1
|
Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review. Cell Mol Biol Lett 2023; 28:76. [PMID: 37777764 PMCID: PMC10541721 DOI: 10.1186/s11658-023-00489-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.
Collapse
Affiliation(s)
- Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
2
|
Qin A. An anti-cancer surveillance by the interplay between interferon-beta and retinoblastoma protein RB1. Front Oncol 2023; 13:1173467. [PMID: 37182173 PMCID: PMC10174298 DOI: 10.3389/fonc.2023.1173467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Interferon-beta (IFN-β), an extracellular cytokine that initiates signaling pathways for gene regulation, has been demonstrated to function as a tumor suppressor protein through lentiviral gene transduction. In this article, I review the relevant previous works and propose a cell cycle-based, tumor suppressor protein-mediated mechanism of anti-cancer surveillance. IFN-β induces a tumor cell cycle alteration that leads to S phase accumulation, senescence entry, and a loss of tumorigenicity in solid tumor cells. IFN-β does not show a significant cell cycle effect in their normal counterparts. Retinoblastoma protein RB1, another tumor suppressor protein, tightly controls the cell cycle and differentiation of normal cells, preventing them from being significantly impacted by the IFN-β effect. The interplay between IFN-β and RB1 acts as a mechanism of cell cycle-based, tumor suppressor protein-mediated anti-cancer surveillance that can selectively suppress solid tumor or proliferating transformed cells from the loss of control leading to cancer. This mechanism has important implications for the treatment of solid tumors.
Collapse
Affiliation(s)
- Albert Qin
- Medical Research & Clinical Operations, PharmaEssentia Corporation, Taipei, Taiwan
| |
Collapse
|
3
|
Pahl MC, Grant SFA, Leibel RL, Stratigopoulos G. Technologies, strategies, and cautions when deconvoluting genome-wide association signals: FTO in focus. Obes Rev 2023; 24:e13558. [PMID: 36882962 DOI: 10.1111/obr.13558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/08/2022] [Accepted: 01/31/2023] [Indexed: 03/09/2023]
Abstract
Genome-wide association studies have revealed a plethora of genetic variants that correlate with polygenic conditions. However, causal molecular mechanisms have proven challenging to fully define. Without such information, the associations are not physiologically useful or clinically actionable. By reviewing studies of the FTO locus in the genetic etiology of obesity, we wish to highlight advances in the field fueled by the evolution of technical and analytic strategies in assessing the molecular bases for genetic associations. Particular attention is drawn to extrapolating experimental findings from animal models and cell types to humans, as well as technical aspects used to identify long-range DNA interactions and their biological relevance with regard to the associated trait. A unifying model is proposed by which independent obesogenic pathways regulated by multiple FTO variants and genes are integrated at the primary cilium, a cellular antenna where signaling molecules that control energy balance convene.
Collapse
Affiliation(s)
- Matthew C Pahl
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Diabetes and Endocrinology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rudolph L Leibel
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA
| | - George Stratigopoulos
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
4
|
Park SS, Lee YK, Park SH, Lim SB, Choi YW, Shin JS, Kim YH, Kim JH, Park TJ. p15 INK4B is an alternative marker of senescent tumor cells in colorectal cancer. Heliyon 2023; 9:e13170. [PMID: 36785830 PMCID: PMC9918768 DOI: 10.1016/j.heliyon.2023.e13170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Senescent tumor cells are nonproliferating tumor cells which are closely related to cancer progression by secreting senescence-related molecules, called senescence-associated secreting phenotypes. Therefore, the presence of senescent tumor cells is considered a prognostic factor in various cancer types. Although senescence-associated β-galactosidase staining is considered the best marker for detection of senescent tumor cells, it can only be performed in fresh-frozen tissues. p16INK4A, a cyclin-dependent inhibitor, has been used as an alternative marker to detect senescent tumor cells in formalin-fixed paraffin-embedded tissues. However, other reliable markers to detect senescent tumor cells is still lacking. In the present study, using public single-cell RNA-sequencing data, we found that p15INK4B, a cyclin-dependent kinase inhibitor, is a novel marker for detection of senescent tumor cells. Moreover, p15INK4B expression was positively correlated with that of p16INK4A in colorectal cancer tissues. In in vitro studies, mRNA expression of p15INK4B was increased together with that of p16INK4A in H2O2- and therapy-induced cancer senescence models. However, the mRNA level of p15INK4B did not increase in the oncogene-induced senescence model in primary colonic epithelial cells. In conclusion, p15INK4B is a potential alternative marker for detection of senescent tumor cells together with conventional markers in advanced stages of colorectal cancer.
Collapse
Key Words
- CDK, cyclin dependent kinase
- CRC, colorectal cancer
- Cellular senescence
- Colorectal cancer
- FBS, fetal bovine serum
- FFPE, formalin-fixed paraffin-embedded
- GSEA, gene set enrichent analysis
- H3K9me3, histone H3 lysine 9 trimethylation
- IHC, immunohistochemistry
- SA-β-Gal, senescence-associated β-galactosidase
- STC, senescent tumor cell
- Senescence marker
- Senescent tumor cells
- p15INK4B
- p16INK4A
- scRNA-seq, single cell RNA sequencing
Collapse
Affiliation(s)
- Soon Sang Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, South Korea,Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea
| | - Young-Kyoung Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea,Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea
| | - So Hyun Park
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea,Department of Pathology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, South Korea,Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea
| | - Yong Won Choi
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea,Department of Hematology and Oncology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Jun Sang Shin
- Department of Surgery, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Young Hwa Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea
| | - Jang-Hee Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea,Department of Pathology, Ajou University School of Medicine, Suwon, 16499, South Korea,Corresponding author. Department of Pathology, Ajou University School of Medicine, Suwon, 16499 South Korea.
| | - Tae Jun Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, South Korea,Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea,Corresponding author. Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499 South Korea.
| |
Collapse
|
5
|
Che J, Xu C, Wu Y, Jia P, Han Q, Ma Y, Wang X, Du Y, Zheng Y. Early-senescent bone marrow mesenchymal stem cells promote C2C12 cell myogenic differentiation by preventing the nuclear translocation of FOXO3. Life Sci 2021; 277:119520. [PMID: 33887345 DOI: 10.1016/j.lfs.2021.119520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
AIMS Mouse bone marrow mesenchymal stem cells (BMSCs) are pluripotent cells with self-renewal and differentiation abilities. Since the effects of senescent BMSCs on C2C12 cells are not fully clear, the present study aimed to elucidate these effects. MAIN METHODS Senescence-associated β-galactosidase staining and western blotting were performed to confirm the senescence of BMSCs. Immunofluorescence and western blotting were used to assess myoblast differentiation in each group. The role of the AKT/P70 signaling pathway and forkhead box O3 (FOXO3) nuclear translocation was explored by western blotting. BMSC-derived exosomes were injected into the tibialis anterior of mice, and RT-qPCR was used to assess the role of exosomes in promoting muscle differentiation. KEY FINDINGS Conditioned medium (CM) from early-senescent BMSCs promoted myogenic differentiation in vitro, which was detected as enhanced expression of myosin heavy chain (MHC), myogenin (MYOG), and myogenic differentiation 1 (MyoD). The AKT signaling pathway was found to be regulated by CM, which inhibited FOXO3 nuclear translocation. RT-qPCR analysis results showed that MHC, MyoD, and MYOG mRNA expression increased in the tibialis anterior of mice after exosome injection. SIGNIFICANCE The present study demonstrated that early-senescent BMSCs accelerated C2C12 cell myogenic differentiation, and the transcription factor, FOXO3, was the target of senescent cells. Collectively, our results suggest that the AKT/P70 signaling pathway mediates the effect of BMSCs on neighboring cells.
