1
|
Wang Q, Zou Y, Nowotschin S, Kim SY, Li QV, Soh CL, Su J, Zhang C, Shu W, Xi Q, Huangfu D, Hadjantonakis AK, Massagué J. The p53 Family Coordinates Wnt and Nodal Inputs in Mesendodermal Differentiation of Embryonic Stem Cells. Cell Stem Cell 2016; 20:70-86. [PMID: 27889317 DOI: 10.1016/j.stem.2016.10.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 09/07/2016] [Accepted: 10/02/2016] [Indexed: 01/01/2023]
Abstract
In this study, we outline a regulatory network that involves the p53 tumor suppressor family and the Wnt pathway acting together with the TGF-β pathway in mesendodermal differentiation of mouse and human embryonic stem cells. Knockout of all three members, p53, p63, and p73, shows that the p53 family is essential for mesendoderm specification during exit from pluripotency in embryos and in culture. Wnt3 and its receptor Fzd1 are direct p53 family target genes in this context, and induction of Wnt signaling by p53 is critical for activation of mesendodermal differentiation genes. Globally, Wnt3-activated Tcf3 and nodal-activated Smad2/3 transcription factors depend on each other for co-occupancy of target enhancers associated with key differentiation loci. Our results therefore highlight an unanticipated role for p53 family proteins in a regulatory network that integrates essential Wnt-Tcf and nodal-Smad inputs in a selective and interdependent way to drive mesendodermal differentiation of pluripotent cells.
Collapse
Affiliation(s)
- Qiong Wang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yilong Zou
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sang Yong Kim
- Rodent Genetic Engineering Core, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Qing V Li
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Chew-Li Soh
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jie Su
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chao Zhang
- Department of Medicine and Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Weiping Shu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Qiaoran Xi
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danwei Huangfu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
2
|
Noda T. The maternal genes Ci-p53/p73-a and Ci-p53/p73-b regulate zygotic ZicL expression and notochord differentiation in Ciona intestinalis embryos. Dev Biol 2011; 360:216-29. [PMID: 21925489 DOI: 10.1016/j.ydbio.2011.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 08/11/2011] [Accepted: 08/14/2011] [Indexed: 02/03/2023]
Abstract
I isolated a Ciona intestinalis homolog of p53, Ci-p53/p73-a, in a microarray screen of rapidly degraded maternal mRNA by comparing the transcriptomes of unfertilized eggs and 32-cell stage embryos. Higher expression of the gene in eggs and lower expression in later embryonic stages were confirmed by whole-mount in situ hybridization (WISH) and quantitative reverse transcription-PCR (qRT-PCR); expression was ubiquitous in eggs and early embryos. Knockdown of Ci-p53/p73-a by injection of antisense morpholino oligonucleotides (MOs) severely perturbed gastrulation cell movements and expression of notochord marker genes. A key regulator of notochord differentiation in Ciona embryos is Brachyury (Ci-Bra), which is directly activated by a zic-like gene (Ci-ZicL). The expression of Ci-ZicL and Ci-Bra in A-line notochord precursors was downregulated in Ci-p53/p73-a knockdown embryos. Maternal expression of Ci-p53/p73-b, a homolog of Ci-p53/p73-a, was also detected. In Ci-p53/p73-b knockdown embryos, gastrulation cell movements, expression of Ci-ZicL and Ci-Bra in A-line notochord precursors, and expression of notochord marker gene at later stages were perturbed. The upstream region of Ci-ZicL contains putative p53-binding sites. Cis-regulatory analysis of Ci-ZicL showed that these sites are involved in expression of Ci-ZicL in A-line notochord precursors at the 32-cell and early gastrula stages. These results suggest that p53 genes are maternal factors that play a crucial role in A-line notochord differentiation in C. intestinalis embryos by regulating Ci-ZicL expression.
