environmental Science, University of Kalyani, West Bengal, India
| | | | | | | |
Collapse
|
49
|
Gheorghe CP, Goyal R, Holweger JD, Longo LD. Placental gene expression responses to maternal protein restriction in the mouse. Placenta 2009; 30:411-7. [PMID: 19362366 DOI: 10.1016/j.placenta.2009.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Maternal protein restriction has been shown to have deleterious effects on placental development, and has long-term consequences for the progeny. We tested the hypothesis that, by the use of microarray technology, we could identify specific genes and cellular pathways in the developing placenta that are responsive to maternal protein deprivation, and propose a potential mechanism for observed gene expression changes. METHODS We fed pregnant FVB/NJ mice from day post-coitum 10.5 (DPC10.5) to DPC17.5, an isocaloric diet containing 50% less protein than normal chow. We used the Affymetrix Mouse 430A_2.0 array to measure gene expression changes in the placenta. We functionally annotated the regulated genes, and examined over-represented functional categories and performed pathway analysis. For selected genes, we confirmed the microarray results by use of qPCR. RESULTS We observed 244 probe sets, corresponding to 235 genes, regulated by protein restriction (p<0.001), with ninety-one genes being up-regulated, and 153 down-regulated. Up-regulated genes included those involved in the p53 pathway, apoptosis, negative regulators of cell growth, negative regulators of cell metabolism and genes related to epigenetic control. Down-regulated genes included those involved in nucleotide metabolism. CONCLUSIONS Microarray analysis has allowed us to describe the genetic response to maternal protein deprivation in the mouse placenta. We observed that negative regulators of cell growth and metabolism in conjunction with genes involved in epigenesis were up-regulated, suggesting that protein deprivation may contribute to growth restriction and long-term epigenetic changes in stressed tissues and organs. The challenge will be to understand the cellular and molecular mechanisms of these gene expression responses.
Collapse
Affiliation(s)
- C P Gheorghe
- Department of Physiology, Loma Linda University, School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
50
|
Chen H, Yu D, Luo A, Tan W, Zhang C, Zhao D, Yang M, Liu J, Lin D, Liu Z. Functional role of S100A14 genetic variants and their association with esophageal squamous cell carcinoma. Cancer Res 2009; 69:3451-7. [PMID: 19351828 DOI: 10.1158/0008-5472.can-08-4231] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
S100 proteins have been implicated in various human diseases, including certain types of cancer. Among them, S100A14 is down-regulated in esophageal squamous cell carcinoma (ESCC). In this study, we sought to identify functional genetic variants in the S100A14 locus and assessed their associations with susceptibility to ESCC. Thirty individual DNA samples were sequenced to search for genetic variations in S100A14, and the function of the variants was investigated by a set of biochemical assays. A case-control analysis was performed in 1,021 patients with ESCC and 1,253 control subjects. Odds ratios and 95% confidence intervals (95% CI) were computed by logistic regression model. Four single nucleotide polymorphisms, -43A>G, 461G>A, 1493A>G, and 1545A>T, were identified in the S100A14 locus and they are in absolute linkage disequilibrium. Among them, the 461G>A change was shown to diminish a P53-binding site and is therefore associated with decreased expression of S100A14 in vitro and in vivo in the target tissues. Case-control analysis showed that the 461A allele was associated with susceptibility to ESCC among smokers, with the ORs being 2.01 (95% CI, 1.50-2.69) or 2.10 (95% CI, 1.37-3.22) for the 461GA or 461AA genotype, respectively, compared with the 461GG genotype. These data constitute strong evidence in support of the notion that S100A14 might function as a cancer suppressor working in the P53 pathway and play a role in esophageal carcinogenesis.
Collapse
Affiliation(s)
- Hongyan Chen
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|