Collapse
Affiliation(s)
- Ji Che
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China
| | - Cuidi Xu
- Department of Osteoporosis and Bone Disease, Huadong Hospital, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China
| | - Yuanyuan Wu
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China
| | - Peiyu Jia
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China
| | - Qi Han
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China
| | - Yantao Ma
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China
| | - Xiaolei Wang
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China
| | - Yijie Du
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China; Qingpu Traditional Chinese Medicine Hospital, Shanghai, China.
| | - Yongjun Zheng
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A. Role of p53 in the Regulation of Cellular Senescence. Biomolecules 2020; 10:biom10030420. [PMID: 32182711 PMCID: PMC7175209 DOI: 10.3390/biom10030420] [Citation(s) in RCA: 315] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The p53 transcription factor plays a critical role in cellular responses to stress. Its activation in response to DNA damage leads to cell growth arrest, allowing for DNA repair, or directs cellular senescence or apoptosis, thereby maintaining genome integrity. Senescence is a permanent cell-cycle arrest that has a crucial role in aging, and it also represents a robust physiological antitumor response, which counteracts oncogenic insults. In addition, senescent cells can also negatively impact the surrounding tissue microenvironment and the neighboring cells by secreting pro-inflammatory cytokines, ultimately triggering tissue dysfunction and/or unfavorable outcomes. This review focuses on the characteristics of senescence and on the recent advances in the contribution of p53 to cellular senescence. Moreover, we also discuss the p53-mediated regulation of several pathophysiological microenvironments that could be associated with senescence and its development.
Collapse
Affiliation(s)
- Mahmut Mijit
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Biotechnologies, University of Siena, 67100 Siena, Italy
| | - Valentina Caracciolo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Antonio Melillo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Fernanda Amicarelli
- Department of Medical Biotechnologies, University of Siena, 67100 Siena, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 53100 L’Aquila, Italy
- Correspondence:
| |
Collapse
|
7
|
Roth A, Boulay K, Groß M, Polycarpou-Schwarz M, Mallette FA, Regnier M, Bida O, Ginsberg D, Warth A, Schnabel PA, Muley T, Meister M, Zabeck H, Hoffmann H, Diederichs S. Targeting LINC00673 expression triggers cellular senescence in lung cancer. RNA Biol 2018; 15:1499-1511. [PMID: 30499379 DOI: 10.1080/15476286.2018.1553481] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aberrant expression of noncoding RNAs plays a critical role during tumorigenesis. To uncover novel functions of long non-coding RNA (lncRNA) in lung adenocarcinoma, we used a microarray-based screen identifying LINC00673 with elevated expression in matched tumor versus normal tissue. We report that loss of LINC00673 is sufficient to trigger cellular senescence, a tumor suppressive mechanism associated with permanent cell cycle arrest, both in lung cancer and normal cells in a p53-dependent manner. LINC00673-depleted cells fail to efficiently transit from G1- to S-phase. Using a quantitative proteomics approach, we confirm the modulation of senescence-associated genes as a result of LINC00673 knockdown. In addition, we uncover that depletion of p53 in normal and tumor cells is sufficient to overcome LINC00673-mediated cell cycle arrest and cellular senescence. Furthermore, we report that overexpression of LINC00673 reduces p53 translation and contributes to the bypass of Ras-induced senescence. In summary, our findings highlight LINC00673 as a crucial regulator of proliferation and cellular senescence in lung cancer.
Collapse
Affiliation(s)
- Anna Roth
- a Division of RNA Biology & Cancer (B150) , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Karine Boulay
- a Division of RNA Biology & Cancer (B150) , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Matthias Groß
- a Division of RNA Biology & Cancer (B150) , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Maria Polycarpou-Schwarz
- a Division of RNA Biology & Cancer (B150) , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Frédérick A Mallette
- b Chromatin Structure and Cellular Senescence Research Unit, Maisonneuve-Rosemont Hospital Research Centre & Department of Medicine , Université de Montréal , Montreal , Canada
| | - Marine Regnier
- b Chromatin Structure and Cellular Senescence Research Unit, Maisonneuve-Rosemont Hospital Research Centre & Department of Medicine , Université de Montréal , Montreal , Canada
| | - Or Bida
- c The Mina and Everard Goodman Faculty of Life Science , Bar Ilan University , Ramat Gan , Israel
| | - Doron Ginsberg
- c The Mina and Everard Goodman Faculty of Life Science , Bar Ilan University , Ramat Gan , Israel
| | - Arne Warth
- d Institute of Pathology , University Hospital Heidelberg , Heidelberg , Germany.,e Translational Lung Research Centre Heidelberg (TLRC-H) , Member of the German Center for Lung Research (DZL) , Heidelberg , Germany
| | - Philipp A Schnabel
- d Institute of Pathology , University Hospital Heidelberg , Heidelberg , Germany
| | - Thomas Muley
- e Translational Lung Research Centre Heidelberg (TLRC-H) , Member of the German Center for Lung Research (DZL) , Heidelberg , Germany.,f Thoraxklinik Heidelberg , Heidelberg , Germany
| | - Michael Meister
- e Translational Lung Research Centre Heidelberg (TLRC-H) , Member of the German Center for Lung Research (DZL) , Heidelberg , Germany.,f Thoraxklinik Heidelberg , Heidelberg , Germany
| | - Heike Zabeck
- f Thoraxklinik Heidelberg , Heidelberg , Germany
| | | | - Sven Diederichs
- a Division of RNA Biology & Cancer (B150) , German Cancer Research Center (DKFZ) , Heidelberg , Germany.,g Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine , University of Freiburg , Freiburg , Germany.,h German Cancer Consortium (DKTK) , Freiburg , Germany
| |
Collapse
|
8
|