Collapse
Affiliation(s)
- Takeshi Noda
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
3
|
Vilgelm AE, Zaika AI, Prassolov VS. Coordinated interaction of multifunctional members of the p53 family determines many key processes in multicellular organisms. Mol Biol 2011. [DOI: 10.1134/s002689331101016x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Dötsch V, Bernassola F, Coutandin D, Candi E, Melino G. p63 and p73, the ancestors of p53. Cold Spring Harb Perspect Biol 2010; 2:a004887. [PMID: 20484388 DOI: 10.1101/cshperspect.a004887] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
p73 and p63 are two homologs of the tumor suppressive transcription factor p53. Given the high degree of structural similarity shared by the p53 family members, p73 and p63 can bind and activate transcription from the majority of the p53-responsive promoters. Besides overlapping functions shared with p53 (i.e., induction of apoptosis in response to cellular stress), the existence of extensive structural variability within the family determines unique roles for p63 and p73. Their crucial and specific functions in controlling development and differentiation are well exemplified by the p63 and p73 knockout mouse phenotypes. Here, we describe the contribution of p63 and p73 to human pathology with emphasis on their roles in tumorigenesis and development.
Collapse
Affiliation(s)
- V Dötsch
- Institute of Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
5
|
Danilova N, Sakamoto KM, Lin S. p53 family in development. Mech Dev 2008; 125:919-31. [PMID: 18835440 DOI: 10.1016/j.mod.2008.09.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 09/04/2008] [Accepted: 09/12/2008] [Indexed: 12/17/2022]
Abstract
The p53 family network is a unique cellular processor that integrates information from various pathways and determines cellular choices between proliferation, replication arrest/repair, differentiation, senescence, or apoptosis. The most studied role of the p53 family is the regulation of stress response and tumor suppression. By removing damaged cells from the proliferating pool, p53 family members preserve the integrity of the genome. In addition to this well recognized role, recent data implicate the p53 protein family in a broader role of controlling cell proliferation, differentiation and death. Members of the p53 protein family with opposing activity perform coordination of these processes. Imbalance of p53 protein family may contribute to a significant proportion of congenital developmental abnormalities in humans.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, 615 Charles E. Young Drive South, BSRB 454, Los Angeles, CA 90095-1606, USA.
| | | | | |
Collapse
|
6
|
Tomasini R, Tsuchihara K, Wilhelm M, Fujitani M, Rufini A, Cheung CC, Khan F, Itie-Youten A, Wakeham A, Tsao MS, Iovanna JL, Squire J, Jurisica I, Kaplan D, Melino G, Jurisicova A, Mak TW. TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev 2008; 22:2677-91. [PMID: 18805989 DOI: 10.1101/gad.1695308] [Citation(s) in RCA: 343] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Trp53 gene family member Trp73 encodes two major groups of protein isoforms, TAp73 and DeltaNp73, with opposing pro- and anti-apoptotic functions; consequently, their relative ratio regulates cell fate. However, the precise roles of p73 isoforms in cellular events such as tumor initiation, embryonic development, and cell death remain unclear. To determine which aspects of p73 function are attributable to the TAp73 isoforms, we generated and characterized mice in which exons encoding the TAp73 isoforms were specifically deleted to create a TAp73-deficient (TAp73(-/-)) mouse. Here we show that mice specifically lacking in TAp73 isoforms develop a phenotype intermediate between the phenotypes of Trp73(-/-) and Trp53(-/-) mice with respect to incidence of spontaneous and carcinogen-induced tumors, infertility, and aging, as well as hippocampal dysgenesis. In addition, cells from TAp73(-/-) mice exhibit genomic instability associated with enhanced aneuploidy, which may account for the increased incidence of spontaneous tumors observed in these mutants. Hence, TAp73 isoforms exert tumor-suppressive functions and indicate an emerging role for Trp73 in the maintenance of genomic stability.