Squillaro T, Antonucci I, Alessio N, Esposito A, Cipollaro M, Melone MAB, Peluso G, Stuppia L, Galderisi U. Impact of lysosomal storage disorders on biology of mesenchymal stem cells: Evidences from in vitro silencing of glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes. J Cell Physiol 2017; 232:3454-3467. [PMID: 28098348 DOI: 10.1002/jcp.25807] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/27/2022]
Abstract
Lysosomal storage disorders (LDS) comprise a group of rare multisystemic diseases resulting from inherited gene mutations that impair lysosomal homeostasis. The most common LSDs, Gaucher disease (GD), and Fabry disease (FD) are caused by deficiencies in the lysosomal glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes, respectively. Given the systemic nature of enzyme deficiency, we hypothesized that the stem cell compartment of GD and FD patients might be also affected. Among stem cells, mesenchymal stem cells (MSCs) are a commonly investigated population given their role in hematopoiesis and the homeostatic maintenance of many organs and tissues. Since the impairment of MSC functions could pose profound consequences on body physiology, we evaluated whether GBA and GLA silencing could affect the biology of MSCs isolated from bone marrow and amniotic fluid. Those cell populations were chosen given the former's key role in organ physiology and the latter's intriguing potential as an alternative stem cell model for human genetic disease. Our results revealed that GBA and GLA deficiencies prompted cell cycle arrest along with the impairment of autophagic flux and an increase of apoptotic and senescent cell percentages. Moreover, an increase in ataxia-telangiectasia-mutated staining 1 hr after oxidative stress induction and a return to basal level at 48 hr, along with persistent gamma-H2AX staining, indicated that MSCs properly activated DNA repair signaling, though some damages remained unrepaired. Our data therefore suggest that MSCs with reduced GBA or GLA activity are prone to apoptosis and senescence due to impaired autophagy and DNA repair capacity.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy.,Institute of Bioscience and Bioresources, National Research Council, Naples, Italy
| | - Ivana Antonucci
- Laboratory of Molecular Genetics, Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anna Esposito
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marilena Cipollaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mariarosa Anna Beatrice Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging; Division of Neurology and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gianfranco Peluso
- Institute of Bioscience and Bioresources, National Research Council, Naples, Italy
| | - Liborio Stuppia
- Laboratory of Molecular Genetics, Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
9
|
Terzi MY, Izmirli M, Gogebakan B. The cell fate: senescence or quiescence. Mol Biol Rep 2016; 43:1213-1220. [DOI: 10.1007/s11033-016-4065-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 08/16/2016] [Indexed: 12/31/2022]
|
10
|
Timing of transcription during the cell cycle: Protein complexes binding to E2F, E2F/CLE, CDE/CHR, or CHR promoter elements define early and late cell cycle gene expression. Oncotarget 2016; 8:97736-97748. [PMID: 29228647 PMCID: PMC5716687 DOI: 10.18632/oncotarget.10888] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022] Open
Abstract
A central question in cell cycle control is how differential gene expression is regulated. Timing of expression is important for correct progression through the cell cycle. E2F, CDE, and CHR promoter sites have been linked to transcriptional repression in resting cells and activation during the cell cycle. Further, the DREAM complex binds CHR or CDE/CHR elements of G2/M genes resulting in repression during G0/G1. Here, we show that DREAM also binds to E2F sites of S phase genes in quiescence and upon p53 activation. Furthermore, we describe a novel class of promoter sites, the CHR-like elements (CLE), which can support binding of DREAM to E2F elements. Activation of such S phase genes is achieved through binding of E2F1-3/DP complexes to E2F sites. In contrast, the activating MuvB complexes MMB and FOXM1-MuvB bind to CHR elements and mediate peak expression in G2/M. In conclusion, data presented here in combination with earlier results leads us to propose a model that explains how DREAM can repress early cell cycle genes through E2F or E2F/CLE sites and late genes through CHR or CDE/CHR elements. Also p53-dependent indirect transcriptional repression through the p53-p21-Cyclin/CDK-DREAM-E2F/CLE/CDE/CHR pathway requires DREAM binding to E2F or E2F/CLE sites in early cell cycle genes and binding of DREAM to CHR or CDE/CHR elements of late cell cycle genes. Specific timing of activation is achieved through binding of E2F1-3/DP to E2F sites and MMB or FOXM1-MuvB complexes to CHR elements.
Collapse
|
11
|
Chan ASL, Mowla SN, Arora P, Jat PS. Tumour suppressors and cellular senescence. IUBMB Life 2014; 66:812-22. [PMID: 25557529 DOI: 10.1002/iub.1335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/01/2014] [Indexed: 01/09/2023]
Abstract
Cellular senescence is a stable cell cycle arrest that normal cells undergo in response to a variety of intrinsic and extrinsic stimuli, including progressive telomere shortening, changes in telomeric structure or other forms of genotoxic as well nongenotoxic stress. Senescence is thought to have originated as a remodelling program that is active in embryonic development and acts as a key tumour suppressor mechanism during the reproductive stage in early adult life, by leading to the removal of potentially cancerous cells. However, in later adult life, it promotes organismal aging by compromising tissue repair and regeneration due to the accumulation of senescent cells, depletion of stem/progenitor cells and secretion of an array of inflammatory cytokines, chemokines and matrix metalloproteases. Whilst suppressing tumour formation in the senescent cells, these inflammatory cytokines, chemokines and metalloproteases can promote tumour progression and metastasis in the neighbouring cells. Herein, we review the molecular pathways that underlie cellular senescence and how it contributes towards tumour suppression.
Collapse
Affiliation(s)
- Adelyne S L Chan
- Department of Neurodegenerative Disease and MRC Prion Unit, UCL Institute of Neurology, Queen Square, London, WC1N 3BG
| | | | | | | |
Collapse
|
12
|
Alessio N, Bohn W, Rauchberger V, Rizzolio F, Cipollaro M, Rosemann M, Irmler M, Beckers J, Giordano A, Galderisi U. Silencing of RB1 but not of RB2/P130 induces cellular senescence and impairs the differentiation potential of human mesenchymal stem cells. Cell Mol Life Sci 2013; 70:1637-51. [PMID: 23370776 PMCID: PMC11113310 DOI: 10.1007/s00018-012-1224-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/24/2012] [Accepted: 11/26/2012] [Indexed: 12/22/2022]
Abstract
Stem cell senescence is considered deleterious because it may impair tissue renewal and function. On the other hand, senescence may arrest the uncontrolled growth of transformed stem cells and protect organisms from cancer. This double function of senescence is strictly linked to the activity of genes that the control cell cycle such as the retinoblastoma proteins RB1, RB2/P130, and P107. We took advantage of the RNA interference technique to analyze the role of these proteins in the biology of mesenchymal stem cells (MSC). Cells lacking RB1 were prone to DNA damage. They showed elevated levels of p53 and p21(cip1) and increased regulation of RB2/P130 and P107 expression. These cells gradually adopted a senescent phenotype with impairment of self-renewal properties. No significant modification of cell growth was observed as it occurs in other cell types or systems. In cells with silenced RB2/P130, we detected a reduction of DNA damage along with a higher proliferation rate, an increase in clonogenic ability, and the diminution of apoptosis and senescence. Cells with silenced RB2/P130 were cultivated for extended periods of time without adopting a transformed phenotype. Of note, acute lowering of P107 did not induce relevant changes in the in vitro behavior of MSC. We also analyzed cell commitment and the osteo-chondro-adipogenic differentiation process of clones derived by MSC cultures. In all clones obtained from cells with silenced retinoblastoma genes, we observed a reduction in the ability to differentiate compared with the control clones. In summary, our data show evidence that the silencing of the expression of RB1 or RB2/P130 is not compensated by other gene family members, and this profoundly affects MSC functions.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | - Wolfgang Bohn
- Department of Tumorvirology, Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | - Verena Rauchberger
- Department of Tumorvirology, Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | - Flavio Rizzolio
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, 1900 North 12th Street, Philadelphia, PA 19107-6799 USA
| | - Marilena Cipollaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | - Michael Rosemann
- Helmholtz Zentrum, National Research Center for Environment and Health, GmbH, Institute of Radiation Biology, Munich, Germany
| | - Martin Irmler
- Helmholtz Zentrum, National Research Center for Environment and Health, GmbH, Institute of Experimental Genetics, Munich, Germany
| | - Johannes Beckers
- Helmholtz Zentrum, National Research Center for Environment and Health, GmbH, Institute of Experimental Genetics, Munich, Germany
- WZW, Center of Life and Food Science Weihenstephan, Chair of Experimental Genetics, Technische Universität München, Freising-Weihenstephan, Germany
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, 1900 North 12th Street, Philadelphia, PA 19107-6799 USA
- Human Health Foundation, Spoleto, Italy
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, 1900 North 12th Street, Philadelphia, PA 19107-6799 USA
- Human Health Foundation, Spoleto, Italy
| |
Collapse
|
13
|
Indovina P, Marcelli E, Casini N, Rizzo V, Giordano A. Emerging roles of RB family: new defense mechanisms against tumor progression. J Cell Physiol 2013; 228:525-35. [PMID: 22886479 DOI: 10.1002/jcp.24170] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 07/31/2012] [Indexed: 12/14/2022]
Abstract
The retinoblastoma (RB) family of proteins, including RB1/p105, retinoblastoma-like 1 (RBL1/p107), and retinoblastoma-like 2 (RBL2/p130), is principally known for its central role on cell cycle regulation. The inactivation of RB proteins confers a growth advantage and underlies multiple types of tumors. Recently, it has been shown that RB proteins have other important roles, such as preservation of chromosomal stability, induction and maintenance of senescence and regulation of apoptosis, cellular differentiation, and angiogenesis. RB proteins are involved in many cellular pathways and act as transcriptional regulators able to bind several transcription factors, thus antagonizing or potentiating their functions. Furthermore, RB proteins might control the expression of specific target genes by recruiting chromatin remodeling enzymes. Although many efforts have been made to dissect the different functions of RB proteins, it remains still unclear which are necessary for cancer suppression and the role they play at distinct steps of carcinogenesis. Moreover, RB proteins can behave differently in various cell types or cell states. Elucidating the intricate RB protein network in regulating cell fate might provide the knowledge necessary to explain their potent tumor suppressor activity and to design novel therapeutic strategies.
Collapse
Affiliation(s)
- Paola Indovina
- Department of Human Pathology and Oncology, University of Siena, Siena, Italy
| | | | | | | | | |
Collapse
|
14
|
Abstract
p53, a guardian of the genome, exerts its tumor suppression activity by regulating a large number of downstream targets involved in cell cycle arrest, DNA repair, apoptosis, and cellular senescence. Although p53-mediated apoptosis is able to kill cancer cells, a role for cellular senescence in p53-dependent tumor suppression is becoming clear. Mouse studies showed that activation of p53-induced premature senescence promotes tumor regression in vivo. However, p53-mediated cellular senescence also leads to aging-related phenotypes, such as tissue atrophy, stem cell depletion, and impaired wound healing. In addition, several p53 isoforms and two p53 homologs, p63 and p73, have been shown to play a role in cellular senescence and/or aging. Importantly, p53, p63, and p73 are necessary for the maintenance of adult stem cells. Therefore, understanding the dual role the p53 protein family in cancer and aging is critical to solve cancer and longevity in the future. In this chapter, we provide an overview on how p53, p63, p73, and their isoforms regulate cellular senescence and aging.
Collapse
|
15
|
Simeonova I, Lejour V, Bardot B, Bouarich-Bourimi R, Morin A, Fang M, Charbonnier L, Toledo F. Fuzzy tandem repeats containing p53 response elements may define species-specific p53 target genes. PLoS Genet 2012; 8:e1002731. [PMID: 22761580 PMCID: PMC3386156 DOI: 10.1371/journal.pgen.1002731] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/11/2012] [Indexed: 12/21/2022] Open
Abstract
Evolutionary forces that shape regulatory networks remain poorly understood. In mammals, the Rb pathway is a classic example of species-specific gene regulation, as a germline mutation in one Rb allele promotes retinoblastoma in humans, but not in mice. Here we show that p53 transactivates the Retinoblastoma-like 2 (Rbl2) gene to produce p130 in murine, but not human, cells. We found intronic fuzzy tandem repeats containing perfect p53 response elements to be important for this regulation. We next identified two other murine genes regulated by p53 via fuzzy tandem repeats: Ncoa1 and Klhl26. The repeats are poorly conserved in evolution, and the p53-dependent regulation of the murine genes is lost in humans. Our results indicate a role for the rapid evolution of tandem repeats in shaping differences in p53 regulatory networks between mammalian species. TP53, the gene encoding p53, is mutated in more than half of human cancers. Consequently, p53 is one of the most studied transcription factors, shown to directly regulate more than 150 genes. The mouse is a model of choice to study p53 mutants and cancer. However, differences were found between tumorigenesis in mice and humans, and these should be investigated to improve the relevance of mouse models. The distinct mutational events required to initiate retinoblastomas in these species constitute a classic example of such differences. Here we show that p53 regulates the Retinoblastoma-like 2 (Rbl2) gene, encoding tumor suppressor p130, in murine but not human cells. The p53-dependent regulation of murine Rbl2/p130 relies on clustered p53 response elements, located within tandem repeats poorly conserved in evolution. A similar situation was found for two other genes, also p53 targets in mice but not in humans. Thus, tandem repeats may shape differences in mammalian p53 regulatory networks. By uncovering differences in p53 target gene repertoires between mice and humans, our findings may help to improve mice as models of human disease. In addition, the role of tandem repeats in shaping the target gene repertoires of other mammalian transcription factors should be considered.