Collapse
Affiliation(s)
- Richard Tomasini
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, Toronto, Ontario M5G 2C1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Danilova N, Sakamoto KM, Lin S. Role of p53 family in birth defects: Lessons from zebrafish. ACTA ACUST UNITED AC 2008; 84:215-27. [DOI: 10.1002/bdrc.20129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Buhlmann S, Pützer BM. DNp73 a matter of cancer: mechanisms and clinical implications. Biochim Biophys Acta Rev Cancer 2008; 1785:207-16. [PMID: 18302944 DOI: 10.1016/j.bbcan.2008.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Revised: 01/26/2008] [Accepted: 01/28/2008] [Indexed: 12/14/2022]
Abstract
The p53 family proteins carry on a wide spectrum of biological functions from differentiation, cell cycle arrest, apoptosis, and chemosensitivity of tumors. NH2-terminally truncated p73 (referred to as DNp73) acts as a potent inhibitor of all these tumor suppressor properties, implying that it has oncogenic functions in human tumorigenesis. This was favored by the observation that high DNp73 expression levels in a variety of cancers are associated with adverse clinico-pathological characteristics and the response failure to chemotherapy. The actual challenge is the deciphering of the molecular mechanisms by which DNp73 promotes malignancy and to unravel the regulatory pathways for controlling TP73 isoform expression. This review is focused on recent findings leaving no doubt that N-terminally truncated p73 proteins are operative during oncogenesis, thus underscoring its significance as a marker for disease severity in patients and as target for cancer therapy.
Collapse
Affiliation(s)
- Sven Buhlmann
- Department of Vectorology and Experimental Gene Therapy, Biomedical Research Center, University of Rostock Medical School, Schillingallee 69, 18055 Rostock, Germany
| | | |
Collapse
|
9
|
Abstract
The role of p53 as a tumour suppressor is generally attributed to its ability to stop the proliferation of precancerous cells by inducing cell-cycle arrest or apoptosis. The relatives and evolutionary predecessors of p53 - p63 and p73 - share the tumour-suppressor activity of p53 to some extent, but also have essential functions in embryonic development and differentiation control. Recent evidence indicates that these ancestral functions in differentiation control contribute to the tumour-suppressor activity that the p53 family is famous for.
Collapse
Affiliation(s)
- Thorsten Stiewe
- Molecular Tumour Biology Group, Rudolf-Virchow-Center (DFG Research Center for Experimental Biomedicine), University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany.
| |
Collapse
|
10
|
Cam H, Griesmann H, Beitzinger M, Hofmann L, Beinoraviciute-Kellner R, Sauer M, Hüttinger-Kirchhof N, Oswald C, Friedl P, Gattenlöhner S, Burek C, Rosenwald A, Stiewe T. p53 family members in myogenic differentiation and rhabdomyosarcoma development. Cancer Cell 2006; 10:281-93. [PMID: 17045206 DOI: 10.1016/j.ccr.2006.08.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 06/05/2006] [Accepted: 08/10/2006] [Indexed: 12/20/2022]
Abstract
The p53 family comprises the tumor suppressor p53 and the structural homologs p63 and p73. How the three family members cooperate in tumor suppression remains unclear. Here, we report different but complementary functions of the individual members for regulating retinoblastoma protein (RB) function during myogenic differentiation. Whereas p53 transactivates the retinoblastoma gene, p63 and p73 induce the cyclin-dependent kinase inhibitor p57 to maintain RB in an active, hypophosphorylated state. DeltaNp73 inhibits these functions of the p53 family in differentiation control, prevents myogenic differentiation, and enables cooperating oncogenes to transform myoblasts to tumorigenicity. DeltaNp73 is frequently overexpressed in rhabdomyosarcoma and essential for tumor progression in vivo. These findings establish differentiation control as a key tumor suppressor activity of the p53 family.
Collapse
Affiliation(s)
- Hakan Cam
- Molecular Tumor Biology Group, Rudolf-Virchow-Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, 97078 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|