Collapse
Affiliation(s)
- Iva Simeonova
- Institut Curie, Centre de Recherche, Paris, France
- UPMC Univ Paris 06, Paris, France
- CNRS UMR 3244, Paris, France
| | - Vincent Lejour
- Institut Curie, Centre de Recherche, Paris, France
- UPMC Univ Paris 06, Paris, France
- CNRS UMR 3244, Paris, France
| | - Boris Bardot
- Institut Curie, Centre de Recherche, Paris, France
- UPMC Univ Paris 06, Paris, France
- CNRS UMR 3244, Paris, France
| | - Rachida Bouarich-Bourimi
- Institut Curie, Centre de Recherche, Paris, France
- UPMC Univ Paris 06, Paris, France
- CNRS UMR 3244, Paris, France
| | - Aurélie Morin
- Institut Curie, Centre de Recherche, Paris, France
- UPMC Univ Paris 06, Paris, France
- CNRS UMR 3244, Paris, France
| | - Ming Fang
- Institut Curie, Centre de Recherche, Paris, France
- UPMC Univ Paris 06, Paris, France
- CNRS UMR 3244, Paris, France
| | - Laure Charbonnier
- Institut Curie, Centre de Recherche, Paris, France
- UPMC Univ Paris 06, Paris, France
- CNRS UMR 3244, Paris, France
| | - Franck Toledo
- Institut Curie, Centre de Recherche, Paris, France
- UPMC Univ Paris 06, Paris, France
- CNRS UMR 3244, Paris, France
- * E-mail:
| |
Collapse
|
16
|
Squillaro T, Alessio N, Cipollaro M, Melone MAB, Hayek G, Renieri A, Giordano A, Galderisi U. Reduced expression of MECP2 affects cell commitment and maintenance in neurons by triggering senescence: new perspective for Rett syndrome. Mol Biol Cell 2012; 23:1435-45. [PMID: 22357617 PMCID: PMC3327309 DOI: 10.1091/mbc.e11-09-0784] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The neural differentiation process is studied in mesenchymal stem cells obtained from Rett patients and in neuroblastoma cells carrying a partially silenced MECP2 gene. The data suggest that neural cell fate and neuronal maintenance might be perturbed by senescence triggered by impaired MECP2 protein activity either before or after neural differentiation. MECP2 protein binds preferentially to methylated CpGs and regulates gene expression by causing changes in chromatin structure. The mechanism by which impaired MECP2 activity can induce pathological abnormalities in the nervous system of patients with Rett syndrome (RTT) is not clearly understood. To gain further insight into the role of MECP2 in human neurogenesis, we compared the neural differentiation process in mesenchymal stem cells (MSCs) obtained from a RTT patient and from healthy donors. We further analyzed neural differentiation in a human neuroblastoma cell line carrying a partially silenced MECP2 gene. Senescence and reduced expression of neural markers were observed in proliferating and differentiating MSCs from the RTT patient, which suggests that impaired activity of MECP2 protein may impair neural differentiation, as observed in RTT patients. Next, we used an inducible expression system to silence MECP2 in neuroblastoma cells before and after the induction of neural differentiation via retinoic acid treatment. This approach was used to test whether MECP2 inactivation affected the cell fate of neural progenitors and/or neuronal differentiation and maintenance. Overall, our data suggest that neural cell fate and neuronal maintenance may be perturbed by senescence triggered by impaired MECP2 activity either before or after neural differentiation.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, 80138 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Helmbold H, Galderisi U, Bohn W. The switch from pRb/p105 to Rb2/p130 in DNA damage and cellular senescence. J Cell Physiol 2012; 227:508-13. [PMID: 21465484 DOI: 10.1002/jcp.22786] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cellular senescence is a response to genotoxic stress that results in an irreversible cell cycle arrest. Activation of this pathway relies on the activity of the retinoblastoma proteins and proteins of the DNA damage response cascade. Here, we discuss the functional relevance of the switch from pRb/p105 to Rb2/p130 that becomes apparent when cells enter senescent arrest.
Collapse
Affiliation(s)
- Heike Helmbold
- Department of Tumorvirology, Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | | | | |
Collapse
|
18
|
Abstract
CTCF is an evolutionary conserved and ubiquitously expressed protein that binds thousands of sites in the human genome. Ectopic expression of CTCF in various normal and tumoral human cell lines inhibits cell division and clonogenicity, with the consequence to consider CTCF a potential tumor-suppressor factor. In this review article, we focused on the molecular mechanisms engaged by CTCF to modulate the expression of several key-regulators of differentiation, cellular senescence, cell cycle control and progression, whose expression is frequently altered in tumors. Moreover, we discussed common features of CTCF at each tumor-related DNA-binding sequence, such as protein-partners, post-translational modifications, and distinctive epigenetic marks establishment. The investigation of the molecular mechanisms engaged by CTCF to modulate tumor-related genes emphasizes the cell-type dependency of its tumor suppressor role. Indeed, the ability of CTCF to bind their promoters strictly depends by cell-type features as DNA methylation, BORIS-binding and post-translational modifications as PARYlation.
Collapse
Affiliation(s)
- Francesco Paolo Fiorentino
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | |
Collapse
|
19
|
Abstract
Cellular senescence is an irreversible growth arrest that is activated in normal cells upon shortening of telomere and other cellular stresses. Bypassing cellular senescence is a necessary step for cells to become immortal during oncogenic transformation. During the spontaneous immortalization of Li-Fraumeni Syndrome (LFS) fibroblasts, we found that CREG1 (Cellular Repressor of E1A-stimulated Genes 1) expression was decreased during immortalization and increased in senescence. Moreover, we found that repression of CREG1 expression occurs via an epigenetic mechanism, promoter DNA methylation. Ectopic expression of CREG1 in the immortal LFS cell lines decreases cell proliferation but does not directly induce senescence. We confirmed this in osteosarcoma and fibrosarcoma cancer cell lines, cancers commonly seen in Li-Fraumeni Syndrome. In addition, we found that p16 (INK4a) is also downregulated in immortal cells and that coexpression of CREG1 and p16 (INK4a) , an inhibitor of CDK4/6 and Rb phosphorylation, has a greater effect than either CREG1 and p16 (INK4a) alone to reduce cell growth, induce cell cycle arrest and cellular senescence in immortal LFS fibroblasts, osteosarcoma and fibrosarcoma cell lines. Moreover, cooperation of CREG1 and p16 (INK4a) inhibits the expression of cyclin A and cyclin B by inhibiting promoter activity thereby decreasing mRNA and protein levels; these proteins are required for S-phase entry and G2/M transition. In conclusion, this is the first evidence to demonstrate that CREG1 enhances p16 (INK4a) -induced senescence by transcriptional repression of cell cycle-regulated genes.
Collapse
Affiliation(s)
- Benchamart Moolmuang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
20
|
Horbinski C, Dillon D, Pittman T. Low-grade recurrence of a congenital high-grade supratentorial tumor with astrocytic features in the absence of adjuvant therapy. Neuropathology 2010; 31:286-91. [PMID: 20880322 DOI: 10.1111/j.1440-1789.2010.01156.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The biological behavior of pediatric gliomas and embryonal tumors can be highly variable. A few case reports have described differentiation of primitive neuroectodermal tumors (PNETs) and medulloblastomas, presumably induced by adjuvant chemotherapy and/or radiation. Herein we describe a case of a congenital supratentorial high-grade tumor with astrocytic features that, after near-total surgical resection, was not treated with adjuvant therapies. Thirteen years later the patient presented with recurrent tumor at the original surgical site. The recurrent tumor had completely different morphology compared to the original, with evidence of ganglion cell differentiation and changes more reminiscent of a low-grade pleomorphic xanthoastrocytoma. To the authors' knowledge, this is the first documented case of an untreated high-grade pediatric tumor that spontaneously differentiated into a low grade tumor. The clinical and biological implications of this are briefly discussed.
Collapse
Affiliation(s)
- Craig Horbinski
- Department of Pathology, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | |
Collapse
|
21
|
Qian Y, Chen X. Tumor suppression by p53: making cells senescent. Histol Histopathol 2010; 25:515-26. [PMID: 20183804 DOI: 10.14670/hh-25.515] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular senescence is a permanent cell cycle arrest and a potent tumor suppression mechanism. The p53 tumor suppressor is a sequence-specific transcription factor and acts as a central hub sensing various stress signals and activating an array of target genes to induce cell cycle arrest, apoptosis, and senescence. Recent reports showed that restoration of p53 induces premature senescence and tumor regression in mice with hepatocarcinomas or sarcomas. Thus, p53-mediated senescence is capable of eliminating cancer cells in vivo. p63 and p73, two homologues of p53, have similar function in cell cycle arrest and apoptosis. However, the role of p63 and p73 in cellular senescence is elusive. In this review, we will discuss how p53 regulates senescence and future studies about p53 family members in senescence.
Collapse
Affiliation(s)
- Yingjuan Qian
- Center for Comparative Oncology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
22
|
|
23
|
Galderisi U, Helmbold H, Squillaro T, Alessio N, Komm N, Khadang B, Cipollaro M, Bohn W, Giordano A. In vitro senescence of rat mesenchymal stem cells is accompanied by downregulation of stemness-related and DNA damage repair genes. Stem Cells Dev 2009; 18:1033-42. [PMID: 19099372 DOI: 10.1089/scd.2008.0324] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are of particular interest because they are being tested using cell and gene therapies for a number of human diseases. MSCs represent a rare population in tissues. Therefore, it is essential to grow MSCs in vitro before putting them into therapeutic use. This is compromised by senescence, limiting the proliferative capacity of MSCs. We analyzed the in vitro senescence of rat MSCs, because this animal is a widespread model for preclinical cell therapy studies. After initial expansion, MSCs showed an increased growth doubling time, lost telomerase activity, and expressed senescence-associated beta-galactosidase. Senescence was accompanied by downregulation of several genes involved in stem cell self-renewal. Of interest, several genes involved in DNA repair also showed a significant downregulation. Entry into senescence occurred with characteristic changes in Retinoblastoma (RB) expression patterns. Rb1 and p107 genes expression decreased during in vitro cultivation. In contrast, pRb2/p130 became the prominent RB protein. This suggests that RB2/P130 could be a marker of senescence or that it even plays a role in triggering the process in MSCs.
Collapse
Affiliation(s)
- Umberto Galderisi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Excellence Research Center for Cardiovascular Diseases, Second University of Naples, Via Costantinopoli 16, Naples 80138, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fiorentino FP, Symonds CE, Macaluso M, Giordano A. Senescence and p130/Rbl2: a new beginning to the end. Cell Res 2009; 19:1044-51. [PMID: 19668264 DOI: 10.1038/cr.2009.96] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Senescence is the process of cellular aging dependent on the normal physiological functions of non-immortalized cells. With increasing data being uncovered in this field, the complex molecular web regulating senescence is gradually being unraveled. Recent studies have suggested two main phases of senescence, the triggering of senescence and the maintenance of senescence. Each has been supported by data implying precise roles for DNA methyltransferases, reactive oxygen species and other factors. We will first summarize the data supporting these claims and then highlight the specific role that we hypothesize that p130/Rbl2 plays in the modulation of the senescence process.
Collapse
Affiliation(s)
- Francesco P Fiorentino
- Section of Medical Oncology, Department of Oncology, Regional Reference Center for the Biomolecular Characterization and Genetic Screening of Hereditary Tumors, Università di Palermo, Via del Vespro 127, 90127, Palermo, Italy
| | | | | | | |
Collapse
|
25
|
Helmbold H, Kömm N, Deppert W, Bohn W. Rb2/p130 is the dominating pocket protein in the p53–p21 DNA damage response pathway leading to senescence. Oncogene 2009; 28:3456-67. [DOI: 10.1038/onc.2009.222] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Abstract
It is still enigmatic under which circumstances cellular demise induces an immune response or rather remains immunologically silent. Moreover, the question remains open under which circumstances apoptotic, autophagic or necrotic cells are immunogenic or tolerogenic. Although apoptosis appears to be morphologically homogenous, recent evidence suggests that the pre-apoptotic surface-exposure of calreticulin may dictate the immune response to tumor cells that succumb to anticancer treatments. Moreover, the release of high-mobility group box 1 (HMGB1) during late apoptosis and secondary necrosis contributes to efficient antigen presentation and cytotoxic T-cell activation because HMGB1 can bind to Toll like receptor 4 on dendritic cells, thereby stimulating optimal antigen processing. Cell death accompanied by autophagy also may facilitate cross priming events. Apoptosis, necrosis and autophagy are closely intertwined processes. Often, cells manifest autophagy before they undergo apoptosis or necrosis, and apoptosis is generally followed by secondary necrosis. Whereas apoptosis and necrosis irreversibly lead to cell death, autophagy can clear cells from stress factors and thus facilitate cellular survival. We surmise that the response to cellular stress like chemotherapy or ionizing irradiation, dictates the immunological response to dying cells and that this immune response in turn determines the clinical outcome of anticancer therapies. The purpose of this review is to summarize recent insights into the immunogenicity of dying tumor cells as a function of the cell death modality.
Collapse
|
27
|
|
28
|
Sampieri K, Amenduni M, Papa FT, Katzaki E, Mencarelli MA, Marozza A, Epistolato MC, Toti P, Lazzi S, Bruttini M, De Filippis R, De Francesco S, Longo I, Meloni I, Mari F, Acquaviva A, Hadjistilianou T, Renieri A, Ariani F. Array comparative genomic hybridization in retinoma and retinoblastoma tissues. Cancer Sci 2009; 100:465-71. [PMID: 19183342 PMCID: PMC11159683 DOI: 10.1111/j.1349-7006.2008.01070.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In retinoblastoma, two RB1 mutations are necessary for tumor development. Recurrent genomic rearrangements may represent subsequent events required for retinoblastoma progression. Array-comparative genomic hybridization was carried out in 18 eye samples, 10 from bilateral and eight from unilateral retinoblastoma patients. Two unilateral cases also showed areas of retinoma. The most frequent imbalance in retinoblastomas was 6p gain (40%), followed by gains at 1q12-q25.3, 2p24.3-p24.2, 9q22.2, and 9q33.1 and losses at 11q24.3, 13q13.2-q22.3, and 16q12.1-q21. Bilateral cases showed a lower number of imbalances than unilateral cases (P = 0.002). Unilateral cases were divided into low-level (< or = 4) and high-level (> or = 7) chromosomal instability groups. The first group presented with younger age at diagnosis (mean 511 days) compared with the second group (mean 1606 days). In one retinoma case ophthalmoscopically diagnosed as a benign lesion no rearrangements were detected, whereas the adjacent retinoblastoma displayed seven aberrations. The other retinoma case identified by retrospective histopathological examination shared three rearrangements with the adjacent retinoblastoma. Two other gene-free rearrangements were retinoma specific. One rearrangement, dup5p, was retinoblastoma specific and included the SKP2 gene. Genomic profiling indicated that the first retinoma was a pretumoral lesion, whereas the other represents a subclone of cells bearing 'benign' rearrangements overwhelmed by another subclone presenting aberrations with higher 'oncogenic' potential. In summary, the present study shows that bilateral and unilateral retinoblastoma have different chromosomal instability that correlates with the age of tumor onset in unilateral cases. This is the first report of genomic profiling in retinoma tissue, shedding light on the different nature of lesions named 'retinoma'.
Collapse
Affiliation(s)
- Katia Sampieri
- Medical Genetics, Department of Molecular Biology, University of Siena, Policlinico Le Scotte, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The mammalian SWI/SNF complexes mediate ATP-dependent chromatin remodeling processes that are critical for differentiation and proliferation. Not surprisingly, loss of SWI/SNF function has been associated with malignant transformation, and a substantial body of evidence indicates that several components of the SWI/SNF complexes function as tumor suppressors. This review summarizes the evidence that underlies this conclusion, with particular emphasis upon the two catalytic subunits of the SWI/SNF complexes, BRM, the mammalian ortholog of SWI2/SNF2 in yeast and brahma in Drosophila, and Brahma-related gene-1 (BRG1).
Collapse
|
30
|
Lehmann BD, Brooks AM, Paine MS, Chappell WH, McCubrey JA, Terrian DM. Distinct roles for p107 and p130 in Rb-independent cellular senescence. Cell Cycle 2008; 7:1262-8. [PMID: 18418057 DOI: 10.4161/cc.7.9.5945] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Telomere attrition, DNA damage and constitutive mitogenic signaling can all trigger cellular senescence in normal cells and serve as a defense against tumor progression. Cancer cells may circumvent this cellular defense by acquiring genetic mutations in checkpoint proteins responsible for regulating permanent cell cycle arrest. A small family of tumor suppressor genes encoding the retinoblastoma susceptibility protein family (Rb, p107, p130) exerts a partially redundant control of entry into S phase of DNA replication and cellular proliferation. Here we report that activation of the p53-dependent DNA damage response has been found to accelerate senescence in human prostate cancer cells lacking a functional Rb protein. This novel form of irradiation-induced premature cellular senescence reinforces the notion that other Rb family members may compensate for loss of Rb protein in the DNA damage response pathway. Consistent with this hypothesis, depletion of p107 potently inhibits the irradiation-induced senescence observed in DU145 cells. In contrast, p130 depletion triggers a robust and unexpected form of premature senescence in unirradiated cells. The dominant effect of depleting both p107 and p130, in the absence of Rb, was a complete blockade of irradiation-induced cellular senescence. Onset of the p107-dependent senescence was temporally associated with p53-mediated stabilization of the cyclin-dependent kinase inhibitor p27 and decreases in c-myc and cks1 expression. These results indicate that p107 is required for initiation of accelerated cellular senescence in the absence of Rb and introduces the concept that p130 may be required to prevent the onset of terminal growth arrest in unstimulated prostate cancer cells lacking a functional Rb allele.
Collapse
Affiliation(s)
- Brian D Lehmann
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
31
|
Dimaras H, Khetan V, Halliday W, Orlic M, Prigoda NL, Piovesan B, Marrano P, Corson TW, Eagle RC, Squire JA, Gallie BL. Loss of RB1 induces non-proliferative retinoma: increasing genomic instability correlates with progression to retinoblastoma. Hum Mol Genet 2008; 17:1363-72. [PMID: 18211953 DOI: 10.1093/hmg/ddn024] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Retinoblastoma clinical observations revealed the role of tumor suppressor genes in human cancer, Knudson's 'two-hit' model of cancer induction. We now demonstrate that loss of both RB1 tumor suppressor gene alleles initiates quiescent RB1(-/-) retinomas with low level genomic instability and high expression of the senescence-associated proteins p16(INK4a) and p130. Although retinomas can remain unchanged throughout life, highly proliferative, clonal and aneuploid retinoblastomas commonly emerge, exhibiting altered gene copy number and expression of oncogenes (MYCN, E2F3, DEK, KIF14 and MDM4) and tumor suppressor genes (CDH11, p75(NTR)) and reduced expression of p16(INK4a) and p130. We suggest that RB1 inactivation in developing retina induces genomic instability, but senescence can block transformation at the stage of retinoma. However, stable retinoma is rarely clinically observed because progressive genomic instability commonly leads to highly proliferative retinoblastoma.
Collapse
Affiliation(s)
- Helen Dimaras
- Department of Molecular and Medical Genetics, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Vicencio JM, Galluzzi L, Tajeddine N, Ortiz C, Criollo A, Tasdemir E, Morselli E, Ben Younes A, Maiuri MC, Lavandero S, Kroemer G. Senescence, Apoptosis or Autophagy? Gerontology 2008; 54:92-9. [DOI: 10.1159/000129697] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 01/30/2008] [Indexed: 12/11/2022] Open
|
33
|
Gallie BL, Zhao J, Vandezande K, White A, Chan HSL. Global issues and opportunities for optimized retinoblastoma care. Pediatr Blood Cancer 2007; 49:1083-90. [PMID: 17943957 DOI: 10.1002/pbc.21350] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The RB1 gene is important in all human cancers. Studies of human retinoblastoma point to a rare retinal cell with extreme dependency on RB1 for initiation but not progression to full malignancy. In developed countries, genetic testing within affected families can predict children at high risk of retinoblastoma before birth; chemotherapy with local therapy often saves eyes and vision; and mortality is 4%. In less developed countries where 92% of children with retinoblastoma are born, mortality reaches 90%. Global collaboration is building for the dramatic change in mortality that awareness, simple expertise and therapies could achieve in less developed countries.
Collapse
Affiliation(s)
- Brenda L Gallie
- Retinoblastoma Program, Hospital for Sick Children and Applied Molecular Oncology, Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
34
|
Qian Y, Zhang J, Yan B, Chen X. DEC1, a basic helix-loop-helix transcription factor and a novel target gene of the p53 family, mediates p53-dependent premature senescence. J Biol Chem 2007; 283:2896-905. [PMID: 18025081 DOI: 10.1074/jbc.m708624200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cellular senescence plays an important role in tumor suppression. p53 tumor suppressor has been reported to be crucial in cellular senescence. However, the underlying mechanism is poorly understood. In this regard, a cDNA microarray assay was performed to identify p53 targets involved in senescence. Among the many candidates is DEC1, a basic helix-loop-helix transcription factor that has been recently shown to be up-regulated in K-ras-induced premature senescence. However, it is not clear whether DEC1 is capable of inducing senescence. Here, we found that DEC1 is a novel target gene of the p53 family and mediates p53-dependent premature senescence. Specifically, we showed that DEC1 is induced by the p53 family and DNA damage in a p53-dependent manner. We also found that the p53 family proteins bind to, and activate, the promoter of the DEC1 gene. In addition, we showed that overexpression of DEC1 induces G(1) arrest and promotes senescence. Moreover, we found that targeting endogenous DEC1 attenuates p53-mediated premature senescence in response to DNA damage. Furthermore, overexpression of DEC1 induces cellular senescence in p53-knockdown cells, albeit to a lesser extent. Finally, we showed that DEC1-induced senescence is p21-independent. Taken together, our data provided strong evidence that DEC1 is one of the effectors downstream of p53 to promote premature senescence.
Collapse
Affiliation(s)
- Yingjuan Qian
- University of California-Davis, Center for Comparative Oncology, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
35
|
Albitar L, Carter MB, Davies S, Leslie KK. Consequences of the loss of p53, RB1, and PTEN: Relationship to gefitinib resistance in endometrial cancer. Gynecol Oncol 2007; 106:94-104. [PMID: 17490733 DOI: 10.1016/j.ygyno.2007.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 02/22/2007] [Accepted: 03/08/2007] [Indexed: 11/18/2022]
Abstract
OBJECTIVE These studies demonstrate how loss of function mutations or downregulation of key tumor suppressors missing from type I and type II endometrial cancer cells contributes to carcinogenesis and to resistance to the EGFR inhibitor gefitinib (ZD1839). METHODS Cell models devoid of tumor suppressors PTEN and RB1 or PTEN were studied. PTEN, RB1 and p53 expression was reinstated, and the effects on cell cycle, apoptosis, and cell cycle regulators were evaluated. RESULTS In Ishikawa H cells that model type I endometrial cancer in the loss of PTEN and RB1, re-expressing PTEN and RB1 increased the apoptotic and G1 phases and decreased the S and G2-M phases, which further sensitize the cells to gefitinib. Expressing p53 in Hec50co that model type II tumors by loss of this tumor suppressor arrested cells at the G1-S checkpoint, and apoptosis was also induced. Yet this did not improve sensitivity to gefitinib. Modulation of the cell cycle regulators responsible for these changes is explored, and a potential new therapeutic target, MDM2, is identified. CONCLUSION The downregulation of p53 expression in type II Hec50co cells is linked to gefitinib resistance. In addition, the overexpression of MDM2, the principal factor that inhibits p53 function also occurs in these resistant cells. MDM2 phosphorylation is only partially blocked by gefitinib, and high MDM2 expression may relate to drug resistance.
Collapse
Affiliation(s)
- Lina Albitar
- The Reproductive Molecular Biology Laboratory, Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, The University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
36
|
Abstract
Growth regulatory functions of Rb2/p130, which aim at a sustained arrest such as in quiescent or differentiated cells, qualify the protein also to act as a central regulator of growth arrest in cellular senescence. In this respect, Rb2/p130 functions are connected to signaling pathways induced by p53, which is a master regulator in cellular senescence. Here, we summarize the pathways, which specify pRb2/p130 to control this arrest program and distinguish its functions from those of pRb/p105.
Collapse
Affiliation(s)
- H Helmbold
- Heinrich-Pette-Institute for Experimental Virology and Immunology at the University of Hamburg, Martinistr, Hamburg, Germany
| | | | | |
Collapse
|
37
|
Zhang X, Kim J, Ruthazer R, McDevitt MA, Wazer DE, Paulson KE, Yee AS. The HBP1 transcriptional repressor participates in RAS-induced premature senescence. Mol Cell Biol 2006; 26:8252-66. [PMID: 16966377 PMCID: PMC1636767 DOI: 10.1128/mcb.00604-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Oncogene-mediated premature senescence has emerged as a potential tumor-suppressive mechanism in early cancer transitions. Previous work shows that RAS and p38 MAPK participate in premature senescence, but transcriptional effectors have not been identified. Here, we demonstrate that the HBP1 transcriptional repressor participates in RAS- and p38 MAPK-induced premature senescence. In cell lines, we had previously isolated HBP1 as a retinoblastoma (RB) target but have determined that it functions as a proliferation regulator by inhibiting oncogenic pathways as a transcriptional repressor. In primary cells, the results indicate that HBP1 is a necessary component of premature senescence by RAS and p38 MAPK. Similarly, a knockdown of WIP1 (a p38 MAPK phosphatase) induced premature senescence that also required HBP1. Furthermore, HBP1 requires regulation by RB, in which few transcriptional regulators for premature senescence have been shown. Together, the data suggest a model in which RAS and p38 MAPK signaling engage HBP1 and RB to trigger premature senescence. As an initial step toward clinical relevance, a bioinformatics approach shows that the relative expression levels of HBP1 and WIP1 correlated with decreased relapse-free survival in breast cancer patients. Together, these studies highlight p38 MAPK, HBP1, and RB as important components for a premature-senescence pathway with possible clinical relevance to breast cancer.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Felsani A, Mileo AM, Paggi MG. Retinoblastoma family proteins as key targets of the small DNA virus oncoproteins. Oncogene 2006; 25:5277-85. [PMID: 16936748 DOI: 10.1038/sj.onc.1209621] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
RB, the most investigated tumor suppressor gene, is the founder of the RB family of growth/tumor suppressors, which comprises also p107 (RBL1) and Rb2/p130 (RBL2). The protein products of these genes, pRb, p107 and pRb2/p130, respectively, are also known as 'pocket proteins', because they share a 'pocket' domain responsible for most of the functional interactions characterizing the activity of this family of cellular factors. The interest in these genes and proteins springs essentially from their ability to regulate negatively cell cycle processes and for their ability to slow down or abrogate neoplastic growth. The pocket domain of the RB family proteins is dramatically hampered in its functions by the interference of a number of proteins produced by the small DNA viruses. In the last two decades, the 'viral hypothesis' of cancer has received a considerable renewed impulse from the notion that small DNA viruses, such as Adenovirus, Human papillomavirus (HPV) and Polyomavirus, produce factors that can physically interact with major cellular regulators and alter their function. These viral proteins (oncoproteins) act as multifaceted molecular devices that have evolved to perform very specific tasks. Owing to these features, viral oncoproteins have been widely employed as invaluable experimental tools for the identification of several key families of regulators, particularly of the cell cycle homeostasis. Adenovirus early-region 1A (E1A) is the most widely investigated small DNA tumor virus oncoprotein, but relevant interest in human oncology is raised by the E1A-related E7 protein from transforming HPV strains and by Polyomavirus oncoproteins, particularly large and small T antigens from Simian virus 40, JC virus and BK virus.
Collapse
Affiliation(s)
- A Felsani
- Istituto di Neurobiologia e Medicina Molecolare, CNR, Rome, Italy
| | | | | |
Collapse
|